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Abstract. An efficient class of nonlinear models, con- (Vieira et al., 1993). The flood warning system is model-
structed using cardinal B-spline (CBS) basis functions, arebased: it utilises both statistical and hydrodynamic models
proposed for high tide forecasts at the Venice lagoon. Ac-to obtain short term as well as long term forecasts (Vieira et
curate short term predictions of high tides in the lagoon caral., 1993). The hydrodynamic modelling usually starts with
easily be calculated using the proposed CBS models. first principles that require a comprehensive physical insight
into the underlying dynamics of the system, whereas the sta-
tistical modelling and similar methods often start with ob-
servational data, based on which mathematical models that
support forecasts of the main surge are deduced.

The Venice lagoon is one of the world’s most delicate and Several authors have discussed the data-based modelling

unstable ecosystems. Since the disastrous flood that occurré’(fOblem relating to high tide forecasts at the Iagoor_l, by ".eat'
in November 1966, the problems of the Venice lagoon havend the regularly measured water level as a nonlinear time

become one of national and international interest. The threatS€" €S, With the assumption that no information on the hydro-

ened Venice city has frequently been inundated by high Wa_dynamics of the lagoon is involved, but merely observed wa-

ters formed in the northern Adriatic Sea, where interactionster level data are available (Zaldivar et al., 2000). Many ap-

of several astronomical and meteorological phenomena ofteRroaches have been proposed to model the associated nonlin-

occur. The end results are the Venice floods due to a combi€ar time series including nonlinear regression models, chaos
nation of astronomical and meteorological effects: the tidesand. embedding methods, neural netwqus, evolutionary al-
orithms, and other methods, see Zaldivar et al. (2000) and

induced by the moon and the tides caused by stormy weath .
arise from low atomospheric pressure combined with winds. el Arco-Calderon et al. (2004) and the references therein.

To prevent disastrous floods, measures have been taken sinceTDiS Study aims to present a novel and efficient data-based
1966, and perhaps the most famous project is the recentifedelling approach for predicting high tides at the Venice
endorsed MoSEModulo SperimentaleElettromeccanico—  1@goon. In the new modelling approach, it is assumed that
Experimental Electromechanical Module) project, althoughn© & priori knowledge about the hydrodynamics of the la-
the feasibility of this project is still in public debate (Rosen- 900N is available, but merely observed water level data are
thal, 2005; Salzano, 2005). A parallel and complementarySed- Motivated by the successful applications of wavelet
approach to engineering constructions, for example the bartransforms, especially the applications of wavelet multires-
rier system as involved in the MoSE, is to build an Opera_olutlon decomposmc_)ns, in non_llnea_r.tlm.e series 'anaIyS|s
tional flood warning system, which is used to forecast the@nd complex dynamical system identification including geo-
main surge, for some time ahead ideally many hours or evefPhysical and magnetospheric process modelling (Kumar and
several days. The objective of such a flood warning systenfoufoula-Georgiou, 1997; Malamud and Turcotte, 19993, b;
is to support some necessary actions such as the removal &handre et al., 2003; Maraun and Kurths, 2004; Grinsted
goods from ground floors, the redirection of the city boat €t &, 2004; Wei et al., 2004a, b; Wei and Billings, 2004;

traffic, and the installation of elevated pedestrian walkwaysKallache etal., 2005), cardinal B-spline multiresolution anal-
ysis (MRA) is employed in the present study to construct

Correspondenceto: H. L. Wei parsimonious nonlinear models that can be used for high
(w.hualiang@shef.ac.uk) tide forecasting. As will be seen, the resulting CBS models

1 Introduction
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578 H. L. Wei and S. A. Billings: Cardinal B-spline model for high tide forecasts

s-step predictorf ®) (-) satisfies all these conditions and will
therefore be investigated in the present study as a new ap-
proach of achieving accurate diraestep predictions.

Table 1. Cardinal B-splines of order 1 to 4.

Ni(x)  Na(x) 2N3(x) 6N 4(x)
O<x<l 1 x x2 %3 3 Cardinal B-spline models
1<x<2 0 22x  —2x%4+6x—3 —3x34+122—12v+4
2=x<3 0 0 =3y 3r%-24v2+60x—44 3.1 Cardinal B-splines
3<x<4 0 0 0 —x34+12¢2—48y+64
elsewhere 0 0 0 0

The mth order cardinal B-spline function is defined by the
following recursive formula (Chui, 1992):

X m—Xx
. Np(x) = ——Np-1(x) + ——Np-1(x = 1), m > 2
provide not only accurate short term forecasts, but also pro- m—1 m—1

vide good long term predictions for the variation of water 2
levels in the lagoon. Compared with existing data—baseq?4here

methods, the proposed data-based CBS modelling approac

can produce more accurate predictions for high tides at thq\,l(x)
Venice lagoon.

1ifxe[0 1
0 otherwise

= x0,n(x) = { 3)
It can easily be shown that the support of th¢h order
B-spline function is supp,,=[0, m]. Compared with other
basis functions, the most attractive and distinctive prop-
Let {y(1)}/_,, be a known observed sequence for the under-ty of B-splines are that they are compactly supported and
lying dynamical time series. The goal of multi-step-aheadcan be analytically formulated in an explicit form. Most
forecasts is to predict the values o+s), with s>1, using ~ importantly, they form a multiresloution analysis (MRA)
the information carried by the observed sequepae)}/_,. ~ (Chui, 1992). B-splines are unique, among many com-
To achieve such a goal, a commonly used approach is téhonly used basis functions, because they simultaneously
learn a model, or a predictor, from the available data. ToPOSsess the three remarkable properties, namely compactly
obtain multi-step-ahead predictions of nonlinear time seriesSupported, analytically formulated and multiresolution anal-
both iterative and direct methods can be employed (Wei and/Sis oriented, among many popular basis functions. These
Billings, 2006). In theory, long-term predictions can be ob- Splendid properties make B-splines remarkably appropriate
tained from a short-term predictor, for example a one-stepfor nonlinear dynamical system modelling. The most com-
ahead predictor, simply by applying the short predictor manymonly used B-splines are those of orders 1 to 4, which are
times in an iterative way. This is called iterative prediction. Shown in Table 1.
Direct prediction, however, provides a once-completed pre- For the mth order B-spline functionN,,eL?(R), let
dictor and multistep forecasts can be obtained directly fromN}f'k(x):zj/sz(ij_k)' DY={N7':keZ}, wherej, keZ
the established predictor in a way that is similar to computingare called the scale (or dilation) and position (translation)
one step predictions. parameters respectively. Following (Chui, 1992), for each
Following Wei and Billings (2006), a direct approach will J€Z, let Vi* denote the closure of the linear spaniof,
be considered. Take the case of thetep-ahead forecasting namely, V"=clos;2z)<D’'>. The following properties
problem as an example. The task festep-ahead forecasts (Chui, 1992) possessed myj” and V'™ form the foundations
is to find a model that can predict the valug @f+ s) using  of the cardinal B-spline multireso{ution analysis modelling
a set of selected variablés(r),y(t—1), - - -, y(t—d+1)}, in framework for nonlinear dynamical systems:
the sense that

2 Time series forecasting problem

i) For any pair of integers: and j, with m>2, the family

vt +s) = fO@), -, vyt —d + 1) +e®) (1) D7={N7(x):k € Z} is a Riesz basis df " with Riesz
boundA=A,, (A,, is a constant related ) and B=1.
where £ with s>1 are some nonlinear functioag,)is an Furthermore, these bounds are optimal.

unpredictable zero mean noise sequetiéethe modelorder ) o _ )
(the maximum lag). For a real system, the nonlinear function 1) Themth order B-spline functioN,,is a scaling function
£© is generally unknown and might be very complex. A and VJ’.” forms a multiresolution analysis (MRA).
class of models that are both flexible, with excellent approx- .0 the above discussions. for every functiga V™
imation capabilities, and which can represent a broad class . _ ’ 2 '
of highly complex systems are therefore required to ensurdNere €XISts a unique sequerfeg jrez €£7(Z) such that
accurate direct-step predictions. The model class that usesef(x) _ ZCJTZj/ZNm /x —k) )

cardinal B-splines as the basis functions to approximate th oy
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For convenience of description, the symigatill be intro- The scale and position determination problem will be dis-
duced to represent theth order B-spline functionv,, and  cussed in the following section. The model term selection
the symbol " will be omitted in associated formulas. problem has been systematically investigated in Billings et

al., 1989; Chen et al., 1989). In the present study, an orthog-
3.2 The cardinal B-spline model for high dimensional onal least squares (OLS) algorithm, interfered with by an er-
problems ror reduction ratio (ERR) index (Billings et al., 1989; Chen et
. al., 1989), and regularized by a Bayesian information crite-
The.resul.t for the 1-D case described above can be extendggl, (BIC) (Schwarz, 1978; Efron and Tibshirani, 1993), will
to high dimensions and several approaches have been proy iseq to select significant model terms and to determine the
poseq for such an extension. Tensor product gnd rad_lgl COMhodel size (the number of model terms included in the final
struction are two commonly used methods (Wei and B|II|ngs,m0de|). One version of the OLS-ERR type algorithm, called

2004;_Bi|li_ngs_and Wei, 2005). _Following the idea in Hastie he forward orthogonal regression (FOR) algorithm, is pre-
and Tibshirani (1990) and Kavli (1993), in the present study,ganted in the Appendix.

a linear additive CBS model structure will be employed

to represent a high dimensional nonlinear function. Kavlig 3 petermination of the scale and position parameters
(1993) suggested a method to successively refine a linear B-

spline model for multivariate problems by adding new 1-D assume that a-variate functionf of interest is defined in

submodels step by step. . _ ~ the unit hypercubg0, 1]¢. Consider the scale parameter de-
~ For ad-dimensional functiory' e L“(R?), the linear addi-  termination problem first. Experience on numerous simula-
tive representation is given below tion studies relating to wavelet multiresolution modelling for

o _ o dynamical nonlinear systems, for example Wei et al. (2004a,
fonxz, - x) = i) + fob) £+ Jaa) - (5) b) and Wei and Billings (2004) and the references therein,
where f,eL?(R) (r=1,2,...d) are univariate functions, has shown that the scale paramegtér model (7) should not
which can be expressed using the expansion (4) as below be chosen too large. A value that is between zero and two
or three forj is often adequate for most nonlinear dynamical
Fra) =) ¢ iinlxr) (6)  modelling problems.
kez For cardinal B-spline functions, the position paraméter
whereg; (x)=2//2¢(2/ x—k), andj, ke Z are the scale and is dependent on the corresponding resolution stalledeed,
position parameters, respectively. for each fixed poink €[0, 1], sinceN,, has compact support,
Now consider the model given by Eq. (1) and let all except a finite number of terms in the expression (4) are
xr(1)=y(t—r+1) for r=1, 2,...,d. Using Egs. (5) and (6), Zze€ro. Take the 4th-order B-spline function as an example. At
model (1) can be expressed as a given scalg, the non-zero terms are determined by the po-
., . fsitiorr: paran?eteli for k:—?}:, —dZ, -1, h .,2/—1. In general,
_ () _ s.r) , or the B-spline function of order, whose support if0, m],
Yy +s) = ;fr (x-(1)) = ;kezzcj’k @k (xr (1)) +e(2) (7) the supportforthe associated functimpk(x)=2j/2(2jx—k)
is [27/k, 277/ (m+k)], therefore, the position parameteat

The remaining task is how to deduce, from Eq. (7), a parsi-5 resolution scalg should be chosen as(m—1)<k<2/ —1.

monious model that can be used festep-ahead forecasts
for a given prediction horizon. The following problem

needs to be solved: 4 Water level modelling and high tide forecasting

— How to choose the scale and position parameteasd
k2 4.1 The data

— In practical modelling problems, the variables() The data used here are the hourly recorded observations of
(r=1, 2, ...,d), as the lagged versions of(r), are = water levels at Punta della Salute, Venice Lagoon, for the
usually sparsely distributed in the associated space angeriod from January 1990 to December 1994. These data
therefore the problem may be ill-posed. The representawere partitioned into 5 data sets, symbolized by “data90”,
tion (7) is thus often redundant in the sense that most of‘data91”, “data92”, “data93”, and “data94”, corresponding
the basis functions (or model termg); () in Eq. (7), to different year numbers. The number of observations in
can be removed from the model, and experience showshe data set “data92” was 8784, and was 8760 in the other
that only a small number of significant model terms are data sets. In the modelling procedure, the observations in
required for most nonlinear dynamical modelling prob- each year were chosen as the training data set and were used
lems. The question is: how to select the potential sig-to identify a model. The resultant model was then used to
nificant model terms from a large number of candidate predict water levels for the next year. For example, a model
basis functions? identified from the data set “data92” will be used to predict

www.nonlin-processes-geophys.net/13/577/2006/ Nonlin. Processes Geophys., 13, 577-584, 2006



580 H. L. Wei and S. A. Billings: Cardinal B-spline model for high tide forecasts

140 140
1 T — 120}~ . L a
100 |-~ R — 100 -
] R B — 80 foog-Hf-
E. f ] l E q ‘\I
FC Ll o L S B0/ T
S i i i o i f A
T 40f} - 40t A-bib
@ o) i '
© ! ! ! S P
= 20t Yo Y = 200 44-Y-1i
OfAd------ ! j 77777777777 777777 777777777 1 0,, 777777 'n}'l 777777777777
20. ffffffff . S 200 )
40 ! ! ! 40 : ! :
0 50 100 150 200 0 50 100 150 200
Time [hr] Time [hr]

Fig. 1. One-hour-ahead prediction for typical high tides. The thin Fig. 2. Four-hour-ahead prediction for typical high tides. The thin

line with dots indicates the measurements (observed in 1993), andolid line indicates the measurements (observed in 1993), and the
the thick dashed line indicates the prediction values. thick dashed line indicates the prediction values.

water levels in 1993 and the predicted values will then be

compared with the real observations. , .. volved in the initial model (8) for any given, only a small
The maximum lag for the input variables in the initial nmper of basis functions were required to describe the re-
modelling procedure_wafs chosen to be 24, to cover the rangRytionship betweety (1), y(t—1), - - -, y(t—23)} andy(r+s),
of the maximum oscillation cycle of the related time series. ;g significant model terms were efficiently selected by per-
Thus, the variables (1), y(r—1), - --, y(t—23) were used as  torming a model term detection algorithm,. Also, different
inputs to form a predictor, whose output was the future be- 5,65 fors usually led to different final models. For each
haviour, denoted by(r+s) (s>1). _ s, an OLS-ERR algorithm (Billings et al., 1989; Chen et al.,
Note that the original data were initially normalized 10 19gg) reqularized by a Bayesian information criterion (BIC)
[0.1] via a transformy (1)=(5(1)—a)/(b—a), wherey(r) in-  (gchwarz, 1978; Efron and Tibshirani, 1993), was used to
.d|catfa.the_|n|t|al observations, ape-—100 andb=150. The determine the number of model terms, and the parameters of
identification procedure was therefore performed using NOrie final CBS model was then re-estimated by introducing a

malized values (). The outputs of an identified model were a5 moving average (MA) model of order 10 (Billings and
then recovered to the original measurement space by taking\,i 2005: Wei and Billings, 2006).

the associated inverse transform.

a total number of 216 model terms (basis functions) were in-

4.3 Prediction results
4.2 The models et !

Eight cases, corresponding t&1, 4, 12, 24, 28, 48, 72,
and 96, were considered, and eight different CBS models
were identified for each of four data sets “data90”, “data91”,

Let x,(t)=y(t—r+1), r=1, 2,..., 24. The structure of the
initial CBS model was chosen to be

4.9 » “data92”, and “data93”. The resultant eight models were ap-
Yt +s) = Z Z ok Dok (xr (1)) plied respectively over four test data sets, “data91”, “data92”,
r=lk==3 “data93”, and “data94”, to calculatestep-ahead forecasts of
24 2 ) water levels. Prediction performance, measured by the root-
+ z;kzs‘xl,k PLi(xr (1)) (8) mean-square-errors (RMSE) as used in Zaldivar et al. (2000)
=1 ke

and del Arco-Calderon et al. (2004), over the four test data
where ¢ (x)=2//?¢(2/x—k),with j, keZ, are the 4th- sets, obtained from the identified CBS models, are shown in
order B-spline functions. Notice that model (8), which in- Table 2. Compared with the results produced by multilayer
volves two scale levels foj=0 andj=1, is in structure dif- neural networks (Zaldivar et al., 2000) and evolutionary algo-
ferent from model (7), where the model tegmy (-) only in- rithms (del Arco-Calderon et al., 2004), the results produced
volves a single scale level. The reason that the initial modeby the proposed CBS models are better, both for short and
(8) was chosen to be such a structure was to enrich the podbng term predictions.

of the model term dictionary, so that basis functions with dif- To visually illustrate the performance of the identified
ferent scale parameters can be sufficiently utilised. AlthoughCBS models for high tide forecasting, both short term and

Nonlin. Processes Geophys., 13, 577-584, 2006 www.nonlin-processes-geophys.net/13/577/2006/
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Table 2. Prediction errors for water levels of the years 1991, 1992, 1993, and 1994, with 8760, 8784, 8760, and 8760 records, respectively.

Prediction horizon 1991 1992 1993 1994
Model size RMSE Modelsize RMSE Modelsize RMSE Modelsize RMSE
1 39 1.521 38 1.538 49 1.519 37 1.489
4 36 5.389 35 5.408 35 5.274 31 5.075
12 24 7.072 21 7.406 18 6.656 20 6.439
24 23 7.325 16 7.353 18 6.858 19 6.584
28 27 9.232 26 9.246 26 8.637 23 8.352
48 22 10.686 18 10.752 23 9.788 20 9.716
72 20 13.036 21 13.352 23 12.019 19 11.940
96 18 14.480 23 15.108 25 13.576 21 13.449
140 ; 140
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Fig. 3. Twelve-hour-ahead prediction for typical high tides. The g 4 fyenty-four-hour-ahead prediction for typical normal water
thin solid line indicates the measurements (observed in 1993), angbye| The thin solid line indicates the measurements (observed in
the thick dashed line indicates the prediction values. 1993), and the thick dashed line indicates the prediction values.

long term predictions for some high tides were calculatedhydrodynamical model with adequate forcing. Following the
using the identified CBS models. Taking the prediction re-idea of Cao et al. (1998), the extension of the methodology to
sults for some typical high tides in the year 1993 as an exammultiple time series approach, will be addressed in a future
ple, the 1-, 4-, 12-, and 24-h-ahead predictions are shown ipaper.

Figs. 1 to 4, respectively.

It can be seen from Figs. 1 to 4 that albeit the identified
CBS models can produce very good short term (4 h-ahead Conclusions
predictions for typical high tides at the lagoon, the resul-
tant models can not effectively produce longl@Q h-ahead) The CBS models are a class of nonlinear representation,
term predictions for high waters (water lexel10cm). The  where dilated and translated versions of cardinal B-spline
reason that the models can not provide effective long ternfunctions were chosen to be the basis functions (regressors or
predictions may be that the “input” signals, considered heremodel terms). As a special class of linear-in-the-parameters
for the associated dynamical models may not be sufficient taepresentation, the CBS models are easy to train using some
describe the real world dynamical systems, in other wordsstandard model term selection algorithms, and the final iden-
additional input signals may be required to adequately chartified models usually only include a small number of signif-
acterize the underlying dynamical behaviour. One solutionicant model terms. The proposed CBS models provide an
to this problem is likely to involve multiple time series, and efficient representation for short term forecasts of high tides
tides at several places in the Adratic Sea or the use of a 3-[at the Venice lagoon.

www.nonlin-processes-geophys.net/13/577/2006/ Nonlin. Processes Geophys., 13, 577-584, 2006



582 H. L. Wei and S. A. Billings: Cardinal B-spline model for high tide forecasts

Appendix A The forward orthogonal regression

algorithm
’ oo EWE Ty n?
The CBS models are based on a prescribed prototype func- Ixl2y12 - TG y) YN 25N 32
tion, and temporal analysis is performed using some dilated (A2)

and translated versions of the same function. Data analy-

sis can thus be implemented using the corresponding coeffhe squared correlation coefficient is closely related to the

ficients. The initial CBS model (8), where each basis func-error reduction ratio (ERR) criterion (a very useful index in

tion (model regressor) is a variant of the same cardinal B-respect to the significance of model terms), defined in the

spline function, can easily be converted into a linear-in-the-standard orthogonal least squares (OLS) algorithm for model

parameters form structure selection (Billings et al., 1989; Chen et al., 1989).
The model structure selection procedure starts from

M
y(t) = Z OV () + e(1) (A1) Eqg. (Al). Letro=y, and

m=1 {1 = arg ,max {C(y. 9/} (A3)

where x(O)=[x1(1), x2(), - - -, xa(O1F, with
x-(t)=y(t—r+1) for r=1,2,...d, is the “input” (pre-
dictor) vector, ¥, (t)=v,,(x(¢)) are the model regressors,
o,are the model parameters, amtlis the total number of
candidate regressors.

The initial regression model (A1) often involves a large
number of candidate model terms. Experience suggests that y'q1
most of the candidate model terms can be removed from thé1 = 70 — a7 q1
model, and that only a small nhumber of significant model !
terms are needed to provide a satisfactory representation fdp general, thenth significant model term can be chosen as
most nonlinear dynamical systems. The orthogonal leastollows. Assume that at then(1)th step, a subseb,,_1,
square (OLS) type algorithms (Billings et al., 1989; Chen etconsisting of f—1) significant basese1, ez, - -, ep—1,
al., 1989) interfered with by an error reduction ratio (ERR) has been determined, and the—{1) selected bases have
index, can be used to select significant model terms, and &een transformed into a new group of orthogonal bases
Bayesian information criterion (BIC) (Schwarz, 1978; Efron q1.42. - - -» gm—1 Via Some orthogonal transformation. Let

where the functiorC(-, -) is the correlation coefficient de-
fined by (A2). The first significant basis can thus be selected
asa1=¢¢,, and the first associated orthogonal basis can be
chosen ag1=¢¢,. The model residual, related to the first
step search, is given as

q1 (A4)

and Tibshirani, 1993), can be used to aid the determination m-1¢T g,
of the associated model size (Wei et al., 2006). g™ = b — /T qr (A5)
Consider the term selection problem for the linear-in-the- / =1 9k 9k

parameters model (A1). Leix(t), y(t)):xeR9, yeR}Y | (

. g _ mn)
be a given training data set ape-[y(1), - - -, y(N)]” be the  &m = argj#k E%m,l{c(y’ q; )} (A6)
vector of the output. Lét= {1,2,--., M}, and denote by T
Q={y,,:mel} the dictionary of candidate model terms in an Where¢ ;e D—D,,_1, andr,_1 is the residual vector ob-
initially chosen candidate regression model similar to (A1).tained in the f2—1)th step. Thenth significant basis can
The dictionary2 can be used to form a variant vector dic- then be chosen as,=¢,,, and themth associated orthogo-
tionary D={¢,,:mel}, where thenth candidate basis vector nal basis can be chosemp,@:qu’l’;). The residual vectar,,
¢, is formed by themth candidate model ternt,, €<, in at themth step is given by
the sense thap,,=[V¥,, (x (1)), - - -, ¥m (x(N))]7. The model

T
term selection problem is equivalent to finding, frépasub-  , —, , _ yTﬂqm (A7)
setof indices/,={i,,:m=1,2, ---, n, i,,€l} wheren<M, so 9mqm
that y can be approximated using a linear combination of gypsequent significant bases can be selected in the same way
Qigs Oigy = v &y step by step. From (A7), the vectorg andg,, are orthogo-
nal, thus

Al The forward orthogonal regression procedure

. . - . Fmll? = ||r ||2_M (A8)
A non-centralised squared correlation coefficient will be !!"m!l = 11Fm-1 T qm

used to measure the dependency between two associated ran- . .
dom vectors. The non-centralised squared correlation coeffiY r€Spectively summing (A7) and (A8) fer from 1 ton,

cient between two vectonsandy of sizeN is defined as yields

=Y g A9
y= Z ——qm+ry (A9)

m=14m1m

Nonlin. Processes Geophys., 13, 577-584, 2006 www.nonlin-processes-geophys.net/13/577/2006/
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