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PACS. 83.20Hn – Structural and phase changes.
PACS. 83.20Bg – Macroscopic (phenomenological) theories.
PACS. 47.20Hw – Morphological instability; phase changes.

Abstract. – The possible “phase diagrams” for shear-induced phase transitions between two
phases are collected. We consider shear-thickening and shear-thinning fluids, under conditions of
both common strain rate and common stress in the two phases, and present the four fundamental
shear stress vs. strain rate curves and discuss their concentration dependence. We outline how
to construct more complicated phase diagrams, discuss in which class various experimental
systems fall, and sketch how to reconstruct the phase diagrams from rheological measurements.

Introduction. – There is growing interest in the flow behavior of complex fluids, including
worm-like micellar surfactant solutions [1-8], lamellar and “onion” surfactant systems [9-11],
and liquid crystals [12, 13]. In these and other systems the microstructure is altered by
flow such that a bulk transition, reminiscent of an equilibrium phase transition, can occur.
Signatures of this transition are kinks, plateaus, or non-monotonic behavior in the measured
“flow curve”, that is, the relationship between applied shear stress and mean strain rate;
structural changes observable by X-ray [12, 8], neutron [3, 8], or light scattering; explicit
measurements of macroscopically discontinuous flow profiles [5]; and visual confirmation of
phase separation and coexistence [3, 7].

Despite the surfeit of experiments, theories have been limited to a few systems (micelles
[14,15] and liquid crystals [16-19]), and few have attempted to calculate an entire phase diagram
for a complex fluid solution in flow [19]. In a remarkable paper, Schmitt et al. classified the
instabilities that can occur in complex fluid solutions, and clarified the relationship between the
nature of the instability (either in primarily the concentration, “spinodal”, or in the strain rate,
“mechanical”), the shape of the flow curves, and the orientation of the interface that initially
develops during the instability [6]. However, as noted in [6], the orientation of an interface
in an initial instability may or may not be relevant to the orientation of the macroscopic
phase separated state. In this work I outline the different macroscopic phase diagrams that
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can occur in complex fluid solutions in planar shear flow and describe how phase diagrams
determine “flow curves”, the relation between applied shear stress and measured mean strain
rate. No attempt is made to pose or solve any specific dynamical models (see [19-21]), but
rather to explore the consequences of possible phase diagrams and provide a phenomenological
framework within which to understand the rapidly growing body of rheological experiments.

Phenomenology of phase coexistence in shear flow. – Calculations of phase behavior requires
first determining the relevant microstructure of the quiescent and flow-induced phases, and
deriving equations of motion for the appropriate variables (momentum, mass concentration
φ, and variables such as liquid crystalline or crystalline order, or aggregate shape and size
distributions). These equations of motion determine the steady-state flow curves corresponding
to different microstructures. For example, fig. 1 shows a hypothetical shear-thinning fluid I

which can be sheared into either a less viscous fluid S1, or a gel-like state S2. For this particular
fluid the shear-induced phases are stabilized only in finite flow; systems near equilibrium
phase transitions such as liquid crystals may have multiple stable flow curves in the limit of
zero flow [19], while other systems such as dilute worm-like micelles [7] and “onions” [9-11]
apparently have flow branches which are only stabilized in finite flow. The task of theory, and
indeed of experiments, is to understand how material on different flow curves may coexist, and
what controls the stability of one phase with respect to another.

At coexistence a fluid partitions into phases with, in principle, different concentrations. In
the fluid of fig. 1 the I and S1 states could coexist at the same shear stress (which would require
the interface between phases to lie in the velocity-vorticity plane); as could the S1 and S2 states;
the I and S1 phases could not coexist at a common shear stress. Phase coexistence among all
three possible pairs of states is conceivable at a common strain rate (requiring an interface lying
in the velocity–velocity-gradient plane). Phase diagrams may be constructed by determining
the states on distinct stable flow curves for which the driving force for particle exchange
vanishes, and for which a mechanically stable stationary interfacial solution between phases
can be found. This procedure has been developed for dynamical models which incorporate both
smooth [18,15,19] and sharp [22,20] interfaces. In the former case gradient terms are included
in the equations of motion, while in the latter case a mechanical condition on interface stability
is required. Complete phase diagrams have been calculated for a model system of rigid rod
suspensions, for both common stress and common strain rate geometries [19]. Unfortunately,
we still lack methods for choosing from several candidate possibilities for phase coexistence.

To begin, consider a complex fluid solution which possesses two distinct phases under shear
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Fig. 1. – Steady-state constitutive curves σ(γ̇, φ) for a hypothetical fluid with a shear-thinning qui-
escent state I, a shear-induced phase S1, and a shear-induced “gel” S2 with an apparent yield stress.
All flow branches have concentration dependences as shown, and are only stable at the points shown.
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Fig. 2. – Fundamental rheological signatures for phase separation at common stress (top row, A1 and
A2) or common strain rate (bottom row, B1 and B2), for essentially shear-thinning (middle, A1 and
B1) or shear-thickening (right, A2 and B2) transitions. σ̄ and ¯̇γ are the imposed (measured) shear
stress and strain rate, respectively. The thick solid lines denote the two-phase region if δφ = 0, and
the broken lines denote the two-phase region in the event of a finite width biphasic region |δφ| > 0.

flow: we denote these I and S (for the example fluid of fig. 1 these could be any of the I, S1

and S2 states). We assume this fluid has steady-state macroscopic phase coexistence observed
experimentally and hence has a phase diagram which may, in principle, be calculated from the
relevant dynamical equations of motion. For simplicity we ignore interesting complications
associated with secondary-flow or dynamical instabilities which can induce non-stationary
oscillating or chaotic steady states; and ignore any effects of curved geometries.

Given such a fluid, there are two possible geometries for phase coexistence: (A) common
stress phase separation, for which phases coexist in the flow gradient direction, and (B)
common strain rate phase separation, for which phases coexist in the vorticity direction. For
each case, flow can induce a transition to either a less viscous phase (A1, B1) or a more
viscous phase (A2, B2). These geometries and flow curves are shown in fig. 2. To understand
the concentration dependence of these flow curves we must examine the entire phase diagrams:
some possibilities are shown in fig. 3. Upon increasing the concentration the S phase may be
stabilized at either weaker flows (A1, B1, A2, etc.) or stronger flows (A1′, B1′, A2′, etc.).

Common stress phase separation. – We first consider coexistence at a common stress (A1,
A2, A1′, A2′), for which the mean strain rate ¯̇γ and mean concentration φ̄ at stress σ are
partitioned according to

¯̇γ = α γ̇I(φI) + (1 − α) γ̇S(φS), (1)

φ̄ = α φI + (1 − α)φS , (2)

with α the fraction of material in the I phase. Phase coexistence occurs in a region in the σ-φ
plane, with horizontal tie lines connecting the coexisting points (φI , γ̇I) and (φS , γ̇S). This may
also be represented in the γ̇-φ plane. The lines {φI(σ), φS(σ), γ̇I(φI(σ)), γ̇S(φS(σ))} bound the
phase coexistence regions. The slope of tie lines in the γ̇-φ plane reflects the compositions of
the two phases; vertical tie lines imply equal concentrations, while a non-infinite slope implies
different concentrations. The flow curves σ(γ̇, φ̄) can be calculated from the phase diagrams
and eqs. (1) and (2) by applying the lever rule. They are non-analytic at the stresses and
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Fig. 3. – “Fundamental” phase diagrams and flow curves. These have not been calculated, but would
be calculated from the homogeneous flow curves (e.g., fig. 1) by the methods of [19] or [22, 20]. The
phase boundaries γ̇S , γ̇I , σS , σI in the top two rows are coincident with the kinks in the flow curves.
Top row: shear diagrams in the γ̇-φ plane. Middle row: shear diagrams in the σ-φ plane. Thick lines
in both planes correspond to the I phase boundary. Bottom row: flow curves σ(γ̇) for representative
mean concentrations φ1 and φ2, with thick lines denoting the phase coexistence region; in each case
φ1 has a narrower window of coexistence in the relevant control variable plane than does φ2. Tie lines
in the γ̇-φ plane move to higher strain rates with increasing stress. A1 and A2: phase separation
at common stress with the S phase stabilized at a lower stress for increasing concentration. A1

′ and
A2

′: phase separation at a common stress, with S phase stabilized at a higher stress for increasing
concentration. B1 and B2 phase separation at a common strain rate.

strain rates which bound the biphasic region, and would be obtained in experiment at a given
mean concentration φ̄. In the biphasic region the stress increases by crossing successive tie
lines in the γ̇-φ plane, and varies according to the tie line spacing and splay [19]. From eqs.( 1)
and (2) one can calculate the shape of the stress “plateau” [6]:

dσ

d¯̇γ

∣

∣

∣

∣

φ̄

=

[

α

ηI

+
1 − α

ηS

− m(σ, φ̄)

{

1 − α

γ̇′

SηS

+
α

γ̇′

IηI

}]

−1

, (3)

where m(σ, φ̄) is the slope of the tie line, ηk = ∂σ/∂γ̇ is the local viscosity of the k-th branch,
and γ̇′

k = ∂γ̇k/∂φ. Experiments on worm-like micelles have revealed that some systems can
be “superstressed” to a metastable state, with the stress entering the biphasic region [4,2,23].

For an A1 (or A1′) shear-thinning transition the strain rate increases as the stress is
increased through the two-phase region. The stress through the two-phase region increases
less for mean concentrations φ̄ for which the biphasic window is narrow (e.g., φ1) or the tie
lines are steep in the γ̇-φ plane, and deviates more from constant for a wider biphasic region
(e.g., φ̄ = φ2) with more vertical tie lines. Hence, a signature of substantial concentration
difference δφ ≡ φI − φS between coexisting phases is a large increase in stress through the
biphasic region. This is consistent with calculations on a model for rigid rods in shear flow [19],
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and measurements on shear-thinning worm-like micelles [1-6]. In dilute micelles δφ is typically
negligible and the stress plateau is nearly flat; while δφ increases for concentrated solutions
near an underlying isotropic-nematic transition and the stress plateau acquires a shape.

For the A1 fluid the S phase can have a larger (m(σ, φ̄) > 0) or smaller (m(σ, φ̄) < 0)
strain rate than the I phase. In the latter case the S phase has a larger effective viscosity,
and for a small enough δφ the fluid crosses over to a characteristic shear-thickening fluid, A2.
In this case the strain rate actually decreases as the stress is increased through the two-phase
region. That is, the system remains in the I phase below a critical strain rate at which a
band of more viscous material S develops whose small strain rate reduces the measured strain
rate. Hence the system enters the biphasic region in the γ̇-φ plane at the high strain rate, and
traverses it from top to bottom. Upon increasing the stress the system converts into the S

phase with, in general, changing I and S concentrations, until the I phase disappears at the
lower boundary of the two-phase envelope in the γ̇-φ plane. For higher stresses the system
follows the constitutive branch for the S phase and traces a vertical path in the γ̇-φ plane.
Hence the flow curve σ(γ̇) has a distinct S shape. As with flow A1, the shape of the flow curve
in the biphasic region depends on the slope of the tie lines (i.e. δφ) in the γ̇-φ plane: vertical
tie lines δφ = 0 imply a vertical jump in σ(γ̇), while finite δφ and flatter tie lines imply a
gentler slope for σ(γ̇). Flow A2′ has been seen in shear-thickening worm-like micelles [7], and
calculated using a phenomenological model [20]. Flow A2 (or A2′) has been seen in surfactant
onion crystals under shear, although the band geometry has not been verified [10].

We have drawn (A1, A2, A1′, A2′) with finite biphasic regions at zero stress, corresponding
to a perturbation of an existing phase transition. However, fluids such as the example
fluid in fig. 1 would have phase coexistence only above a finite stress. The construction of
these phase diagrams implies that tie lines move to higher strain rates with increasing stress
(“conventional”). Although intuitive, the reverse (“unconventional”) does not violate any
physical laws. For example, a version of A2′ with unconventional positive-sloped tie lines,
would imply a σ-φ biphasic region moving to smaller φ with increasing σ. However, a version
of A2′ with negative-sloped tie lines yields a nonsensical phase diagram.

Common strain rate phase separation. – For coexistence at a common strain rate the shear
stress is partitioned according to

σ̄ = α σI(φI) + (1 − α)σS(φS), (4)

and the two main classes of flows are shown as B1 and B2. We do not show analogous diagrams
B1′ and B2′, for which the coexistence strain rate increases with increasing concentration. For
flow B2 the stress increases through the two-phase region and the transition is to either a
thicker or (for large enough δφ, as with flow A1) thinner phase. The shape of the stress
through the two-phase region is given, from eqs. (2) and (4):

dσ̄

dγ̇

∣

∣

∣

∣

φ̄

= ηI α + ηS (1 − α) − m(γ̇, φ̄)

{

ηS(1 − α)

σ′

S

+
ηI α

σ′

I

}

, (5)

where m(γ̇, φ̄) is the slope of the tie line and σ′

k = ∂σk/∂φ. In the limit of no concentration
difference (δφ = 0 or m(γ̇, φ̄) = ∞), σ(γ̇) is vertical through the two-phase region. Flow B1 is
a shear-thinning transition, and the stress decreases through the two-phase region. Banding
geometries and flow curves similar to B1 were reported in an onion system [11], although this
may not have been steady state. B2 has been reported in an onion system [9].
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Fig. 4. – More complex possibilities for phase separation at common stress (C1: top row) or common
strain rate (C2: bottom row). φ1, φ2, and φ3 are representative mean concentrations.

Applications. – The shear diagrams presented do not exhaust the possibilities; these flow
behaviors can be combined smoothly in many ways. We present two possibilities in fig. 4.
Fluid C1 phase separates at a common stress, and δφ widens with increasing concentration,
crossing over from shear thickening (A2) to shear thinning (A1) as the concentration increases.
Fluid C2 phase separates at a common strain rate, with a coexistence width δφ that narrows
with increasing φ, combining B1′ and B2′ behavior.

Typical experiments extract a series of steady-state flow curves for different concentrations
{φi}. Consider coexistence at common stress. The flow curves have kinks at the boundaries of
the biphasic region, {(σIi, γ̇Ii, φi)} and {(σSi, γ̇Si, φi)}, which should be corroborated optically
or otherwise. The strain rates and concentrations of the coexisting states may be determined
as follows. One first fits curves σI(φ), σS(φ), γ̇I(φ), γ̇S(φ) to the values extracted from the
kinks. A horizontal tie line connecting (φI , φS) at a given stress σ∗ may then be read off the
biphasic boundaries, σI(φI∗) = σS(φS∗) = σ∗ in the σ-φ plane; and the corresponding tie line
on the γ̇-φ plane connects the points γ̇I(φI∗) and γ̇S(φS∗). In this way the complete shear
diagrams and characteristics of coexisting states, may be constructed. As a check, the shape
of σ(γ̇) through the two-phase region may be computed by traversing the biphasic regions of
the γ̇-φ and σ-φ planes and using the lever rule to construct the mean strain rate via eq. (1).
This analysis is necessary if the coexisting concentrations cannot be determined directly and,
in the two-phase region, the flow curve has a slope appreciably different from zero (common
stress phase separation) or infinity (common strain rate phase separation).

Returning to the hypothetical fluid of fig. 1, we expect common stress phase separations
I-S1 and S1-S2 to be classes A1 and A2 (or A1′ and A2′), respectively, with the former
disappearing at higher stresses; and common strain rate phase separations I-S1, I-S2, and
S1-S2 to be classes B1, B2, and B2 (or B1′, B2′, B2′), respectively. Since flow is necessary to
stabilize the S1 and S2 phases, the biphasic window in this system would appear at a finite
stress or strain rate. Note that the accessibility and even stability of composite flow curves
depends on the control variable of the rheometer. For example, composite flow curves with
negative slope dσ/dγ̇ < 0 (e.g., A2 and B1) could be mechanically unstable [6], although
ref. [7] accessed such a curve under controlled stress conditions. Finally, kinetic possibilities
such as metastability and hysteresis are sure to enrich the relatively simple scenarios proposed
above.
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