White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Validation of the Jarzynski relation for a system with strong thermal coupling: an isothermal ideal gas model

Baule, A., Evans, R.M.L. and Olmsted, P.D. (2006) Validation of the Jarzynski relation for a system with strong thermal coupling: an isothermal ideal gas model. Physical Review E : Statistical, Nonlinear and Soft Matter Physics, 74 (6). Art. No. 061117- (10 pages). ISSN 1550-2376


There is a more recent version of this eprint available. Click here to view it.

Available under licence : See the attached licence file.

Download (479Kb)


We revisit the paradigm of an ideal gas under isothermal conditions. A moving piston performs work on an ideal gas in a container that is strongly coupled to a heat reservoir. The thermal coupling is modeled by stochastic scattering at the boundaries. In contrast to recent studies of an adiabatic ideal gas with a piston [R.C. Lua and A.Y. Grosberg, J. Phys. Chem. B 109, 6805 (2005); I. Bena et al., Europhys. Lett. 71, 879 (2005)], the container and piston stay in contact with the heat bath during the work process. Under this condition the heat reservoir as well as the system depend on the work parameter lambda and microscopic reversibility is broken for a moving piston. Our model is thus not included in the class of systems for which the nonequilibrium work theorem has been derived rigorously either by Hamiltonian [C. Jarzynski, J. Stat. Mech. (2004) P09005] or stochastic methods [G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)]. Nevertheless the validity of the nonequilibrium work theorem is confirmed both numerically for a wide range of parameter values and analytically in the limit of a very fast moving piston, i.e., in the far nonequilibrium regime.

Item Type: Article
Copyright, Publisher and Additional Information: © 2006 Americal Physical Society. This is an author produced version of a paper subsequently published in Physical Review E.
Institution: The University of Leeds
Academic Units: The University of Leeds > Faculty of Maths and Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds)
Depositing User: Repository Officer
Date Deposited: 09 Feb 2007
Last Modified: 07 Jun 2014 10:12
Published Version: http://link.aps.org/abstract/PRE/v74/e061117
Status: Published
Publisher: American Physical Society
Refereed: Yes
Identification Number: 10.1103/PhysRevE.74.061117
URI: http://eprints.whiterose.ac.uk/id/eprint/1960

Available Versions of this Item

Actions (repository staff only: login required)