UNIVERSITY OF LEEDS

This is a repository copy of Deployment and performance evaluation of a SNAP-based
resource broker on the White Rose grid .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1902/

Book Section:

Haji, M.H., Djemame, K. and Dew, P.M. (2006) Deployment and performance evaluation of
a SNAP-based resource broker on the White Rose grid. In: Proceedings of the
International Conference on Information & Communication Technologies: From Theory to
Applications. 2006. (Damascus, Syria, April 2006). IEEE , pp. 3365-3370. ISBN
0-7803-9521-2

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

| university consortium eprints@whiterose.ac.uk
WA Universities of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Deployment and Performance Evaluation of a SNAP-based Resource Broker
on the White Rose Grid

Mohammed. H. Haji

Karim. Djemame

Peter. M. Dew

Informatics Research Laboratory
School of Computing
University of Leeds, UK
Email :{mhh, karim, dew}@comp.leeds.ac.uk

Abstract

Resource brokering is an essential component in
building effective Grid systems. The aim of this
paper is to evaluate the performance of a SNAP
(Service Negotiation and Acquisition Profocol) based
resource broker omn a large distributed Grid
infrastructure, the White Rose Grid. The broker uses a
three-phase commit protocol to reserve resources on
demand, as the traditional advance reservation
Jacilities cannot cater for such needs due to the prior
time that it requires to schedule reservations.

Experiments are designed and carried out on the
White Rose Grid. The experimental results show that
the inclusion of the three-phase commit protocol
provides a performance enhancement on a large
distributed Grid Infrastructure, in terms of the time
taken from submission of user requirements until a job
begins execution. The results support those previously
obtained through the use of mathematical modelling
and simulation. The broker is a viable contender for
use in future Grid resource brokering implementations.

1. Introduction

Grid computing is an approach to distributed
computing, which has the potential to provide users
with high performance resources in a seamless virtual
organisation [2, 3]. To support application execution in
the context of the Grid, 1t is desirable to have a
resource brokering service [9]. In [4] the authors
discussed a simple SNAP (Service Negotiation and
Acquisition Protocol) based resource broker and a
more sophisticated SNAP broker, following a three-
phase commit protocol. SNAP [13] is an appropriate
choice in the design and implementation of a user-
centric broker, since it provides the means to negotiate
and acquire resources that meet the user’s application
requirements through Service Level Agreements
(SLA). The broker focuses on applications that require
resources on demand such as the UK e-Science DAME
(Distributed ~ Aircraft Maintenance Environment)

0-7803-9521-2/06/$20.00 ©2006 |IEEE.

project [1], which is a joint project between the
Universities of Leeds, York, Sheffield and Oxford, and
Rolls Royce and Data Systems & Solutions as
industrial partners. The use of traditional advance
reservation cannot cater for such needs, due to the time
required to schedule the reservation. The resources
must be secured immediately prior to run-time.
Therefore the SNAP broker also incorporates a three-
phase commit protocol that provides services to ensure
decisions are made with up-to-date information,
resources are differentiated and the nominated
resources are secure before jobs are submitted.

Experimental results obtained through mathematical
modelling and simulation have shown that the use of
the three-phase commit SNAP broker provides a
performance enhancement over a simple SNAP broker,
in terms of the time it takes for a job to be successfully
submitted and begin execution [4]. However the issue
of how well the three-phase commit SNAP broker
compared to the simple version performs over a large
distributed Grid infrastructure has not been addressed
and is the subject of this paper. An example of a large
infrastructure is the White Rose Grid (WRG) which
consists of high performance computing resources at
Leeds, Sheffield and York Universities [14]. The WRG
exhibits heterogeneous resources and spans over
multiple administrative domains, providing an
environment which differs from previous studies [4]
due to its true nature as a Grid infrastructure.
Experiments are carried out and performance results
show that the inclusion of the three-phase commit
protocol provides a performance enhancement in terms
of the time taken from submission of user requirements
until a job begins execution.

The paper is organised as follows. Section 2
provides an overview of the architecture of the SNAP
broker and a description of the three-phase commit
protocol to secure resources. This is followed, in
section 3, by a description of the White Rose Grid.
Section 4 presents and discusses the experimental
results. In section 5, the paper ends with conclusions
and a discussion of future work.

Grid
Resources

Knowledge
bank

Matchmaker

I Co-ordinator

)
T
\ A i u

BSLA

Grid middleware

Figure 1: Grid Resource Broker Architecture
within the SNAP Framework.

2. SNAP-based Resource Broker

2.1 Architecture

The broker’s architecture (Figure 1) shows the
components that comprise the broker. In this
architecture, the broker begins by parsing the user
requirements submitted through a Grid portal; this is
the first layer of SNAP Task Service Level Agreement
(TSLA) [4]. The second layer, Resource Service Level
Agreement (RSLA), uses a Matchmaker, supplied with
the parsed user requirements, to contact a Knowledge
Bank (KB). The latter is a repository that stores static
information on all resources. The broker can access this
information on behalf of the user for each resource
he/she is entitled to use. The information stored in the
KB as attributes include the number of CPUs, the
operating system, memory, storage capacity and past
behaviour performance of a resource. Relating to the
latter, resources are classified as low/high priority
according to whether they meet a pre-defined level of
performance such as reliability. Referring to Figure 1,
on receiving the information the Matchmaker forwards
the details to the Decision Maker that evaluates the
information and categorises the potential resources into
categories. This corresponds to their significance, i.e.
that some resources are reliable and valuable while
others are acceptable.

The Resource Gatherer based on the information
received from the Decision maker queries the
information provider on each selected resource to
gather dynamic information on their status.

0-7803-9521-2/06/$20.00 ©2006 IEEE. 3366

Once all queries have reported back to the broker
the information is forwarded to the Co-ordinator,
which nominates the resources to handle the tasks and
secures them for utilisation through the use of
immediate reservation.

Once the resources are secured, the final procedure,
which is part of the Binding Service Level Agreement
(BSLA), is executed by the Dispatcher by submitting
the task and binding it to the resources. In the
remainder of the paper, a broker following this
protocol, without the additional enhancements
discussed in section 2.2, is referred to as a simple
SNAP broker.

2.2 Three-Phase Commit Protocol

In [4], the problem of oscillation that could occur
between the broker and the information provider
without a successful job submission was highlighted.
The key issue outlined is that information obtained
from the information provider for each resource may be
out-of-date by the time a decision is made as to where
the job should run and the Co-ordinator proceeds to
attempt to reserve the chosen resources. This problem
arises, since the broker does not know if the status of a
resource changes until it re-contacts its information
provider. An efficient solution will be to receive a
signal from each resource if its status changes rather
than needing to contact the information provider on
each chosen resource.

The proposed protocol follows the three phases of
the simple SNAP broker, indicated in Section 2.1.
However, the first phase is strengthened by the addition
of probes, which are software sensors, to enable rapid
updates of changes in status to the resources that are
under consideration for use. Specifically, when the
Resource Gatherer queries the information provider on
candidate resources, it simultaneously transmits probes
to the resources, thereby entering into the first phase of
the commitment. The purpose of the probes is to
enable the broker to be kept updated while waiting for
all queries to return at their various times. This helps to
reduce the likelthood of the oscillation situation, as it
provides a constant vision for the broker of the
resources’ status. This allows the broker to remain up-
to-date while the information provider reports back.
The approach of having the information provider
broadcast resource status to the probes listening to any
changes is more efficient than having the broker
repeatedly contacting the information provider for
updates after the initial contact.

Once all information provider queries have reported
back to the broker and updates from the probes are

acknowledged, the information is forwarded to the Co-
ordinator, which executes the second phase of the
commitment, by nominating resources to handle the
task. It then informs the probes associated with the
nominees to request the resources’ information
provider to evolve into a state which indicates to other
users that though the resource is not active, it is
unavailable. On such a request the information
provider would reserve the resource and present an
indication to any candidate interested in its use that it
has entered a transition phase.

Once the resources are secured through the use of
immediate reservation, the third and final phase is
executed by the Dispatcher. This phase binds the task
to the resources and their information provider signals
to any incoming client that the resources are active and
have committed.

3. White Rose Grid

The White Rose Grid (WRG) is a virtual
organisation comprising of three universities: the
Universities of Leeds, York and Sheffield [14]. The
WRG is heterogeneous in terms of its underlying
hardware and operating system. Two large compute
nodes are situated at Leeds (Maxima and Snowdon),
one at York (Pascali) and another at Sheffield
(Titania). The specification of these compute nodes is
described below:

s Snowdon, a Beowulf 256 CPU running at 2.2GHz
and 2.4Ghz Intel Xeon processors.

¢ Maxima, Sun Fire 6800 server (20 Ultrasparc 3Cu,
44GB memory, 100GB Storage), 5 Sun V&80
servers and 2 TB storage.

e Pascali, Sun Fire 6800 server (20 Ultrasparc 3 Cu,
44GB memory, 100GB Storage), 1 Sun V&80
server and 1TB storage.

e Titania, 10 Sun Fire V880 Servers (8xUltrasparc
Cu 900MHz, 32GB) and 2TB Storage.

The WRG middleware infrastructure is enabled
through the use of Globus 2.4 and 3.0.2, while Sun
Grid Engine (SGE) [15] handles job scheduling.

4. Experiments on the WRG

4.1 Overview and Objectives

As shown previously in [4] the three-phase commit
SNAP broker provides a performance enhancement
over the simple SNAP broker in terms of the time
interval between submission (to the broker) of user

0-7803-9521-2/06/$20.00 ©2006 |IEEE.

requirements and the job beginning execution.
However this was only carried out through the use of
mathematical modelling and simulation. The issues of
how well the three-phase commit SNAP broker
compared to the simple version performs over a large
distributed Grid infrastructure such as the WRG has not
been addressed and is the subject of this study.

The experiments primarily use resources from all
four machines across the three sites. This is to
investigate whether the resource status provided by the
probes used in the three-phase commit protocol still
provide an enhancement by ensuring that decisions are
made on the basis of up-to-date information.
Specifically, the experiments involve a comparison of
the performance of the simple compared to the three-
phase commit SNAP broker. The experiments
presented in this section are designed on the basis of
the following objectives:

¢ To show that the simple SNAP broker and the
three-phase commit protocol have been
successfully deployed on the WRG.

¢ To investigate the behaviour of the three-phase
commit SNAP broker over a large distributed Grid
infrastructure when scenarios occur in which a
performance enhancement over the simple SNAP
broker is expected.

A further complimentary experiment to the above is
carried out that combines both WRG and local Grid
testbed resources. The latter consists of 8 machines
each with a Pentium IV processor (1.2 GHz), 256MB
RAM running Linux 2.4 and Globus 2.4, and
connected via a fast (100 Mbps) Ethernet. This is to
ensure the brokers could cope with two different
environments simultaneously.

4.2 Deployment of the Three-phase Commit
Broker on to the WRG

The information provider, Monitoring and Directory
Service [17] MDS) is configured differently from that
of the default installation in order for the GRIS (Grid
Resource Information Service) running on each
machine to display dynamic queue information. GRAM
(Grid Resource Allocation Manager) is recompiled and
installed after the poling service was modified for
updates from every 20 seconds to 1 second. This
ensures the various stages of a job process from
Pending, Active to Done is recorded as they occur. The
Globus configuration (MDS, GRIS and GRAM) is
repeated across the three sites following the same
procedures. It is worth noting that local scheduling

queues are the gateway to resources. Each queue
activates a Prolog and Epilog script (supported by
SGE), when a job starts and ends respectively. This is
to inform the server associated with each queue of the
resources status and is used by the probes to gain their
updates. Currently the information provider MDS
provides information on request and does not broadcast
resources status to the users. The server is developed
to enhance the current system by providing this facility,
1.e. resources status broadcast.

4.3 Experimental Design

The experiments presented here can be described in
terms of two scenarios:

1. Scenariol: The resources appropriate for the job
are taken and the broker must wait until they
become free before submitting the job. This
experiment was carried out on the WRG only.

2. Scenario2: While the broker is in the process of

making a decision as to where the job should be
submitted, another job is submitted (see below for
more detailed description). This was carried out
with the use of both the WRG and the local Grid
testbed.

The first scenario provides a setting in which the
effectiveness of the probes in providing a vision of the
resources can be investigated on a large distributed
Grid infrastructure. Specifically, a user’s job to be
submitted requires 4 resources. Each broker is given
access to these resources and on each of these, another
job is running for a fixed duration. Both brokers are
considered in turn.

Two experiments are performed, based on this
scenario. In the first experiment, an additional job that
is submitted to make the resources unavailable has a
fixed duration of 40 seconds. This job is submitted
immediately before the broker is executed. The
information provider response time (i.e. the GRIS
response time) is then varied between 30 and 360
seconds. This is to reflect the fact on a universal Grid
infrastructure spanning across several countries it may
be time consuming to obtain information from the
MDS for some resources. Additionally, this time may
vary considerably depending on, for example, the
number of users concurrently accessing the same GRIS
[7, 8] and the load on the machines.

The response time was varied by adding a variable
delay into the code. The time taken between the broker
beginning execution and the broker becoming aware
that the resources are free is then recorded, in addition

0-7803-9521-2/06/$20.00 ©2006 |IEEE.

3368

to the time taken before the user’s job begins execution
and the number of information provider contacts made.

In the second experiment based on scenario 1, there
is no artificial delay in the information provider
response time. Instead, the duration for which the
resources are unavailable, which was previously fixed
at 40 seconds, is varied between 40 and 360 seconds.

For the simple SNAP broker, as soon as the
information provider informs the broker that the
resources are free, the time is noted and stored. For the
three-phase commit SNAP broker, the time is stored
when a signal has been obtained from all 4 resources
that they are free.

The experiment based on scenario 2 is used to
investigate the three-phase commit SNAP broker’s
performance when resources are initially free but their
status changes during co-allocation. In this experiment
the broker has access to 12 resources (from both the
WRG and the local Grid testbed). This time the broker
requires three resources. Note that if a resource is taken
during co-allocation, the simple SNAP broker only
becomes aware of this when it re-confirms with the
resources. In that case it must repeat the process of
gathering the status of resources and co-allocating the
user’s job. In order to highlight the scenario whereby
the broker is required to repeatedly contact the
information provider and attempt to co-allocate the
user’s job, additional jobs are submitted at time
intervals chosen to coincide with each attempt at co-
allocation that the simple SNAP broker makes.
Additionally, the resources taken are chosen to be the
highest priority available so that there is always a
conflict between the additional jobs and the broker.
This experiment is used to determine whether the
vision of the resources that the probes used in the three-
phase commit protocol do indeed enable the broker to
obtain fast enough updates to decrease the likelihood of
oscillation between broker and resources.

4.4 Experimental Results
4.4.1 Scenario 1

The results for the first experiment relating to
scenario 1 (Figure 2) show the time taken between the
broker beginning execution and the wuser’s job
beginning execution as a function of the information
provider response time. Both brokers became aware
the resources were freed 15 seconds prior to that shown
in Figure 2, for each time interval. Further, for the
simple broker the number of information provider
contacts remained constant at two after 40 seconds,
whereas for the three-phase broker only one contact to

—&— Sinple Broker —— Three-phase Commit Broker

800
750 4
700 4
650
600
550
500 4
450

350 4
300 4
250
200
150 -
100 -

50 4

Average job execution start time (Sec)

Information provider response time (Sec)

—eo— Simple Broker —&— Three-phase Commit Broker

Average job execution start time (Sec)

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

Time when the resources were freed (Sec)

Figure 2: Time taken for job to begin execution as
a function of information provider response time.

the information provider is recorded throughout the
experiment.

The three-phase commit SNAP broker begins the
execution of the user’s job much sooner than the simple
SNAP broker as a consequence of the use of the
probes, providing an average performance
improvement of 48%. The three-phase commit
protocol provides the broker with updates of the
resource status much faster than having to repeatedly
contact the information provider after the initial
contact. Usually, the longer the response time, the
longer it takes before either broker is aware that the
resources are free. For the three-phase commit SNAP
broker, there is only one contact with the information
provider, hence increasing the response time has little
effect until it exceeds the 40 second period for which
the resources are taken. For the simple SNAP broker,
the effect is apparent even for faster response times.
However the time taken before this broker becomes
aware of the change in resource status is shorter when
the response time is 50 seconds than when the response
time 1s 40 seconds. This is due to the fact that when the
response time is 40 seconds, the simple SNAP broker
needs to contact the information provider three times
before it is aware of the change in status, while if the
response time is 50 seconds, only two contacts are
required.

The results for the second experiment relating to
scenario 1 are shown in Figures 3. Figure 3 shows the
time taken until the user’s job begins execution, which
the three-phase commit protocol provides an average
performance improvement of 18%.. The results are
given as a function of the time for which the resources
are unavailable. As shown in Figure 3, the simple
broker performance is related to repeatedly contacting
the information provider to find out when the resources
are released, and not having the facility of the probes to

0-7803-9521-2/06/$20.00 ©2006 IEEE.

3369

Figure 3: The time taken for the job to begin
execution as a function of the time for which
resources are unavailable.

provide rapid updates. Further, third party jobs may
end at varying times at the three sites, and consequently
this results in the information provider not
acknowledging the jobs completion before it re-
contacts the resources again. This also effects the start
time of some of the user’s jobs. For example, Figure 3
shows the same job execution start time (140 sec) for
two different times when the resources are freed (80
and 100 sec respectively).

4.4.2 Scenario 2

Figure 4 show the results for the experiment carried
out in relation to scenario 2. Figure 4 shows the
three-phase commit SNAP broker takes just over 50
seconds to submit and begin execution of the user’s
job, irrespective of the number of other third party jobs
submitted. Since the probes ensure rapid updates of the
status of the resources, the three-phase commit SNAP
broker is aware that a resource has been taken very
quickly after it occurs and consequently chooses an
alternative resource, providing an average performance
improvement of 75%. It successfully submits the user’s
job before any other resources are taken. However, the
simple SNAP broker takes longer when more resources
are taken, since it is unable to identify changes in
resource status fast enough to successfully submit the
user’s job before more resources are taken.

4.4.3 Overall Results

The experiments discussed above have demonstrated
that the three-phase commit protocol ensures that the
broker has access to fast updates on the status of
resources. This has enabled a performance
enhancement in a number of specific scenarios and

—&— Simple Broker —&— Three-phase Commit Broker

Average job execution start time (Sec)

3 4 5 6

Number of resources taken

Figure 4: Time taken to begin job execution as a
function of number of additional jobs submitted.

with an average performance enhancement of up to
75%.

The experiments discussed illustrate the value of
using the three-phase commit protocol. This has been
achieved by considering specific scenarios, where the
vision of resources provided by the use of probes
enables faster submission of a job than would
otherwise be possible.

Studies have also been carried out to investigate
when the three-phase commit broker will perform
weakly. In the worst-case scenario (unfavourable to
the three-phase commit protocol) where resources
required by the broker are idle and there is no
competition for their use the three-phase commit
protocol will always perform just as well as the simple
broker. The simple broker will not outperform the
three-phase protocol as the protocol follows the same
procedure as explained in Section 2.2, with the first
phase strengthened. Further there is no overhead cost
associated with setting up the probes since this occurs
concurrently when contacting the MDS.

5. Conclusion

This paper presents a resource broker deployed on
the WRG which has been developed through the use of
the SNAP framework. The broker differentiates the
resources that are capable of handling the user’s job.
The three-phase commit protocol was developed with
the knowledge that other users potentially require the
same resource. This is why probes are used to keep a
vision of any changes, resources are secured before
submission and binding of the tasks to the resource.
The user is insulated from having to keep a log of the
resources that he is entitled to use or the specific details
on how the Grid mechanisms operate.

It has been shown that the SNAP-based resource
broker is a viable contender for use in future Grid

0-7803-9521-2/06/$20.00 ©2006 IEEE.

3370

implementations. This is supported through
mathematical modelling and simulation [4] and with
further experiments on a large distributed Grid
infrastructure (WRG).

An important step for further exploration of these
results is to evaluate the three-phase commit protocol
using resources from many countries spanning over
different continents. Also the systematic comparison of
the three-phase commit protocol with existing methods
found in the literature such as that used in AppLeS [8].

Acknowledgement

This project is part-funded by a Collaborative Research
and Development grant under the DTI Technology
Programme. Further information can be found at:
www.dti.gov.uk/technologyprogramme.

References

[1] J. Austin et al. Predictive Maintenance: Distributed Aircraft Engine
Diagnostics. In Grid2: Blueprint for a New Computing Infrastructure. I Foster,
C. Kesselman (Eds.), Chapter 5, Morgan Kaufmann, 2003, 2* edition

[2] I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid: Enabling
Scalable Virtual Organizations, International J. Supercomputer Applications,
15(3), 2001.

[3] The Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration. I. Foster, C. Kesselman, J. Nick, S. Tuecke,
Open Grid Service Infrastructure WG, Global Grid Forum, June 2002.

[4] I. Gourlay, M. Haji, K. Djemame, P.M. Dew. Performance Evaluation of a
SNAP based Grid Resource Broker. In Proceedings of FORTE"2004 Workshops
(1st European Performance Engineering Workshop), M. Nunez, A. Maamar,
F.L. Pelayo, K. Pousttchi and F. Rubio (Eds.), Toledo, Spain, September 2004,
Lecture Notes in Computer Science 3236, pp. 220-232, Springer.

[7] X. Zhang, J. L. Freschl, J. M. Schopf. A Performance Study of Monitoring
and Information Services for Distributed Systems. In Proceedings of the 12%
International Symposium on High-Performance Distributed Computing, Seattle,
Washington, June 2003, pp. 270-281.

[8] H. N. Lim Choi Keung, J. R. D. Dyson, S. A. Jarvis, G.RNudd. The Globus
Monitoring and Discovery Service (MDS-2): A Performance Analysis. In
Proceedings of the 19h UK Performance Engineering Workshop
(UKPEW'2003), S. Jarvis (Ed.), Warwick, UK, July 2003, pp. 103-116

[9] K. Krauter, R. Buyya, and M. Maheswaran. A Taxonomy and Survey of
Grid Resource Management Systems. International Journal of Software:
Practice and Experience, Vol. 32, No. 2, Wiley Press, USA, February 2002.

[10] F. Berman and R. Wolski. The AppLeS Project: A status report.
Proceeding of the 8% NEC Research Symposium Berlin, Germany, May 1997
[12] IM. Schopf. A General Architecture for Scheduling on the Grid.
Technical Report, Argonne National Laboratory ANL/MCS-P1000-10002, 2002
[13] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, S. Tuecke. SNAP: A
Protocol for Negotiating Service Level Agreements and Coordinating Resource
Management in Distributed Systems. In Proceedings of the 8th Workshop on
Job Scheduling Strategies for Parallel Processing, Edinburgh, Scotland, July
2002.

[14] White Rose University Consortium. http://www.wrgrid.org.uk.
[15] Sun Microsystems. Sun Grid
http://www.sun.com/software/gridware 2004

[16] SLA Management in a Service Orientedb Architecture. K. Djemame, M.
Haji and J. Padgett. In Proceedings of ICCSA'2005, Singapore, May 2005,
Lecture Notes in Computer Science 3483, pp.1282-1291.

[17] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, S.
Tuecke. “A Directory Service for Configuring High-Performance Distributed
Computations”. Proc. 6th IEEE Symposium on High-Performance Distributed
Computing, pp. 365-375, 1997.

Engine,

