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PACS. 47.50.+d – Non-Newtonian fluid flows.
PACS. 83.10.Tv – Rheology: Structural and phase changes.
PACS. 83.80.Qr – Surfactant and micellar systems, associated polymers.

Abstract. – Transient stress and birefringence measurements are performed on wormlike
micellar solutions that “shear band”, i.e. undergo flow-induced coexistence of states of different
viscosities along a constant stress “plateau”. Three well-defined relaxation times are found
after a strain rate step between two banded flow states on the stress plateau. Using the
Johnson-Segalman model, we relate these time scales to three qualitatively different stages in
the evolution of the bands and the interface between them: band destabilization, reconstruction
of the interface, and travel of the fully formed interface. The longest timescale is then used to
estimate the magnitude of the (unknown) “gradient” terms that must be added to constitutive
relations to explain the history independence of the steady flow and the plateau stress selection.

Introduction. – Unlike most fluids, wormlike micelle solutions often have non-analytic
measured flow curves with sharply selected plateaus along which strain rate or stress ap-
parently change discontinuously. In the well-documented shear thinning solutions the usual
explanation of the constant stress plateau is shear banding [1–5], i.e. a partitioning of the
material into bands of different viscosities, triggered by a constitutive instability (such as an
isotropic-to-nematic transition [2]). As shown recently [6–10], the stress selection and history
independence of shear banding can be explained by incorporating inhomogeneities (“gradi-
ent terms” or “diffusion”) of the relevant mesoscopic order parameter (polymer stress) in the
constitutive equations. Order parameter diffusion has been used since the van der Waals
“gradient theory” of the gas-liquid interface [11] and is obligatory in phase field models for
pattern formation. Notwithstanding a few attempts to deal with inhomogeneous stresses [12],
the same concepts are largely absent from the rheological literature. While one might argue
that gradient, or diffusion, terms are negligibly small, these singular terms resolve stress se-
lection even for infinitesimal values [7–9]. However, a small diffusion coefficient should also
imply a slow approach to steady state; the main purpose of this letter is to demonstrate these
long time scales experimentally.
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Table I – Systems used in this study; the surfactant was 0.3M CTAB. τ and G0 are the Maxwell
relaxation time and modulus, γ̇c, δγ̇ are the start and width of the constant stress plateau, (τi)i=1,3

are the three time scales discussed in the text, and σ∗ is the plateau stress.

No. Salt T/◦C G0/Pa τ/s τ1/s τ2/s τ3/s τ γ̇c τδγ̇ σ∗/G0

1 1.79M NaNO3 30 232 0.17 0.2 1.1 31 0.85 19 0.64
2 0.405M NaNO3 30 238 0.17 0.2 1.8 27 1.27 19 0.66
3 0.3M KBr 34 235 0.16 0.2 1.9 13 1.12 80 0.66

Shear banding involves spatial inhomogeneity and temporal dynamics. We use light polar-
ization to probe the spatial inhomogeneity and its dynamics, and rheology to measure the time
evolution of the total stress. The stress transients are also computed using a theoretical model.
Rather than the typical start-up transient experiment, we consider the simpler experiment of
a step between two values of the shear rate in the banded regime. Small steps should induce
less drastic changes in the fluid while still remaining in the non-linear regime and hopefully
yield more controllable results. The transient features will be shown to be intimately related
to the dynamics of the interface between the bands.

Experiments. – The surfactant solutions are summarized in table I. The stress was
measured using an RFS Rheometrics Scientific controlled shear rate (γ̇) rheometer in Couette
(radii 24.5, 25mm) and cone-plate geometries. Linear response is of the Maxwell type with
almost identical relaxation times τ and moduli G0 for the three solutions. In the non-linear
regime shear banding occurs at γ̇c and the plateau width is γ̇N − γ̇I ≡ δγ̇ (see refs. [1, 2] for
experimental flow curves, or fig. 2 below for a schematic representation). The plateau is wider
and flatter for solution 3 than for solutions 1 and 2, for which it roughly follows a power
law σ ∼ γ̇α, α � 0.1; a slope could indicate concentration differences between coexisting
bands [13]. Upon a step increase of the mean shear rate from γ̇1 to γ̇2 (both on the plateau)
the stress increases and then decreases monotonically (or sometimes by a small undershoot
and a monotonic increase). A semi-log plot of the stress vs. time shows that three relaxation
times (τ1 ≈ τ ≈ 10−1 s, τ2 ≈ 10τ , τ3 ≈ 100τ) follow successively until steady flow is reached
(fig. 1a). Although the overshoot is present for very small steps, distinct time scales are poorly
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Fig. 1 – Total stress (a) and extinction angle (c) during the step γ̇ = 10 → 20 s−1 for CTAB/KBr;
(b) simulated total stress for the step γ̇τ = 1.2 → 3.9 using the d-JS model (ǫ = 0.03, Dτ/L2 =
5 · 10−5).
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defined. For optimal choices of the initial and final conditions (γ̇1 ≈ γ̇c and (γ̇2 − γ̇1) ≪ δγ̇)
the three time scales are well separated and the result is reproducible for all solutions and both
cone-plate and Couette geometries. We filmed the step shear rate experiment for the third
solution in a Couette geometry with a slightly larger gap (radii 24, 25mm) between crossed
polarizers. The birefringence contrast in fig. 4 below shows the bands (the nematic, high
shear, band is bright(1)). An average extinction angle χ has also been extracted. The kinetics
of χ displays a time scale similar to but slightly shorter than τ2 measured by rheology (fig. 1c).
We cannot expect to resolve a first time scale as in rheology, because this is shorter than the
video frame interval. The third time scale is buried in noise not confidently extractable.

Theory. – The momentum balance is ρ(∂t +v ·∇)v = ∇ ·T , where ρ is the fluid density
and v is the velocity field. The stress tensor T is given by T = −pI + 2ηA + Σ, where the
pressure p is determined by incompressibility (∇ ·v = 0), η is the “solvent” viscosity, Σ is the
“polymer” stress, and A is the symmetric part of the velocity gradient tensor (∇v)αβ ≡ ∂αvβ .
The non-Newtonian “polymer” viscoelastic stress Σ is assumed to obey the diffusive Johnson-
Segalman (d-JS) model [7],

(

∂t + v · ∇
)

Σ −
(

ΩΣ − ΣΩ
)

− a
(

AΣ+ΣA
)

= D∇2
Σ+ 2µA/τ − Σ/τ, (1)

whereΩ is the anti-symmetric part of ∇v, µ = G0τ is the “polymer” viscosity, τ is a relaxation
time, and D is the diffusion coefficient. The “slip parameter” a (describing the non-affinity of
the deformation) is necessary to reproduce a non-monotonic constitutive curve and the added
diffusion term was shown to resolve stress selection [7].

The initial dynamics is governed by inertia; within a short time τρ = ρL2/η (= 10−4 s for
η/ρ = 0.01m2s−1 and gap L = 1mm) the strain rate homogenizes and the momentum balance
becomes T = const. The subsequent dynamics is controlled by the viscoelastic response. In a
planar geometry, v = v(y)x̂, eq. (1) leads to a system of reaction-diffusion equations(2):

∂S

∂t
= D∂2S

∂y2
− S

τ
+ CS(γ̇, S,W ),

∂W

∂t
= D∂2W

∂y2
− W

τ
+ CW (γ̇, S,W ), (2)

where γ̇ is the shear rate, S = Σxy, and W is a combination of the polymer normal stresses,
Σxx and Σyy. S, W are the order parameters of the transition (S is small in the nematic (N)
band and large in the isotropic (I) band). They can diffuse across stream lines with diffusion
coefficient D and relax in the linear regime within the linear (Maxwell) time τ . The reaction
terms CS = γ̇(G0 −W ) and CW = γ̇S can be straightforwardly derived from eq. (1) [6, 8].

The local momentum balance for the shear stress σ = Txy is

σ = S + ǫG0τ γ̇, (3)

where ǫ = η/µ. Two dynamical systems are important for the understanding of the local
non-linear dynamics of eq. (2):

Ṡ = −S/τ + CS(γ̇, S,W ), Ẇ = −W/τ + CW (γ̇, S,W ), (4a)

Ṡ = −S/τ + CS

(

(σ − S)/ǫG0τ, S,W
)

, Ẇ = −W/τ + CW

(

(σ − S)/ǫG0τ, S,W
)

, (4b)

where Ṡ ≡ ∂S/∂t. System (4a) describes the dynamics along a streamline at prescribed shear
rate; in this case σ changes proportionately to S according to eq. (3). System (4b) describes

(1)For a different system, ref. [14] argued that the more birefringent band is not always of highest shear rate.
(2)Any non-monotonic differential constitutive model (e.g., Cates [15], Doi-Edwards [16, 17]) with diffusion

terms leads to a similar equation set.
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Fig. 2 – a) Relaxation times to I and N attractors at constant stress for d-JS model, τσ
I , τσ

N; τ2

corresponds to σ at the end of stage 2 in the simulation, to compare with the fitted value in fig. 1b.
b) Thick line: theoretical flow curve (the negative-slope unstable branch is experimentally resolved by
the constant stress plateau). Thin lines: simulated trajectories of material near the walls, representing
the N and I bands. {Ni, Ii}, i = 1, 2, 3 denote the beginnings of the three relaxation stages.

the dynamics along a streamline at constant total stress σ. The two dynamical systems have
the same fixed points (since, for homogeneous steady flow, γ̇ and σ are related by eq. (3)):
stable fixed points (attractors) representing the bands I and N, and an intermediate unstable
saddle. Coexistence of bands at common total stress is possible only for σ ∈ [σ1(ǫ), σ2(ǫ)].
Linearizing systems (4a) and (4b) about the fixed points yields the dominant relaxation times
of the attractors, τI and τN. These are different for the two dynamical systems, denoted at
constant shear rate by τγ

I,N and at constant stress by τσ
I,N. For the JS model τγ

I
= τγ

N
= τ for

all γ̇. τσ
N
is close to τ , while τσ

I
is larger than τσ

N
and diverges as σ → σ2(ǫ) (fig. 2a). This

divergence is consistent with ref. [5]: controlled stress experiments have increasing relaxation
times on the metastable extension of the I branch above the constant stress plateau.

Consider an initial banded steady state, with average shear rate γ̇1. Suddenly increasing
the average shear rate to γ̇2 produces a stress overshoot because the amount of low-viscosity
N band cannot change instantly; after the overshoot the stress will decrease by production
of the low-viscosity N material. Numerical simulation (figs. 1b, 3) shows that this occurs in
three stages:

1) Band I destabilization. During this stage the I band tries a direct passage toward the
nematic band N, fig. 3a. Complete transformation is forbidden by the average shear rate
constraint and the I band stops before reaching the basin of attraction of the steady N band.
A representation of the subsequent kinetics in the (γ̇, σ) plane (fig. 2b) shows that the N band

almost follows the steady flow curve, while the I band evolves at constant shear rate. Thus,
the characteristic time τ1 ≈ τγ

I
≈ τ is controlled by the I band dynamics.

2) Interface reconstruction. At the end of stage 1, an interface separates the locally unstable
band close to the saddle from the locally stable N band. The part of the unstable band closer
to the I attractor will return to this, while the other part will go to the N attractor. This
reconstructs the interface in a more advanced position, stabilizes the bands, and increases
the contrast between them. The stress variation is much smaller than during the first stage.
The sign of this variation depends on the initial stress for this stage, which is sensitive to the
details of the constitutive model. If this stress is below the plateau (the stress drop after the
overshoot is strong in stage 1), then a stress increase follows (as in fig. 1b). The experimental
situation corresponds to a smaller stress drop in the first stage and a monotonic stress after the
overshoot (fig. 1a). Nevertheless, the time scale (controlled by the I band) τ2 ≈ τσ

I
depends
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Fig. 3 – Simulation of the order parameter profiles for the three stages (s: start, e: end): a) destabi-
lization (0 < t < t1); b) reconstruction (t1 < t < t2); c) travel (t2 < t < ∞).

only on the final stress and is thus not affected by the presence or absence of an undershoot
as long as the stress variation during this stage is small. This analysis is compatible with the
birefringence measurements. The sequence of images in fig. 4 shows the gap of the Couette cell
filmed between crossed polarizers during stage 2. Although we cannot quantitatively compare
figs. 3b and 4 (the relation between the transmitted intensity and the order parameter is
unknown and sure to be non-linear), the sharpening of the contrast corresponding to the
interface reconstruction is visible. The difference between the characteristic times for the

Fig. 4 – CTAB/KBr: γ̇ = 10 → 30 s−1 jump. Birefringence images and profiles (averaged between
the two vertical lines on the film) corresponding to stage-2, interfacial reconstruction. The moving
(inner) cylinder is at r = 1.0 and the fixed (outer) cylinder is at r = 0.0.
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Table II – Stress diffusion estimates using the JS model. D is obtained from the values of τ3 (table I)
and eq. (7) with KG0τ

ηIγ̇I
= 0.3.

No. L/mm γ̇2/δγ̇ D/(m2s−1) ζ/nm ξ/nm

1 0.3 0.22 7.2 · 10−14 111 26
2 0.3 0.18 6.1 · 10−14 100 26
3 0.3 0.04 1.2 · 10−14 44 26

extinction angle and rheology (fig. 1) could be due either to the different cell gap widths or
to errors in the exponential fit (notoriously unstable).

3) Interface travel. The instability and reconstruction of the interface in the first two stages
is ensured by the reaction terms of eq. (2), ending when the interface between stable bands
fully sharpens. This interface has a non-zero velocity if it forms at a position corresponding to
a stress value above or below the plateau stress σ∗. Front propagation over the small distance
toward the final equilibrium position is then controlled by D (this distance is too small to
observe by birefringence). Because of the undershoot in the numerical simulation, the sign
of the displacement during stage 3 is opposite to the one in the first stages (fig. 3c). The
characteristic time τ3 for this stage follows from the velocity c of the sharp interface close to
steady state, which is history independent (see below).

Let us consider a single sharp interface, at a position r inside the gap. At imposed shear
rate γ̇2, the lever rule γ̇2 =

r
L γ̇N(σ) + (1− r

L )γ̇I(σ) relates σ and r and leads to

(

∂σ

∂r

)

〈γ̇〉

= −ηIγ̇Iδγ̇

Lγ̇2

, (5)

where δγ̇ = γ̇N − γ̇I is the width of the plateau, and ηI = ∂σ/∂γ̇|γ̇I
. As discussed in [5–7],

because of metastability (as in equilibrium liquid-gas transitions) the isotropic band shear rate
γ̇I could be slightly smaller than the transition rate γ̇c. We consider γ̇2 − γ̇I ≪ δγ̇, δγ̇ ≫ γ̇I

(as in the experiments) so that ηIγ̇I ≈ ηNδγ̇ (true for piecewise linear flow curves and obeyed
well by the JS model).

We showed previously that the velocity c of the interface is a function only of the total
shear stress σ and that c = 0 when σ = σ∗ [6, 8] which, via the lever rule, corresponds to a
unique stable interface position r∗. Close to r∗ the equation of motion of the interface is

dr

dt
= c(σ) =

dc

dσ

(

∂σ

∂r

)

〈γ̇〉

(r − r∗). (6)

Using eqs. (5), (6), dσ
dc |σ=σ∗ ≡ KG0

√

τ
D (K is a dimensionless parameter depending on

the constitutive model), we find the solution r − r∗ = (r(0)− r∗)e−t/τ3 , where

τ3 = τ
L√
Dτ

KG0τ

ηIγ̇I

γ̇2

δγ̇
. (7)

Equation (7) implies that a fully formed interface equilibrates faster in systems with larger
plateaus δγ̇, such as CTAB/KBr. In such cases, eq. (5) implies larger stress variations and
thus larger interface accelerations for the same position variation. This is compatible with the
shorter τ3 in table I. For simplicity, eq. (5) was found for a planar geometry; in cylindrical
Couette flow a slight correction (negligible for thin gaps as here) leads to a smaller τ3.

Using the experimental value of τ3 and eq. (7), we can estimate D. Generally, we need the
value of K. In the d-JS model, while G0 and τ are measurable, K depends on the two free
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parameters ǫ and a. Nevertheless, when these parameters change, KG0τ
ηIγ̇I

≈ 0.3–0.4 practically

stays constant (3) and D can be obtained without the knowledge of a or ǫ. Microscopically,
we expect D = ζ2/τ , where ζ is the stress correlation length. In dilute solutions this should be
the micelle gyration radius [12], while in concentrated solutions a reasonable candidate is the
mesh size ξ, which can be estimated from G0 ∼ kT/ξ3. The results are presented in table II.
The stress correlation length is of order the mesh size, which is reasonable; however there is
still no theory for such a diffusive term in concentrated solutions.

To conclude, a general dynamical systems analysis of the d-JS model provides plausible
explanations for the observed time scales and consistent estimates of the stress diffusion coef-
ficient D. The analysis is illustrated by a numerical simulation that uses optimal parameters.
Without entering into details that are left for future study, non-optimal parameters (too large
or too small jumps, values of ǫ, D) may lead to poorly separated time scales or to damped but
visible stress oscillations that are not observed experimentally. The reason to postpone these
details is that neither the d-JS nor reptation-reaction models [15, 17] can provide perfect fits
of the transient stress of wormlike micelles and there is still a need for the suitable constitutive
model. Also, it conceivable that concentration differences between the bands could influence
the observed time scales, which is consistent with the values of D in table II (similar for the
samples 1, 2, significantly smaller for the sample 3 for which the plateau is flat and presumably
concentrations effects are weak).
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