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Sparse Model Identification Using a Forward Orthogonal

Regression Algorithm Aided by Mutual Information

Stephen A. Billings and Hua-Liang Wei

Abstract—A sparse representation, with satisfactory approximation ac-
curacy, is usually desirable in any nonlinear system identification and signal

processing problem. A new forward orthogonal regression algorithm, with
mutual information interference, is proposed for sparse model selection and

parameter estimation. The new algorithm can be used to construct parsi-
monious linear-in-the-parameters models.

Index Terms—Model selection, mutual information, orthogonal least
squares (OLS), parameter estimation.

I. INTRODUCTION

The central task in learning from data is how to identify a suit-

able model from the observational data set. One solution is to con-

struct nonlinear models using some specific types of basis functions,

aided by various state-of-the-art techniques [1]–[5]. Among the ex-

isting sparse modeling techniques, linear-in-the-parameters regression

models, which will be considered in this letter, are an important class

of representations for nonlinear function approximation and signal pro-

cessing. A general routine for linear-in-the-parameters modeling often

starts by constructing a model term dictionary, whose elements are the

candidate model terms. The task of system identification involves two

aspects: the selection of the significant model terms and the determina-

tion of the number of model terms involved in the final identified model.

The objective is to obtain a satisfactory sparse representation that in-

volves only a small number of model terms by making a compromise

between the approximation accuracy and the model complexity (model

size). Notice that the objective of dynamical modeling is not merely

data fitting. In dynamical modeling, the resulting sparse model should

fit the observational data accurately, but at the same time the model

should be capable of capturing the underlying system dynamics car-

ried by the observational data, so that the resulting model can be used

in simulation, analysis, and control studies.

Many approaches have been proposed to address the model struc-

ture selection problem; most of these focus on which bases are signifi-

cant and should be included in the model. The orthogonal least squares

(OLS) algorithm [2], [6], [7], which was initiated for nonlinear system

identification, has become popular and has been widely used for sparse

data modeling. This type of algorithm is simple and is very efficient

at producing parsimonious linear-in-the-parameters models with good

generalization performance [8]. An advantage of the OLS-type algo-

rithms is that commonly used model selection and regularization tech-

niques, for example the Akaike information criterion (AIC), Bayesian

information criterion (BIC), and generalized cross validation (GCV)

[9]–[11], can easily be adopted and incorporated into the model struc-

ture selection algorithms to yield compact linear-in-the-parameters re-

gression models with good generalization properties [12]–[14].
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In the OLS-type algorithms, the criterion that is used to measure the

significance of the candidate bases (model terms) is the error reduc-

tion ratio (ERR), which is equivalent to the squared correlation coef-

ficient and is similar to the commonly used Pearson correlation func-

tion. Experience has shown that the OLS algorithms interfered by the

ERR criterion can usually produce a satisfactory sparse model with

good generalization performance. The adoption and the domination of

the ERR criterion, however, does not exclude other criteria. It follows

from practical experience that the selected model subsets are often cri-

terion-dependent.

In this letter, a new criterion, derived from mutual information, is

adopted into the OLS algorithm to measure the significance of candi-

date bases and to interfere with the model subset selection. The moti-

vation of the adoption of a mutual information criterion is based on the

following considerations. It is known that the task of modeling from

data is generally structure-unknown and the model term dictionary is

often predetermined and thus fixed. For this case, the selected model

structures are usually criterion-dependent. This implies that the mutual

information criterion and the ERR criterion may or may not produce

exactly the same model structure given the same modeling problem.

The two criteria can be used in parallel, and the performance of the

resultant models can then be compared. The model with the better per-

formance will be chosen as the final model. In this manner, the two

criteria will complement each other and thus produce a better model.

II. LINEAR-IN-THE-PARAMETERS REPRESENTATION

Consider the identification problem for nonlinear systems given N

pairs of input–output observations fu(t); y(t)gNt=1. Under some mild

conditions, a discrete-time nonlinear system can be described by the

following nonlinear autoregressive with exogenous inputs (NARX)

model [1]

y(t) = f(y(t�1); . . . ; y(t�ny); u(t�1); . . . ; u(t�nu))+e(t) (1)

where u(t), y(t), and e(t) are the system input, output, and noise vari-

ables, nu and ny are the maximum lags in the input and output, respec-

tively, and f is some unknown nonlinear mapping. It is generally as-

sumed that e(t) is an independent identical distributed noise sequence.

The central task of system identification is to find a suitable approx-

imator f̂ for the unknown function f from the observational data. One

solution is to construct nonlinear models using some specific types

of basis functions including polynomials, kernel basis functions, and

multiresolution wavelets [3]–[6], [15]. Among these existing modeling

techniques, linear-in-the-parameters regression models, which will be

considered in this letter, is an important class of representations for non-

linear system identification, because compared to nonlinear-in-the-pa-

rameters models, linear-in-the -parameters models are simpler to ana-

lyze mathematically and quicker to compute numerically.

Let d = ny + nu and x(t) = [x1(t); . . . ; xd(t)]
T with

xk(t) =
y(t� k); 1 � k � ny

u(t� (k � ny)); ny + 1 � k � ny + nu.
(2)

A general form of the linear-in-the-parameters regression model is

given as follows:

y(t) = f̂(x(t)) + e(t) =

M

m=1

�m�m(x(t)) + e(t)

='''
T (t)��� + e(t) (3)

where M is the total number of candidate regressors, �m(x(t)) (m =
1; . . . ;M) are the model regressors and �m are the model parameters,

and '''(t) = [�1(x(t)); . . . ; �M(x(t))]T and ��� are the associated re-

gressor and parameter vectors, respectively.

III. MUTUAL INFORMATION INTERFERENCE FOR

MODEL STRUCTURE SELECTION

In the standard OLS algorithm [2], [6], [7], the significance of candi-

date model terms is measured using the values of ERR, which is defined

as the noncentralized squared correlation coefficient between two as-

sociated vectors. This coefficient between two given vectors x and y

of size N is defined as

C(x;y) =
(xTy)2

(xTx)(yTy)
=

(
N

i=1

xiyi)
2

N

i=1

x2i

N

i=1

y2i

: (4)

Similar to the commonly used standard Pearson correlation coefficient,

the function in (4) reflects the linear relationship between two vec-

tors x and y. Both the standard Pearson correlation coefficient and the

squared correlation coefficient in (4) have wide application in various

fields.

Another useful criterion, derived from mutual information, can be

used to measure the relationship of two random variables by calcu-

lating the amount of information that the two variables share with each

other. Mutual-information-based algorithms have in recent years been

widely applied in various areas including feature selection [16]–[20].

In this letter, mutual information will be introduced to form a com-

plementary criterion to the ERR criterion to interfere with the model

structure selection procedure.

A. Mutual Information

Following [21], mutual information is defined as follows. Consider

two random discrete variables x and y with alphabet X and Y , re-

spectively, and with a joint probability mass function p(x; y) and mar-

ginal probability mass functions p(x) and p(y). The mutual informa-

tion I(x;y) is the relative entropy between the joint distribution and

the product distribution p(x)p(y), given as

I(x; y) =E log
p(x;y)

p(x)p(y)

=
x2X y2Y

p(x; y) log
p(x; y)

p(x)p(y)
: (5)

The mutual information I(x;y) is the reduction in the uncertainty of y

due to some knowledge of x and vice versa. Mutual information pro-

vides a measure of the amount of information that one variable shares

with another. If y is chosen to be the system output (the response), and

x is one regressor in a linear model, I(x;y) can be used to measure

the coherency of x with y in the model.

B. Model Structure Selection With Interference of Mutual Information

Let y = [y(1); . . . ; y(N)]T be a vector of measured outputs at N

time instants, and '''m = [�m(1); . . . ; �m(N)]T be a vector formed

by the mth candidate model term, where m = 1; 2; . . . ;M . Let

D = f'''
1
; . . . ; '''Mg be a dictionary composed of the M candidate

bases. From the viewpoint of practical modeling and identification,

the finite dimensional set D is often redundant. The model term

selection problem is equivalent to finding a full dimensional subset

Dn = f���1; . . . ; ���ng = f'''i ; . . . ; '''i g of n (n � M) bases,

from the library D, where ���k = '''i , ik 2 f1; 2; . . . ;Mg and

k = 1; 2; . . . ; n, so that y can be satisfactorily approximated using a

linear combination of ���1; ���2; . . . ; ���n as

y = �1���1 + � � �+ �n���n + e (6)

or in a compact matrix form

y = A��� + e (7)
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where the matrix A = [���1; . . . ; ���n] is assumed to be of full column

rank, ��� = [�1; . . . ; �n]
T is a parameter vector, and e is the approxima-

tion error. The model structure selection procedure starts from (3). Let

r0 = y, and

`1 = arg max
1�j�M

fI(r0; '''j)g (8)

where I(�; �) is the mutual information defined by (5). The first signif-

icant basis can thus be selected as ���1 = '''` , and the first associated

orthogonal basis can be chosen as q1 = '''` . Set

r1 = r0 �
rT0 q1

qT1 q1
q1: (9)

In general, the mth significant model term can be chosen as fol-

lows. Assume that at the (m� 1)th step, a subset Dm�1, consisting of

(m�1) significant bases,���1; ���2; . . . ; ���m�1, has been determined, and

the (m� 1) selected bases have been transformed into a new group of

orthogonal bases q1; q2; . . . ;qm�1 via some orthogonal transforma-

tion. Let

q
(m)
j ='''j �

m�1

k=1

'''Tj qk

qTk qk
qk (10)

`m = arg max
j 6=` ;1�k�m�1

I rm�1; q
(m)
j (11)

where '''j 2 D � Dm�1, and rm�1 is the residual vector obtained in

the (m � 1)th step. The mth significant basis can then be chosen as

���m = '''` and the mth associated orthogonal basis can be chosen as

qm = q
(m)
` . The residual vector rm is given by

rm = rm�1 �
rTm�1qm

qTmqm
qm: (12)

Subsequent significant bases can be selected in the same way step

by step. From (12), the vectors rm and qm are orthogonal, thus

krmk
2 = krm�1k

2 �
(rTm�1qm)2

qTmqm
: (13)

By respectively summing (12) and (13) for m from 1 to n, yields

y =

n

m=1

rTm�1qm

qTmqm
qm+rn (14)

krnk
2 = kyk2 �

n

m=1

(rTm�1qm)2

qTmqm
: (15)

Notice that if the function I(�; �) in (8) and (11) is replaced by the

squared correlation coefficient defined by (4), the above algorithm then

belongs to the class of OLS-type algorithms [2], [6], [7]. The forward

orthogonal regression algorithm interfered with mutual information

will be referred to as the FOR-MI algorithm. The residual sum of

squares, krnk
2, which is also known as the sum-squared-error, or its

variants including the mean-square-error (mse), can be used to form

criteria for model selection. There are many criteria used for model

selection include the AIC, BIC, and GCV [9]–[11], [13]. One popular

version for each of the three criteria is

AIC(n) =N log[mse(n)] + 2n (16)

BIC(n) =N log[mse(n)] + n log(N) (17)

GCV(n) =
N

N � n

2

mse(n) (18)

where mse(n) = krnk
2=N .

C. Parameter Estimation

It is easy to verify that the relationship between the selected

original bases ���1; ���2; . . . ; ���m, and the associated orthogonal bases

q1; q2; . . . ;qm is given by

Am = QmRm (19)

whereAm = [���1; . . . ; ���m], Qm is an N �m matrix with orthogonal

columns q1; q2; . . . ;qm, and Rm is an m �m unit upper triangular

matrix whose entries uij(1 � i � j � m) are calculated during

the orthogonalization procedure. The unknown parameter vector, de-

noted by ���m = [�1; �2; . . . ; �m]T , for the model with respect to the

original bases [similar to (6)], can be calculated from the triangular

equation Rm���m = gm with gm = [g1; g2; . . . ; gm]T , where gk =
rTk�1qk = qTk qk .

Note that some tricks can be used to avoid selecting strongly

correlated model terms. Assume that at the (m � 1)th step, a subset

Dm�1, consisting of m� 1 significant bases ���1; . . . ; ���m�1 has been

determined. Also assume that '''j 2 D � Dm�1 is strongly correlated

with some bases in Dm�1, that is '''j is a linear combination of

���; . . . ; ���m�1. Thus, q
(m)
j

T

q
(m)
j = 0. In the implementation of

the algorithm, the candidate basis '''j will be automatically discarded

if q
(m)
j

T

q
(m)
j < �, where � is a positive number that is sufficiently

small. In this way, any severe mullticolinearity or ill-conditioning can

be avoided.

A similar algorithm, called maximally informative dimensions

(MID), has been proposed in [20], where the main objective was to

find, in a high dimensional stimulus space, significant features of sen-

sory stimulus (“inputs”) that are most relevant to the measured neural

responses (“outputs”). There is some similarity between FOR-MI

and MID in that both algorithms employ the mutual information

function to measure the dependency between two specified vectors.

The implementation of the two algorithms, and the final objectives that

the two algorithms aim to achieve, however, are different from each

other. The FOR-MI algorithm deals with the linear-in-the-parameters

regression problem, and involves a combination of a forward orthog-

onal regression procedure and the calculation of mutual information.

Significant bases are selected in a stepwise way, one at a time. The

final objective is to produce a sparse regression model, where both

the model structure and the unknown model parameters need to be

determined using the OLS algorithm. The MID algorithm, however, is

a nonlinear optimization method that uses a combination of gradient

ascent and simulated annealing algorithms. The MID algorithm thus

involves the calculation of not only the mutual information function

itself but also the associated gradient. The MID algorithm aims to

find the maximally informative dimensions in an iterative way by

increasing the dimensionality until the information is saturated (up to

the noise level). The unknown parameters in the model were estimated

using some statistical approach.

IV. EXAMPLE

The magnetosphere is a complex input–output dynamical nonlinear

system, where the solar wind and the associated parameters play the

role of the inputs and the geomagnetic indices can be considered as

the outputs. The Dst index is a key parameter to characterize the dis-

turbance of the geomagnetic field in the magnetic storms. Modeling

of the Dst index is thus very important for the analysis of the geo-

magnetic field. Fig. 1 presents 850 data points of the measurements for

the solar wind parameter, V Bs, and the Dst index of this dynamical

process. The solar wind parameter V Bs was treated to be the system
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Fig. 1. Measurements of the solar wind parameter V Bs and theDst index for
the terrestrial magnetospheric system.

Fig. 2. GCV versus the number of regressors selected from the candidate model
terms using both the OLS-ERR and the FOR-MI algorithms.

input, and the Dst index was treated to be the system output. The ob-

jective here was to identify a mathematical model to forecast the future

behavior of the Dst index. The data set was partitioned into two parts.

The first 500 points were used for model estimation and the remaining

350 points were used for model performance test.

The polynomial NARX model was employed to describe the

magnetospheric system. Denote the system input and output using

u(t) = V Bs(t) and y(t) = Dst(t), respectively. The “input”

vector for the model was chosen to be x(t) = [x1(t); . . . ; x12(t)]
[y(t � 1); . . . ; y(t � 5); u(t � 1); . . . ; u(t � 7)], and the candidate

regressors �m(x(t)) in (3) are of the form x
i
j (t)xij (t)xij (t), where

x
i

j (t) 2 fx1(t); . . . ; x12(t)g (k = 1; 2; 3), ik 2 f0; 1; 2; 3g,

0 � i1 + i2 + i3 � 3, and jk 2 f1; 2; . . . ; 12g. Thus, a total of 455

candidate model terms are involved.

Both the OLS-ERR algorithm and the FOR-MI algorithm were ap-

plied to the 455 candidate model terms. The associated criterion GCV

is shown in Fig. 2, which suggests that the number of model terms

included in the OLS-ERR and the FOR-MI identified NARX models

should be 13 and 10, respectively. Note that the AIC and BIC produce

similar results for this data set, and the curves for AIC and BIC were

thus omitted. The selected model terms, along with the associated pa-

rameter estimates are reported in Table I, where model terms are listed

in the order of their significance (the order that the terms entered into

the model). The FOR-MI identified model for this data set is in struc-

ture simpler than the model produced by the OLS-ERR algorithm.

The performance of the two identified NARX models was inspected

and compared by calculating both short-term and long-term predic-

tions, over the validation data set. The performance of one-step-ahead

(OSA) predictions and model predicted (MPO) outputs, calculated

from the OLS-ERR and the FOR-MI identified models are presented

TABLE I
SELECTED MODEL STRUCTURE BY OLS-ERR AND FOR-MI

Fig. 3. Prediction performance of the OLS-ERR and the FOR-MI identified
models, over the validation data set, for the terrestrial magnetospheric system.
(a) OSA predictions. (b) MPO. Thick solid line shows the measurements, thin
solid line shows predictions from the OLS-ERR identified model, and thick
dotted line shows predictions from the FOR-MI identified model.

in Table I and Fig. 3. Clearly, if mse is used as the criterion to measure

the model performance, the FOR-MI identified model for this data set

will be prior to the model produced by the OLS-ERR algorithm.

V. CONCLUSION

Sparse modeling involves the determination of significant bases.

ERR is an efficient index to measure the significance of candidate

regressors in the widely used OLS-type algorithms for nonlinear

model structure selection. The dominant adoption of ERR, however,

does not exclude other criteria. It is observed that the selected model

subsets are often criterion-dependent, that is, the OLS algorithms

interfered with by different criteria may select different significant

bases and thus produce different model subsets. Motivated by this

observation, the new FOR-MI algorithm has been introduced as a

complementary approach to the commonly used least-squares-type

algorithms. Using the two criteria in a modeling problem may or may

not produce exactly the same model structure. But by inspecting and

comparing the performance of the resulting models, a more accurate
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sparse representation can often be obtained. In this way, the accuracy

of the identified sparse model will be improved compared with results

based on any one single criterion. Notice, however, that the fact that

the FOR-MI algorithm is superior to the OLS-ERR algorithm for

the given szexample does not mean that FOR-MI is always superior

to OLS-ERR for all cases. Conditions, under which one algorithm

outperforms the other, or vice versa, have not been determined, and

that is why we suggest using the two algorithms in parallel.
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New Delay-Dependent Stability Criteria for Neural

Networks With Time-Varying Delay

Yong He, Guoping Liu, and D. Rees

Abstract—In this letter, a new method is proposed for stability analysis

of neural networks (NNs) with a time-varying delay. Some less conserva-
tive delay-dependent stability criteria are established by considering the

additional useful terms, which were ignored in previous methods, when es-
timating the upper bound of the derivative of Lyapunov functionals and in-

troducing the new free-weighting matrices. Numerical examples are given
to demonstrate the effectiveness and the benefits of the proposed method.

Index Terms—Delay-dependent, neural networks (NNs), time-varying
delay, linear matrix inequality (LMI), stability.

I. INTRODUCTION

Neural networks (NNs) have been extensively studied over the past

few decades and have found many applications in a variety of areas,

such as signal processing, pattern recognition, static image processing,

associative memory, and combinatorial optimization. Although consid-

erable effort has been devoted to analyzing the stability of NNs without

a time delay, in recent years, the stability of delayed NNs has also re-

ceived attention [1]–[24] since time delay is frequently encountered in

NNs, and it is often a source of instability and oscillations in a system.

The stability criteria for delayed NNs can be classified into two cat-

egories, namely, delay-independent [1], [3], [5]–[12], [14], [15], [20]

and delay-dependent [4], [16], [19], [24]. Since delay-independent cri-

teria tend to be conservative, especially when the delay is small, much

attention has been paid to the delay-dependent type.

As for the delay-dependent stability criteria, the free-weighting

matrix approach proposed in [25]–[27] is very effective for time-delay

systems since the bounding techniques on some cross-product terms

are not involved in this approach. In [19], delay-dependent stability

criteria are established for NNs with multiple time-varying delays

using the free-weighting matrix approach. On the other hand, an

alternative criterion is derived for NNs with single time-varying

delay in [24] by introducing a new Lyapunov functional which is

similar to [28]. However, there is room for further investigation

when estimating the upper bound of the derivative of Lyapunov

functional for systems with time-varying delay. For example, in

[19] and [24], the derivative of
0�h t

t+�
_zT (s)Z _z(s)ds d� is often

estimated as h _zT (t)Z _z(t) �
t

t�d(t) _zT (s)Z _z(s)ds and the term

�

t�d(t))
t�h _zT (s)Z _z(s)ds is ignored, which may lead to considerable

conservativeness.

In this letter, a new method that introduces the new free-weighting

matrices is proposed to estimate the upper bound of the derivative of
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