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ABSTRACT

A numerical model of idealized sunspots and pores is presented, where axisymmetric
cylindrical domains are used with aspect ratios (radius versus depth) up to 4. The
model contains a compressible plasma with density and temperature gradients sim-
ulating the upper layer of the sun’s convection zone. Nonlinear MHD equations are
solved numerically and time dependent solutions are obtained where the magnetic
field is pushed to the centre of the domain by convection cells. This central magnetic
flux bundle is maintained by an inner convection cell, situated next to it and with a
flow such that there is an inflow at the top of the numerical domain towards the flux
bundle. For aspect ratio 4 a large inner cell persist in time, but for lower aspect ratios
it becomes highly time dependent. For aspect ratios 2 and 3 this inner convection cell
is smaller, tends to be situated towards the top of the domain next to the flux bundle,
and appears and disappears with time. When it is gone, the neighbouring cell (with an
opposite sense of rotation, i.e. outflow at the top) pulls the magnetic field away from
the central axis. As this happens a new inner cell forms with an inflow which pushes
the magnetic field towards the centre. This suggests that to maintain their form, both
pores and sunspots need a neighbouring convection cell with inflow at the top towards
the magnetic flux bundle. This convection cell does not have to be at the top of the
convection zone and could be underneath the penumbral structure around sunspots.
For an aspect ratio of 1 there is not enough space in the numerical domain for magnetic
flux and convection to separate. In this case the solution oscillates between two steady
states: two dominant convection cells threaded by magnetic field and one dominant
cell that pushes magnetic flux towards the central axis.

Key words: MHD - convection — Sun: magnetic fields — sunspots

1 INTRODUCTION

On the visible surface of the sun, magnetic flux is pushed
to the boundaries of granules and supergranules where they
(possibly) grow in field strength to becomes pores. These
pores may grow into sunspots, which can have lifetimes of up
to several weeks. High-resolution observations have shown
that sunspots possess intricate magnetic structures (Sobotka
2003; Thomas & Weiss 2004; Gizon & Birch 2005) the origin
and maintenance of which need to be explained.

It is well established that a pore on the sun is sur-
rounded by a converging surface flow, as well as a down-
flow next to the magnetic flux tube of the pore (Knolker
& Schiissler 1988; Sankarasubramanian & Rimmele 2003).
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These observations suggest that a pore is surrounded by con-
vection cells with surface flows directed towards the pore —
a conclusion supported by numerical simulations (Leka &
Steiner 2001). In contrast, sunspots are surrounded by sur-
face flows (the moat cell) that are flowing predominantly
away from the spot. Hurlburt & Rucklidge (2000) found in
a numerical study of idealized axisymmetric flux tubes in
cylinders that a steady collar flow with converging flow at
the top of the convection cell, is always established. On the
occasions when an outflow at the top occurred, the flux tube
was torn apart, but inevitably this flow was replaced by a
steady inflow at the top that consolidated the magnetic flux
tube again. Hurlburt & Rucklidge (2000) speculated that
sunspots must also have a collar flow, perhaps hidden un-
derneath the penumbra. Bovelet & Wiehr (2003) measured
the horizontal movement of G-band bright structures in the
penumbra and found that in the inner penumbra they move
towards the umbra, while in the outer penumbra both in-
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ward and outward motion occur. If these structures are con-
nected to the convection underneath the penumbra, then
they would indicate large convection cells underneath the
sunspot as predicted by Hurlburt & Rucklidge (2000). How-
ever, other explanations like horizontal movements of mag-
netic flux tubes (Schlichenmaier 2002) or convection pat-
terns in the penumbral magnetic field (Weiss 2002) are also
possible. Helioseismic measurements support the concept of
a collar flow that ensures the integrity of the umbral flux
tube (Gizon & Birch 2005; Tong 2005). They show that un-
derneath the Evershed flow in the penumbra, there exist a
converging flow as well as a downflow up to a depth of ap-
proximately 3Mm. Below these flows there is an outflow that
extends to more than 30 Mm from the sunspot axis. Again
this result is ambiguous, because the flow does not appear
in ffmode measurements, which give only an outflow to a
depth of at least 10 Mm, corresponding to the moat flow on
the surface (Gizon & Birch 2005).

In this paper the results from Hurlburt & Rucklidge
(2000) are confirmed with more realistic parameter values
and greater stratification (depth). We obtained time depen-
dent flows that show a richness in the convection patterns
not seen before. For some parameter values, outflows oc-
cur at the top of the numerical domain, with small convec-
tion cell flowing inwards forming intermittently between the
large outflowing convection cell and the flux tube. Our re-
sults emphasize that the integrity of a flux bundle needs a
surrounding convection cell with inflow at the top (towards
the flux bundle).

In order to model some of the observed magnetic phe-
nomena in the photosphere and upper layers of the convec-
tion zone, we choose the physical parameters in our model to
be as close as possible to their solar values, while taking the
constraints imposed by the numerical method and our ideal-
ized model into consideration. Most of the convection zone
consists of a fully ionized gas, which implies that the plasma
behaves almost as an ideal, monoatomic gas (Stix 2002). The
exception is a thin layer close to the photosphere (with thick-
ness 0.1 Rp) where the plasma is partially ionized, but even
here the deviation from the equation of state for an ideal gas
is less than 1% (Christensen-Dalsgaard 2002). We therefor
choose the ratio of specific heats to be that of a monoatomic
gas 7 = 5/3 throughout our domain. We expect that con-
vective motions will result in a nearly adiabiatic plasma in
our model and consequently choose the initial stratification,
as determined by the polytropic index m = 1.495, to be
close to its adiabatic value of m = 1.5. This choice of m is
sufficiently superadiabatic so that buoyancy will allow con-
vection to occur. A large Rayleigh number R is needed to
adequately model solar convection: we typically work with
R ~ O(10%). The value of m together with the choice of
temperature gradient 6 (see Equation 1 below) determines
that our model describes a layer in the plasma that has as
its top boundary a level that is approximately 500 km be-
neath the visible surface of the sun and a bottom boundary
at approximately 6000 km (Stix 2002). This implies that we
are describing the upper 1% of the solar radius, or equally
the upper 2.5% of the convection zone, while excluding the
upper boundary layer. The aspect ratio of our numerical
domain is never smaller than one, so that the convection
described in the model is on the supergranular scale.

The Prandtl number o is chosen to be small, so that the

plasma is thermalized and all temperature perturbations are
small. The ratio of magnetic to thermal diffusion ¢ is cho-
sen to be small (0.2) at the top of the domain, but due to
the density gradient it is ( = 4.38 at the bottom bound-
ary. Linear theory predicts that ¢ < 1 leads to oscillations,
while ¢ > 1 leads to steady overturning convection (Chan-
drasekhar 1961). The same behaviour has been confirmed in
nonlinear numerical calculations (Weiss et al. 1990), where
large R values lead to aperiodicity in the oscillatory solu-
tions when ( < 1. In our model {( = 1 at a level that is
approximately a third of the depth of the domain below the
upper boundary.

The analytical model is described in Section 2.1 and its
numerical treatment explained in Sections 2.2 and 2.3. The
numerical results (Section 3) start with aspect ratio I' = 4
and then move progressively to smaller values until I' = 1.
Only selected illustrative results are presented. They show
that for large aspect ratios (I' = 4 in Section 3.1) one ob-
tains an anti-clockwise convection cell next to the central
magnetic flux bundle that is almost time independent. This
means there is an inward flow at the top of the numerical
domain (close to the solar surface) converging on the flux
tube, which is reminiscent of convection around pores on
the solar surface. For smaller aspect ratios (I' = 3 in Sec-
tion 3.2 and I' = 2 in Section 3.3) the solution becomes
highly time dependent, with a smaller anti-clockwise con-
vection cell forming and being destroyed in a semi-regular
manner. In these cases a large permanent clockwise convec-
tion cell forms with outflow at the top of the numerical do-
main, similar to convection around sunspots. For I' = 1 the
aspect ratio is too small to allow a total separation between
magnetic flux and convection, and the final solution oscil-
lates between two states where magnetic flux and convection
cells are intertwined. The presentation of the numerical re-
sults is followed by their discussion in Section 4, where the
work is put in context with previously published results. The
paper is concluded with a summary of the main result.

2 MODEL

We solve the partial differential equations (PDEs) that de-
scribe compressible magnetoconvection in axisymmetric ge-
ometry, using a numerical code developed for this purpose.
The PDEs and auxiliary equations are the same as those
used by Hurlburt & Rucklidge (2000), where a detailed de-
scription of the model can be found.

2.1 Equations

The initial temperature and density profiles in the vertical
(z) direction are given by

p=po(l+62)", (1)

with the 0 subscript defining the quantity at the top of the
box (z = 0), 6 the initial temperature gradient, and m the
polytropic index. The PDEs used to solve for fully compress-
ible, nonlinear axisymmetric magnetoconvection are

T =To(1 + 6z),

9 _

¥ = v 2)
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with the auxiliary equations
P =T, i=VxB=4gj (6)
V-B=0, B =V x ($A,). (7)

Here the notation has its usual meaning, with 7 the rate of
strain tensor given by

2 0u/or 0 Ou/dz + dw/or
T= 0 2u/r 0 , (8
Ou/0z 4+ ow/or 0 20w/0z

and with ~ the ratio of specific heats, o the Prandtl number,
Co the magnetic diffusivity ratio at z = 0, K a dimensionless
thermal conductivity, and @ the Chandrasekhar number.
The Rayleigh number

(m+&ﬂ7—1q(1+9ﬂfml
5y oK?

R:Q%m+&)b— (9)
is a measure of the importance of buoyancy forces compared
to viscous forces in the middle of the layer, and is used to
drive the convection in the model. All quantities are dimen-
sionless, with length scaled proportional to the depth of the
numerical domain, time scaled proportional to the sound
speed at the top of the numerical domain, and temperature,
magnetic field, density and pressure all scaled to their initial
values at the top of the numerical domain.

2.2 Numerical boundaries

The computational domain is a cylinder of radius I, so that
(r, z) satisfy

0<r<T, 0<z<1, (10)

with z = 0 the top of the box (Figure 1). We require that all
variables be sufficiently well-behaved at the axis (r = 0) and
that the differential operators in the PDEs are non-singular.
This implies that
ap ow 0B, . 0T
— = = — = A = BT = = = — =
ar T or ¢ or 7" or

at r = 0, where the non-dimensional velocity is given by
v = (u,0,w). Terms like u/r are evaluated using I'Hopital’s
rule, while terms like u/r? cancel algebraically.

At the bottom of the box (z = 1) the temperature is
constant and the magnetic field vertical. The bottom bound-
ary is also impenetrable and stress-free, i.e.,
0Ay Ou

=w=—_—=0. 12

0z Y= oz 0 (12)
The outside wall (r = T') is a slippery, perfectly electrically
conducting wall with no lateral heat flux across it:

r T
o _, =% _ji_ (13)

Ao =3 5= g =

0, (11)

T=1+9,

u
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r- - - - - - = B
magnetic field: potential
0 temperature: Stefan’s law
slippery,
2 perfectly conducting,
thermally insulating
temperature: fixed wall
1 magnetic field: vertical
0 r r

Figure 1. Computational domain 0 < r < I''and 0 < z < 1,
indicating the boundary conditions. At the axis r = 0 (left edge
of picture) regularity conditions apply.

The value of Ay is chosen so that the initial vertical uniform
field satisfies B, = 1.

The top of the box is treated as impenetrable for the
plasma, but radiative and potential field boundary condi-
tions are applied to the temperature and magnetic field.
Specifically, we set

or _ 04, u
0z 0z 0z

where Mp,; is a linear operator matching the potential field
to the magnetic field in the domain (that is, the values of
B, and B. are continuous across the boundary). The poten-
tial field is solved by assuming an infinitely tall conducting
cylinder of radius I' above the domain, with the magnetic
field becoming uniform as z — —oco. A more detailed de-
scription of the calculation of the potential field is given by
Hurlburt & Rucklidge (2000).

The density does not in principle satisfy boundary con-
ditions, but we impose the value of the normal derivative of
p obtained from the momentum equation (3).

0T, = Mpot(Ayp), =w=0, (14)

2.3 Numerical method

The numerical code was developed specifically for these type
of calculations (Hurlburt & Rucklidge 2000). Sixth-order
spatial accuracy is obtained using compact finite differences,
with fourth-order temporal accuracy using a modified (ex-
plicit) Bulirsch-Stoer integration technique. At the bound-
aries first-order derivatives are evaluated to fifth-order accu-
racy and second-order derivatives to fourth-order. The cal-
culations were initiated with a low numerical resolution that
still resolved the physics. As the calculations progressed, the
resolution was increased to keep the physical processes fully
resolved. The grid intervals were chosen to be equal in the
two directions. The time step was limited by the Courant
condition (taking the maximum sound and Alfvén speeds,
as well as thermal diffusive limits into account), multiplied
by a safety factor of 0.5.

3 NUMERICAL RESULTS

Throughout we have used To = 1, po = 1. Unless other-
wise stated, the results shown here have been obtained with
Rayleigh number R = 10°, ¢ = 0.1, (o = 0.2, § = 10,
m = 1.495, and v = 5/3. Throughout the paper the results
are presented in the format given in Figure 2.

The numerical code operates with a maximum Mach
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Contours: potential magnetic field lines

Contours: magnetic field lines in (r, z) plane
Arrows: velocity field in (r, z) plane
Colour: temperature perturbation T' — (1 4 0z)

Contours: density
Arrows: magnetic field in (r, z) plane

Colour: azimuthal current density

Figure 2. Format of diagnostics for individual numerical solu-
tions. The temperature perturbation in the middle box is colour
coded so that blue is cold and red is hot. The azimuthal current in
the bottom box is colour coded so that positive values are graded
towards red and negative values towards blue. The » = 0 axis is
on the left.

number < 1.8. For most of the numerical runs the final state
has a maximum Mach number of approximately 1.5.

3.1 Solutions with I' =4

The results shown here were obtained with Chandrasekhar
number ) = 100 and aspect ratio I' = 4.

The time evolution of the total kinetic and magnetic
energy is presented in Figure 3. Soon after initialization a
clockwise convection cell forms at the outer (right hand side)
boundary, while the magnetic field is pushed towards the
axis (left hand side) to form a flux tube. The aspect ratio
provides enough space for two convection cells to form, with
the inner cell (on the left) convecting in an anti-clockwise di-
rection, i.e. inflow at the top of the domain. Both convection
cells grow with time, which causes the magnetic field to be
compressed into a flux bundle on the left hand side. The con-
vection cells and the flux bundle push against one another,
and by doing so create a regular oscillation (Figure 4) that
grows in amplitude as the numerical run progresses. This
process can be explained with the help of Figure 5. When
the magnetic field lines are compressed against the left hand
side of the numerical box (Figure 5(a)) the total magnetic
energy peaks (Figure 4). At this time the flow velocity in the
inner convection cell has just passed its lowest level. The low
velocities allow the magnetic field lines to expand into the
space occupied by the convection cells, and in doing so they
compress the convection cells against the right hand bound-
ary of the numerical box (Figure 5(b)). The expansion of
the magnetic field lines lower the total magnetic energy in
the simulation, so that it experiences a minimum when the
magnetic field lines are maximally extended (Figure 5(c)).
The compression of the convection cells causes their flow
velocities to increase, which causes the total kinetic energy
of the simulation to rise (Figure 4). The maximum peak in
total kinetic energy in Figure 4 corresponds to a time just
after Figure 5(c), when the convection cells are most com-
pressed and the flow in the simulation most vigorous. The
high flow velocities causes the convection cells to increase
their size, and in doing so they compress the magnetic field
lines against the left hand boundary (axis) of the numerical
domain (Figure 5(d)). As this process continues, the con-
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Figure 3. Time evolution of total kinetic and magnetic energy
over the duration of a simulation with ' = 4, @ = 100, showing
a long transient with oscillations before the system settles down
at ¢ ~ 950.

0.35

0.30

0.25

0.20

600 605 610 615
time

Figure 4. Time evolution of total kinetic energy (solid line) and
total magnetic energy (broken line). The time interval is taken
from Figure 3 and contains two cycles of the periodic fluctuations,
with the second plotted in Figure 5. The total kinetic energy was
reduced by 1.8 to fit on the same scale.

vection cells slowly gain size at the expense of the magnetic
flux bundle in the middle, and both the total kinetic and
magnetic energies increase with time, as shown in Figure 3.

This process continues until time 900, when both the
total kinetic and magnetic energies level out. Figure 6 show
the numerical solution after time 900. There is little time
dependence in the numerical solution at this stage. A com-
parison with Figure 5 shows that the outer cell on the right
hand side has decreased in size, while the inner cell on the
left has grown to be the largest feature of the solution. The
anti-clockwise convection of this cell keeps the magnetic field
lines compressed in a bundle on the left hand side. This
steady solution is similar to the results published by Hurl-
burt & Rucklidge (2000).

3.2 Solutions with I' =3

The results shown here were obtained with ¢ = 100 and
aspect ratio I' = 3.

Whatever the initial perturbation, the solution quickly
establishes a clockwise convection cell at the outer (i.e. right
hand side) boundary, which exists until the simulation is

© 2006 RAS, MNRAS 369, 1611-1624
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Figure 5. Time evolution with I' = 4 and @ = 100. The time sequence starts at the top left hand corner and moves in an anti-clockwise
direction: (a) ¢ = 606.9; (b) t = 608.4; (c) t = 610.8; (d) t = 612.3; with ¢t = 614.7 similar to (a). The time evolution of the total kinetic
and magnetic energy of this sequence is presented in Figure 4. The total magnetic energy is highest in (a) while the total kinetic energy

is highest in (c). The diagnostics are described in Figure 2.

Figure 6. Steady solution at time 990.1 with I' = 4 and @ = 100.

terminated. Initially it grows in size, but quite early during
the numerical run (time 180) it reaches maximum size. Af-
ter that an inner anti-clockwise convection cell forms that
slowly grows with time. This growth is characterized by a
gentle oscillation in total magnetic and kinetic energy (Fig-
ure 7), following the same process as was described in Sec-
tion 3.1: the magnetic flux bundle and the inner convection
cell push against each other, competing for the available
space in the numerical domain. As the simulation contin-
ues, the convection cell slowly grows in size, the magnetic
field lines become more compressed, and the amplitude of

© 2006 RAS, MNRAS 369, 1611-1624

the oscillations increases. This process continues until time
570 when the oscillation becomes so violent that the inner
convection cell is destroyed and reforms during each oscilla-
tion cycle. The periodic destruction of the inner convection
cell allows the clockwise convection cell on the right hand
side to grow in size, pushing the magnetic field lines towards
the axis and thereby increasing the total magnetic and ki-
netic energy until both reach a saturation level after time
850 (Figure 7). This oscillation is qualitatively different from
the results published by Hurlburt & Rucklidge (2000).

Each cycle, during which the inner convection cell is
destroyed and reforms, is characterized by a spike in the
total magnetic energy. Figure 8 shows a time interval from
Figure 7 in more detail and contains two full cycles of the
fluctuations. The numerical solution of the first cycle is pre-
sented in Figure 9. A comparison of Figures 8 and 9 shows
that the increasing convection of the anti-clockwise inner
cell provides an impulse that pushes magnetic field lines to
the axis (i.e. left hand side) of the box (Figure 9(b)). This
action increases first the total kinetic and then the total
magnetic energy. As the magnetic field lines moves towards
the axis, the anti-clockwise convection decreases. This lack
of anti-clockwise convection allows the magnetic field lines
to spread to the right, which decreases the total magnetic
energy in the system. This process is seen as a spike in the
total magnetic energy.

The anti-clockwise convection cell also tries to convect
the magnetic field lines away from the axis when it is at its
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Figure 7. Time evolution of total kinetic and magnetic energy
over the duration of a simulation with I' = 3, @Q = 100.
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Figure 8. Time evolution of total kinetic energy (solid line) and
total magnetic energy (broken line) in the domain. The time inter-
val is taken from Figure 7 and contains two cycles of the periodic
fluctuations, with the first plotted in Figure 9. The total kinetic
energy was reduced by 7.2 to fit on the same scale.

strongest. This causes some field lines to move at the bottom
of the numerical box to the right of the domain (Figure
9(c)), where they are caught in the convection of the larger
clockwise cell and are moved upward and outward, i.e. to the
right hand side (Figure 9(d)). This movement, together with
the reduced strength of the anti-clockwise convection, allows
the larger clockwise cell to fill the whole box (Figure 9(e))
and the total kinetic energy of the solution shows a second
(lower) peak (Figure 8). As soon as the magnetic fields are
convected across the top of the numerical domain, another
anti-clockwise convection cell forms at the top left hand side
of the box (Figure 9(f)), decreasing the total kinetic energy.
The total kinetic energy rises again only when the strength
of the anti-clockwise inner convection cell increases and the
whole process repeats itself.

Figure 9(c) shows that as the magnetic field reaches
maximum strength on the axis (i.e. left hand side), a blob
of cold plasma moves down the magnetic flux tube, subse-
quently to be convected to the outer boundary on the right
hand side by the large clockwise convection cell.

When the clockwise convection cell dominates the so-
lution (Figures 9(a) and (f)) an outflow occurs at the top
boundary of the numerical domain, reminiscent of sunspot
behaviour. The correspondence with sunspots is strength-

ened by the fact that the magnetic field is horizontal close to
the surface. However, the outflow pulls magnetic field away
from the flux tube and the tube’s integrity is maintained
only by the formation of an intermittent anti-clockwise (in-
flow) convection cell. By pushing the magnetic field back to-
wards the centre of the numerical domain, the anti-clockwise
convection destroys the horizontal field at the top boundary
(Figure 9(c) and (d)) and it only reforms when the clockwise
convection starts pulling magnetic field away from the flux
tube (Figure 9(e)).

At time 675 there is a pause in the spiking of the to-
tal magnetic energy (Figure 7). This is caused by the in-
ner anti-clockwise convection cell re-establishing itself for
a short while. During this time cold blobs of plasma are
convected down the side of the magnetic flux tube, under-
neath the inner convection cell, and over the outer clockwise
cell to gather at the lower right hand corner of the numer-
ical domain. This disruption in the regular rhythm of the
fluctuations can happen at any time during the simulation.
However, it is always of short duration, with the regular
fluctuations re-establishing themselves afterward.

3.3 Solutions with I' = 2

The results in this section were obtained with an aspect
ratio I' = 2 and various magnetic field strengths. Increasing
the magnetic field strength through the value of @ has the
effect that the solution takes longer to reach its final state,
as shown in Figure 10. The final levels of the total kinetic
energy of the solutions are similar, which indicate that the
value of ) does not affect the velocities in the convection
cells. In contrast, the value of () influences the radii of the
magnetic flux tubes (Hurlburt & Rucklidge 2000).

Figure 11 shows the time evolution of the total magnetic
field during the numerical runs. As the final state is reached,
the total magnetic field shows large fluctuations. The lower
values of () show a more random fluctuation pattern, while
the higher @ values show the periodic spikes observed in
Section 3.2. When there is an unstable inner convection cell
present, the magnetic field strength influences the temporal
behaviour of this cell. For low magnetic field strengths the
cycle (if it exists) appears to be random, while stronger mag-
netic fields (Q > 40) brings periodicity to the cycle. This is
seen in Figures 11 as well as Figures 13 to 17.

In Figures 13 and 14 the final solutions with @ = 5
and @ = 10 are presented. For these low values of magnetic
field strengths an inner anti-clockwise convection cell forms
that changes its shape as it evolves with time, but is not
completely destroyed. A consequence of this is that the top
boundary between the plasma and the potential magnetic
field shows a permanent inflow into the magnetic flux tube,
which changes amplitude with time. Cold plasma is con-
vected down the flux tube and gathers at the boundary be-
tween the two convection cells. At random stages during the
numerical simulation this cold blob of plasma is convected
across the top of the outer convection cell to the right hand
corner of the numerical domain. Figure 13(b) shows such
a process in mid progress. By increasing the magnetic field
to @ = 10 (Figure 14), the inner convection cell occupies
a narrower space but still have an unstable shape. Where
the shape changed mostly in width for @ = 5 (Figure 13),
here it changes mostly in depth. Figure 14 shows that there

© 2006 RAS, MNRAS 369, 1611-1624
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Figure 9. Time evolution with I' = 3 and @ = 100. The time sequence starts at the top left hand corner and moves in an anti-clockwise
direction: (a) t = 960; (b) t = 960.8; (c) t = 961.7; (d) t = 962.7; (e) t = 963.6; (f) t = 964.6; with ¢t = 965.6 similar to (a). The time
evolution of the total kinetic and magnetic energy of this sequence is presented in Figure 8. The total magnetic energy has its highest
value in (c). The total kinetic energy has its highest value in (b) and its second highest peak in (e).
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Figure 10. Time evolution of total kinetic energy for I' = 2 and
different magnetic field strengths. The left-most solid line that
levels out at time 340 is Q = 5; the dotted line is Q = 10; the
dashed line is @ = 20; the dot-dashes line is Q@ = 40; and the
right-most solid line that levels out at time 660 is @ = 100.
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Figure 11. Time evolution of total magnetic energy with ' = 2
and magnetic field strengths @ =5, @ = 40, and @ = 100.

is magnetic flux underneath this inner convection cell that
can be considered as part of the flux tube on the left hand
side. The convection of the cold plasma down the flux tube
and across the top of the outer clockwise convection cell is
still continuing.

In contrast, the solution with @ = 20 (Figure 15) shows
an inner convection cell that is randomly destroyed and re-
forms during the simulation. However, most of the time it
is fluctuating in shape in the upper left hand side of the
box, next to the magnetic flux tube and occupying approxi-
mately 3/4 of the depth from the top plasma boundary. This
means that most of the time there is an inflow at top plasma
boundary (Figure 15(a)), with the occasional outflow when
the inner cell is destroyed (Figure 15(b)). The convection
of cold plasma down the flux tube and across the clockwise
convection cell is continuing, as in the cases for lower @ val-
ues. It is noticeable that prior to the destruction of the inner
cell, it reaches maximum size — and depth — before the outer
cell convects everything over itself to the right hand side.

Figure 16 shows a solution with @ = 40. Again the
inner cell is confined to the top right hand corner next to
the magnetic flux tube. During most of the simulation it
spends its time changing shape in this position. As it grows it
pushes against the flux tube, producing the magnetic energy
spikes in Figure 11, but now the spikes are not necessarily
associated with the destruction of the cell. Figure 11 shows

0.8

0.6

0.4

0.2

644 645 646 647 648 649
time

Figure 12. Time evolution of total kinetic (solid line) and mag-
netic energy (broken line) over the duration of a simulation with
I' =2, @Q = 100. The time interval is taken from Figures 10 and
11 and contains one cycle which is plotted in Figure 17. In order
to compare the two energies, the total kinetic energy was scaled
by subtracting 8.7 from it.

that it increases and decreases in size in a reasonably regular
periodic manner. This means that for most of the duration
of the numerical simulation there is a flow at the top plasma
boundary into the magnetic flux tube. As with = 20 in
Figure 15(a), it is only when it reaches maximum size in
depth that it is destroyed by the clockwise convection cell.
When it grows in depth, it pushes down into the magnetic
flux tube, parting the magnetic field lines at the bottom
(Figure 16(a)). An interesting phenomenon that shows here
for the first time is that inside the flux tube the horizontal
flow along the top plasma boundary is always in the opposite
direction of what is happening just outside the magnetic flux
tube, irrespective if the outside flow is caused by the inner
cell or the larger clockwise convection cell.

For comparison with aspect ratio I' = 3 in Figure 9, nu-
merical results with Q = 100 are presented in Figure 17. For
this magnetic field strength the regular pattern of destruc-
tion and reformation of the inner cell has established itself,
as is shown by the spiking of the total magnetic energy in
Figure 11. However, whereas the inner cell forms next to the
flux tube for I' = 3, here it forms inside the flux tube (Fig-
ure 17(b)) and pushes the field lines apart when it grows in
size. As a result, at maximum size the inner cell only pushes
the field lines apart at the bottom boundary (Figure 17(c)),
while for I = 3 the bottom field lines are convected upwards
by the clockwise convection cell (Figure 9(c) and (d)). As
in Figure 16 for Q = 40, there is a flow inside the magnetic
flux tube along the top plasma boundary, that is always in
the counter direction to what is happening just outside the
flux tube.

Figure 12 shows that during each cycle the total ki-
netic energy peaks twice while the total magnetic energy
peaks only once. The magnetic energy peaks when the anti-
clockwise convection cell is forming and pushing the mag-
netic field lines together on the axis (Figure 17(c)). The total
kinetic energy peaks at first when the larger clockwise con-
vection cell dominates the solution and magnetic field lines
move away from the axis on the left (Figure 17(a)), and a
second time when the smaller anti-clockwise convection cell

© 2006 RAS, MNRAS 369, 1611-1624
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Figure 13. Solutions with I' = 2 and Q = 5, taken at times (a) ¢ = 316.2 and (b) ¢ = 373.7. The inner convection cell fluctuates
randomly and never disappears completely. Cold blobs of plasma are carried down the s1de of the flux tube by the inner cell (a) and then
over the top of the outer clockwise convection cell (b).

Figure 14. Solutions with I' = 2 and @ = 10, taken at times (a) ¢ = 408.6 and (b) ¢ = 409.9. The inner anti-clockwise convection cell
still persists but varies in depth.

Figure 15. Solutions with I = 2 and @ = 20, taken at times (a) ¢ = 435.8 and (b) ¢ = 438.4. The inner anti-clockwise convection cell
(a) forms and (b) is randomly destroyed by the large clockw1se convectlon cell.

© 2006 RAS, MNRAS 369, 1611-1624
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Figure 16. Solutions with I' = 2 and @ = 40, taken at times (a) ¢t = 511.9 and (b) ¢ = 513.9. The inner convection cell manages to
fracture the magnetic flux tube in (a). A top flow inside the flux tube forms that is always opposite to the flow just outside the tube.

| % | %

Figure 17. Time evolution with I' = 2 and @ = 100. The time sequence starts at the top left hand corner and moves in an anti-clockwise
direction: (a) t = 644.1; (b) t = 645.2; (c) t = 646.3; (d) t = 647.6; with ¢ = 649 similar to (a). The time evolution of the total kinetic and
magnetic energy of this sequence is presented in Figure 12. The total magnetic energy is highest in (c), while the total kinetic energy has
two peaks: in (a) when the large clockwise convection cell dominates and (c) when the inner anti-clockwise convection cell has reached
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Figure 18. Time evolution with I' = 1 and @ = 40. At time 338 the inner and outer cells split the domain diagonally. The inner cell
grows (time 349) to dominate the numerical domain (time 360), after which the outer cell grows again (time 370). The time evolution of
the total kinetic and magnetic energy of this sequence is included in Figure 19. At time 360 both energies reach their maximum values.
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Figure 19. Time evolution of total kinetic (solid line) and mag-
netic energy (broken line) over the duration of a simulation with
I' =1, Q = 40. In order to compare the two energies, the total
kinetic energy was scaled by dividing it by 10.

has reached its maximum size between the magnetic field
lines and the field lines start to push away from the central
axis (Figure 17(c)).

As in the case for I' = 3 in Section 3.2, the magnetic
field forms a horizontal layer at the top of the numerical
domain when the clockwise convection cell dominates (i.e.
when there is outflow at the top of the box). This is clearly
shown in Figures 16(b) for Q@ = 40 and Figure 17(a) for
@ = 100. The outflow also drags magnetic field away from
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the flux bundle and it is only when an anti-clockwise con-
vection cell forms (with inflow at the top boundary) that
the flux bundle’s integrity is restored. This inflow, however,
also tends to destroy the horizontal magnetic field that ex-
ists at the top of the numerical domain, as shown in Figure
16(a) for @ = 40 and Figure 17(c) for Q = 100. When an
anti-clockwise convection cell resides permanently next to
the magnetic flux bundle, it prevents horizontal magnetic
field from forming at the top boundary (Figures 13 and 14)
even when this anti-clockwise cell fluctuates randomly with
time, as is the case when Q =5 and @ = 10.

3.4 Solutions with I' =1

The numerical results presented in this section were ob-
tained with Chandrasekhar number () = 40 and aspect ratio
r=1.

The small aspect ratio does not allow enough space for
steady convection cells to form separated from the magnetic
field. Instead, two final states form and the numerical solu-
tion oscillates between these states. The first state is given
in Figure 18 (time 338): two convection cells form in the
numerical domain. The smaller is a clockwise cell on the
right, while a larger anti-clockwise cell forms on the left and
bottom of the box. The larger cell forms in the inner re-
gion where the magnetic field is the strongest. The second
state is given in Figure 18 (time 360): a large anti-clockwise
cell form which pushes the magnetic field towards the axis
(left hand side of the numerical domain). A small remnant



12 Botha, Rucklidge ¢ Hurlburt

of the clockwise convection cell is visible next to the outer
boundary on the right hand side of the domain.

Unlike the growing stages of solutions with I' = 3 and
4, the total kinetic and magnetic energy of this final solu-
tion oscillate in phase under these conditions (Figure 19).
Both maxima are obtained when the large anti-clockwise
convection cell dominates the numerical domain. The oscil-
lation loses its regularity if the Chandrasekhar number @
is chosen with smaller values (i.e. a weaker magnetic field),
but it keeps going. The lowest value used was Q = 5. It is
only with a stronger magnetic field (higher @ values) when
the oscillation disappears and the solution settles into one
final state: the large anti-clockwise convection cell, shown in
Figure 18 at time 360.

4 DISCUSSION

4.1 Robustness of results

Another set of numerical results was obtained with Rayleigh
number R = 10°, polytropic index m = 1.45, Prandtl num-
ber ¢ = 0.1, together with Chandrasekhar number ), mag-
netic diffusivity ratio (o, and aspect ratio I" given in Table
1. Different boundary values at the top of the numerical
domain were used from what are described in this paper
(Figure 1). For these runs the top magnetic field was verti-
cal with no potential field, and the temperature at the top
boundary was constant.

The same trends are observed as were described in Sec-
tion 3 and by Hurlburt & Rucklidge (2000). The width of
the magnetic tube in the middle of the axisymmetric cylin-
der increases with an increase in the value of ). The number
of convection cells fitting into the numerical domain arrange
themselves so that the inside cell is always anti-clockwise,
holding the inside magnetic tube together. When the values
of the Chandrasekhar number @@ and the aspect ratio I' com-
bine to allow for a convection area in the numerical domain
that is of such a size that only one large clockwise convec-
tion cell forms, then there is always a small anti-clockwise
cell forming at the top right hand side of the convection area
against the magnetic tube, which undergoes cyclic destruc-
tion and reformation, as described in Sections 3.2 and 3.3
for aspect ratios I' = 3 and 2 in this paper.

A series of numerical runs were performed with a con-
stant temperature and vertical magnetic field with no poten-
tial field as the top boundary conditions, and with higher
Prandtl numbers. The rest of the parameters were as de-
scribed in Section 3. For o = 0.5 the momentum diffusivity
reduce the vigour of the convection. In this case a magnetic
flux bundle forms at the central axis with a neighbouring
large stable anti-clockwise cell with inflow at the top of the
domain. When o = 0.3 the same results were obtained as
described by this paper. A Prandtl number of ¢ = 0.1 often
allowed shocks to form at the top boundary, which termi-
nated the numerical runs. Shocks were prevented by chang-
ing the top magnetic boundary to match a potential field.
(See Section 4.6 below).

Table 1. Parameter values with R = 106, m = 1.45, ¢ = 0.1

Q ¢ r Q ¢ r

10 02 4 103 0.2 2
100 0.2 2 3x10% 0.2 2
100 0.2 3 5x 103 0.2 2
100 0.2 4 7x10% 0.2 2
300 0.2 2 104 0.02 2
300 0.2 3 104 0.2 2
300 0.2 4 5x 104 0.02 2
500 0.2 2 7x10%  0.02 2
500 0.2 3 8x10% 0.02 2
500 0.2 4 8 x10% 0.2 2
700 0.2 2 9x 10 0.02 2
700 0.2 3 105 0.2 2
700 0.2 4 106 0.02 2

4.2 Initial energy increase

During the numerical simulations the total kinetic and mag-
netic energy grow for a long time before they reach a final
steady level (Figures 3, 7, 10 and 11). A similar phenomenon
was observed in numerical studies of axisymmetric Bénard
convection in a cylinder, where a Boussinesq fluid with very
small Prandtl numbers accelerated until friction was even-
tually sufficient to maintain equilibrium (Jones, Moore &
Weiss 1976). In our simulations (o = 0.2 and o = 0.1, so
that the magnetic diffusivity at the top of the domain and
the viscosity are of the same order and both are an order of
magnitude smaller than the thermal conductivity.

When the value of @ increases in the simulation, the
simulation takes longer to reach its final state (Figure 10).
The increase in @ has no effect on the final value of the
total kinetic energy, but as expected the value of the total
magnetic energy increases (Figure 11). The Chandrasekhar
number ) is a measure of the strength of the restraining
forces in magnetoconvection. By increasing ) the thermal
driving forces (represented by the Rayleigh number R) ex-
perience more resistance and the the simulation takes longer
to reach optimum velocity, when friction is large enough to
keep the numerical solution at an equilibrium state.

Another parameter that has a large influence on the
levels of total kinetic and magnetic energy and the time it
takes to reach these levels, is the aspect ratio I'. As I in-
creases, the final value of the total magnetic energy increase
because more magnetic flux thread through the numerical
domain (if @ stays the same size). The opposite effect on
the total kinetic energy is observed: an increase in I' de-
creases the vigour of convection and the final levels of the
total kinetic energy are lower. The time at which these final
energy values are reached also increases with an increase in
I". These observations point to the influence of the outside
wall (Figure 1) on the physics and suggests care should be
taken when comparing these results with solar observations.

4.3 Anti-clockwise inner convection cell

In all the simulations an anti-clockwise inner convection cell
forms. For aspect ratio I' = 1 (Section 3.4) the solution
oscillates between a dominant anti-clockwise convection cell
and a second state where two cells form, the inner cell being
anti-clockwise. When I' = 2 and 3 (Sections 3.3 and 3.2)
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Table 2. Aspect ratio I of inner cell at maximum size

box T’ Q  max[inner cell T']
1 40 0.71
2 5 0.59
2 10 0.41
2 20 0.41
2 40 0.41
2 100 0.41
3 100 0.63
4 100 1.90

the inner cell is destroyed and reforms repeatedly. While it
exists it is always convecting in an anti-clockwise direction.
For I' > 4 (Section 3.1) the anti-clockwise inner cell is a
steady feature of the solution.

Local helioseismic measurements show the existence of
converging large-scale surface flows around active complexes
of magnetic activity and diverging flows below 10 Mm (Gi-
zon 2004), which should be distinguished from the local flows
associated with sunspots. These large-scale flows appear to
form toroidal cells when averaged over time scales longer
than a week. The physical argument for the existence of
inward flows at the top of the numerical domain in our cal-
culations relies on two observations. The first is that with
convection suppressed inside the flux tube, it will be cooler
at the top than the outside regions surrounding it. As a re-
sult there will be horizontal temperature gradients that will
tend to drive flows inwards. The second reason is that the
compressibility of the gas means that cold, dense downflows
generated at the top close to the cooler flux tube, will dom-
inate warm diffuse upflows.

The effect of this anti-clockwise inner convection can
be seen when the cell is destroyed during runs with I' = 2
(Figure 17) and I' = 3 (Figure 9). While the anti-clockwise
convection cell exists the magnetic field is confined to the
central axis to form a flux tube. As soon as the inner cell
is destroyed, the magnetic fields are swept out in a radial
direction by the clockwise convection that now exists next
to the flux tube. This continues until the anti-clockwise cell
reforms and starts pushing the magnetic field towards the
central axis.

The cycle of formation and destruction of the inner cell
is marked by a peak in the total magnetic energy of the
solution (Figures 7 and 11). By looking at the time interval
between two consecutive peaks (At) one can determine the
regularity of this cycle. Figure 20 shows the At in Figure 7
for I' = 3 after time 800, when the cycle has fully established
itself. Although the At is not constant, its values span a
narrow interval.

The size of the inner convection cell is highly time de-
pendent for aspect ratios I' < 3. For I' = 2 the inner cell is
situated most of the time in the upper right hand corner of
the numerical domain (Figures 13 to 17), which is sufficient
for the magnetic flux bundle to be maintained at the centre.
Table 2 shows the aspect ratios for the inner anti-clockwise
convection cells, taken as the relation between its maximum
width and maximum depth. It shows that the size of the in-
ner cell is less important than the fact that it is convecting
in an anti-clockwise direction.

© 2006 RAS, MNRAS 369, 1611-1624
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Figure 20. Time intervals between peaks of the total magnetic
energy for aspect ratio I' = 3 and Chandrasekhar number Q =
100. This distribution was sampled from Figure 7, starting at time
800 until the end of the numerical run.

4.4 Aspect ratioI’'=1

A similar model was used by Cameron & Galloway (2005) to
investigate magnetohydrodynamic flows in an axisymmet-
ric tube with I' = 1. The differences are a top magnetic
boundary condition that was vertical instead of a poten-
tial field, and a different parameter regime was investigated.
They used m = 0.05 which gives a small equilibrium den-
sity stratification. By varying 6 between 0.1 and 12.9 they
obtained from an almost Boussinesq (where m and 6 < 1)
to a fully compressible plasma. In contrast, results are pre-
sented in Section 3.4 for a large equilibrium density strati-
fication (m = 1.495). All other parameters are comparable,
with § = 10 used in Section 3 as the temperature gradi-
ent between top and bottom boundaries. Cameron & Gal-
loway obtained a steady solution for all the parameter values
they investigated, with a flux tube at 7 = 0 and a convec-
tion cell next to it, similar to Figure 18 (time 360). In the
Boussinesq limit they found no preference between upflow
or downflow next to the central flux tube, as expected from
the up-down symmetry in this approximation. When the
temperature stratification (f) was increased, they found an
increase in the preference for upflow next to the flux tube
in the end state. This is in contrast to Section 3.4 which
oscillates between two final states for low @ values, while
for high @ values one convection cell forms that always has
a downflow next to the flux tube.

A comprehensive investigation of a Boussinesq fluid in
an axisymmetric cylinder with I' = 4/3 was done by Gal-
loway & Moore (1979). For very low @ values a narrow in-
tense flux tube forms at r = 0 with a convection cell in the
rest of the domain. By increasing ) the flux tube radius
increases with all motion inside the flux tube suppressed at
first, and then the broad radius starts oscillating as it is
pushed by the (still unaffected) convection cell, as in Sec-
tions 3.1 to 3.3 while the plasma is evolving to its final solu-
tion. However, unlike the solutions presented here, the total
kinetic and magnetic energy oscillate in phase, similar to
Figure 19. The convection direction is allowed equally, de-
pending only on the direction of the initial perturbation.
For large () values the separation between flux tube and
convection cell depends on the initialization of the numer-
ical domain: if initialized with a strong flux tube the solu-
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tion kept this configuration. Also, for large @ the flux tube
shows small oscillations, combined with bursts (at longer in-
tervals) during which the flux temporarily increases and the
direction of the convection cell reverses, indicating a pos-
sible relaxation of the plasma state similar to Sections 3.2
and 3.3. For large @ values the total kinetic and magnetic
energy oscillations become out of phase, reminiscent of Fig-
ure 4 which was measured during the growing oscillations
for I' = 4. That no preference to the convection direction is
given, as well as the existence of an oscillating convection di-
rection at large ) values, agree with the up-down symmetry
of the Boussinesq approximation. A similar pattern of be-
haviour was found for a Boussinesq plasma in 2D Cartesian
geometry with I' = 1 (Proctor & Weiss 1982).

4.5 Magnetic field strength

Increasing the magnetic field strength through the value of @
has the effect that the solution takes longer to reach its final
state (Figure 10), but the level at which the total kinetic
energy saturates is not affected by the value of @. This is
true for all aspect ratios as long as the size of the magnetic
flux tube (compared to the area of the numerical domain)
is not so large as to suppress convection, which is the case
when I" = 1.

When there is an unstable inner convection cell present,
this anti-clockwise cell forms and is destroyed repeatedly.
For low magnetic field strengths the cycle appears to be
random, while stronger magnetic fields bring periodicity to
the cycle, as is shown in Figures 11 and 13 to 17. Once the
regular cycle is established, an increase in the magnetic field
strength does not affect it. This behaviour is only true for
unstable inner convection cells. The magnetic field strength
does not affect the behaviour of inner cells that do not show
much change over time, as is the case for aspect ratio I' = 4.

For solutions with time independent magnetic flux
tubes and convection cells, an increase in ) will increase the
width of the tube (Hurlburt & Rucklidge 2000). The time
dependent solutions presented here show that the width of
the magnetic tubes is directly related to its neighbouring
convection cell. Anti-clockwise cells push the magnetic field
lines together and the tube width decreases dramatically,
while the opposite is true for clockwise convection cells. (See
Figure 9 for aspect ratio I' = 3.) However, for low () numbers
the anti-clockwise convection is able to press the magnetic
field into a much smaller radius than is the case for higher
Q@ values. This is seen for aspect ratio I' = 2 when the min-
imum radius for @ = 5 (Figure 13(b)) is compared with the
minimum radius for @ = 100 (Figure 17(c)).

Hurlburt & Rucklidge (2000) have shown that the mag-
netic field strength inside a steady flux tube is independent
of the tube’s width. In the cases presented here, the magnetic
field strength inside the tube is determined by the strength,
size and direction of the convection cell next to the magnetic
flux tube, provided the domain size is large enough to allow
unfettered convection outside the flux tube. Magnetic field
increases in strength when an anti-clockwise convection cell
pushes magnetic field lines towards the axis, and decreases
when they are convected away from the axis by a clockwise
cell. Due to the time dependent nature of the convection
cells, the magnetic field strength inside the flux tubes is not
uniform along the depth (or z direction) of the numerical do-

main at any given instant of time, as can be seen in Figure
9 for I' = 3 and Figures 13 to 17 for I" = 2.

Sections 3.2 and 3.3 show that when a convection cell
with outflow at the top boundary is established next to the
magnetic flux bundle, horizontal field lines form a layer at
the top of the box. It is known that horizontal field encour-
ages magnetoconvection in the form of convective roles par-
allel to the field (Weiss 2002). In the present model this is
not possible due to the axisymmetry of the numerical model.
As the anti-clockwise cell reforms next to the magnetic flux
tube, the inflow at the top boundary due to the reforming
cell pushes all magnetic flux towards the central axis. This
happens before enough horizontal field reaches the outer nu-
merical boundary to demonstrate downward flux pumping
(Weiss et al. 2004). If one assumes that the outer wall has
a similar effect as a counter rotating convection cell, then
some suggestion of magnetic flux pumping can be observed
in Figures 9(a) and 17(a), where the downflow next to the
outer boundary starts to drag the magnetic field with it.

4.6 The influence of the numerical boundaries

The aspect ratio I" has a huge influence on the type of solu-
tion obtained with the numerical code, as seen in Section 3.
The outside wall (Figure 1) was designed to have the least
possible influence on the numerical results. Its presence is
felt through the radius of the cylinder, with large values of
I" allowing many convection cells to form while small I" val-
ues force the magnetic field and convection to interact in a
time dependent manner. Also, as discussed in Section 4.2,
the proximity of the outside wall to the central axis has an
influence on the level of convection in the numerical solution.

It is mentioned at the start of Section 3 that the code
operates with maximum Mach numbers < 1.8. Due to the
temperature profile, the sound speed c; = /7T is lowest at
the top, which allows shocks to form where the top outflow
approaches its first obstacle: be it the outside wall (Section
3) or an anti-clockwise convection cell (I' > 4). When the
top magnetic field boundary is vertical with no potential
field, shock formation can be limited by raising the value of
the Prandtl number to o = 0.3, as discussed in Section 4.1.
However, for a potential field as the top magnetic boundary,
no shocks formed for o = 0.1.

The fact that for I' = 2 the destruction of the inner anti-
clockwise convection cell seems to be triggered when the cell
grows vertically and touches the bottom boundary (Figures
15 and 16) seems suspicious. The constant temperature at
the bottom boundary forms an impenetrable layer for the
colder downward convection and one cannot rule out the
possibility that the time dependence in the numerical results
is partly due to the shallowness of the domain.

The severe boundary conditions of the numerical model
limit any direct comparison between these results and
sunspot observations, and relaxing them may change the
nature of our solution. This suspicion is strengthened by a
sunspot model (Schiissler & Rempel 2005) that evolves a
series of static equilibria under the influence of a prescribed
inflow at the bottom boundary and radiative cooling at the
top. In this model magnetic flux disconnects from its mag-
netic roots between 2 and 6 Mm — a depth within our numer-
ical domain as determined by the chosen parameter values.
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5 SUMMARY AND CONCLUSIONS

Axisymmetric simulations are presented for a fully com-
pressible plasma described by the MHD equations. The re-
sults of Hurlburt & Rucklidge (2000) are extended by choos-
ing more realistic physical parameters in the model, in order
to represent the upper layer of the solar convection zone. As
such, these results have implications in the understanding
of the formation and maintenance of pores and sunspots.

When the aspect ratio I' of the cylindrical domain is
large enough to allow separation of flux and convection, a
magnetic flux bundle forms on the axis that is kept in place
by a convection cell with an inflow at the top domain bound-
ary. For I = 4 this inner convection cell is the largest feature
of the solution and time independent. As the aspect ratio de-
creases (I' = 3 and 2) the inner cell is smaller and becomes
highly time dependent. A cycle of formation and destruc-
tion of the inner cell forms, with magnetic flux pushed to
the cylindrical axis when the cell forms and flux dispersing
into the domain as the inner cell is destroyed. As a result
the total magnetic energy in the domain peaks when the
cell forms and is a minimum when the cell is destroyed. For
I' = 2 a series of numerical runs were performed with lower
initial (uniform) magnetic flux. These runs show inner cells
that are highly time dependent, deforming but never being
destroyed. Only higher initial magnetic flux allows the semi-
periodic cycle to form. An aspect ratio of I' = 1 does not
allow enough space for separation of flux and convection.
Two final states form with the solution oscillating between
them: a single cell with inflow at the top that pushes mag-
netic flux to the axis; and two cells with an inner cell with
inflow at the top and an outer cell in the opposite direction,
with both cells threaded by magnetic flux.

A convection cell forming next to the magnetic flux bun-
dle with a sense of flow such that there is an outflow at the
top of the numerical domain, tends to drag the magnetic
bundle out into a horizontal field. In a three-dimensional
non-axisymmetric model one would expect convection rolls
to form that are aligned with the magnetic field (Tildesley
& Weiss 2004), suggestive of the penumbral structure. Yet
the integrity of the magnetic flux tube in the model is only
maintained by a convection cell with a converging flow at its
top. These contradicting requirements would suggest that a
(perhaps intermittent) convection cell providing an inflow
is necessary for maintaining a sunspot. This inflowing cell
must be located underneath the penumbral structure, which
in turn relies on an outflow for its formation.

The results in this paper are suggestive of how the tran-
sition from a pore to a sunspot might work and provide nu-
merical evidence to support the ideas of flux pumping (Weiss
et al. 2004) as well as helioseismic measurements (Gizon
& Birch 2005). The transition from pore to sunspot in the
model is associated with two processes. The first is a de-
creasing aspect ratio I' with all other parameters constant
(and hence a decreasing of total magnetic flux), which is
opposite to the solar case and possibly an artifact of the
outer boundary. The second is by increasing the magnetic
flux through the Chandrasekhar number @ (again with all
other parameters constant), as was shown in Section 3.3 and
which is more in agreement with observations.

In conclusion, these numerical runs show that in an ax-
isymmetric cylinder a central magnetic flux bundle forms
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that relies on a neighbouring convection cell for its main-
tenance. The convection direction of this cell is such that
there is converging flow at its top.

The next stage in the project will be to include the
full three dimensional cylindrical geometry and to investi-
gate the linear stability of these axisymmetric solutions, as
well as their nonlinear evolution. Preliminary results are de-
scribed in Hurlburt, Matthews & Rucklidge (2000). Tildes-
ley & Weiss (2004) examined a related linear stability prob-
lem in Cartesian geometry using the Boussinesq approxima-
tion.
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