UNIVERSITYW

" # $%%%%8&%%% & '(&') #* | +,,- $ o
. $ / .0 1ML+ #-2 3 23 45
26 730 8809 025 " :5 1:<0613! ((,&()
0.# # #> $! $ 2#
> H O H# # # ? #! #>
$ > $ # # # &
/? # #> . #
0 # > > 4 | >
$ = #$ # # # @

A White Rose

\ | university consortium =
‘\ /‘ Universities of Leeds, Sheffield & York

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

White Rose

university consortium
A ‘ Universities of Leeds, Sheffield & York

White Rose Consortium ePrints Repository
http://eprints.whiterose.ac.uk/

This is an author produced version of a chapter published in Neural Networks
and their Applications

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/1875/

Published chapter

Austin, J. and Filer, R. (1996) Using correlation matrix memories for inferencing
in expert systems. In: Taylor, J.G. (ed), Neural Networks and their Applications.
John Wiley and Sons Ltd., Chichester, UK, 229-244. ISBN 0471962821

White Rose Consortium ePrints Repository
eprints@whiterose.ac.uk

Using Correlation Matrix
Memories for Inferencing
in Expert Systems

J. Austin, R. Filer

16.1 Introduction

Rule-based reasoning has been the subject of a great deal of work in Al, and
the work has resulted in a number of expert systems. Some expert systems
have proved very useful, e.g. PROSPECTOR (7] and DENDRAL [10], but it
is clear that the usefulness of an expert system is not necessarily the result
of a particular architecture. Usefulness is much more likely to be related to
the ability of an expert system to access relevant information, indeed a sys-
tem that appears intelligent may simply be one that is able to access a great
deal of information that is relevant to solving a particular problem. Although
systems like PROSPECTOR and DENDRAL are useful, the nature of real
world problems is such that systems tend to be brittle (brittleness is an in-
ability to deal with partial or uncertain information, or to generalize). Despite
having a knowledge base representing 15 person-years work, INTERNIST-I
[11], an expert system for medical diagnosis, was “unable to synthesize a gen-
eral overview in complicated multi-system disorders” (by the authors’ own
admission).

Touretsky and Hinton were the first to emulate a symbolic, rule-based
system in a connectionist architecture [18]. A connectionist approach held
the promise of better performance with partial information and being gen-

erally less brittle. Whether or not this is the case, Touretsky and Hinton
usefully demonstrated that connectionist networks are capable of symbolic
reasoning. The systems due to Lange and Dyer (ROBIN: [9]) and Shastri and
Ajjanagadde (SHRUTI: [15]) came later, and have knowledge bases more rem-
iniscent of the real world. ROBIN uses “signatures”, while SHRUTI relies on
a more elegant, “temporal synchrony” to propagate variable bindings. These
later models can loosely be described as “connectionist”, but both are highly
constrained networks. In both systems, knowledge is basically hand-encoded
and no learning is possible. Knowledge is not distributed in any sense, in
either model, which means that properties that might otherwise result from
a distributed representation are lost (e.g. an ability to deal with partial in-
formation). Implementation in the software or hardware of a conventional
computer would also be difficult.

Sun [17] devised a dual representational scheme, with both localist rep-
resentation (of concepts) and distributed representation of what amount to
sub-concepts. The localist level also uses a fuzzy evidential logic. The sys-
tem is consequently better able to deal with partial information and in-exact
matching. What is still needed is a connectionist solution that maintains a
truly distributed knowledge representation. This chapter describes Correla-
tion Matrix Memory (CMM) and the use of CMM as an inference engine [2].
This chapter is concerned with particular aspects of using CMM in an ex-
pert system, and shows that CMM is a valuable tool with some very useful
properties.

Outline of The Chapter

Section 16.2 describes CMM and the Dynamic Variable Binding Problem.
Section 16.3 deals with how CMM is used as part of an inferencing engine [2].
Section 16.4 details the important performance characteristics of CMM.

16.2 Correlation Matrix Memory

CMM is a binary associative memory. For the purposes of our work, the remit
of CMM is the fast, parallel matching of rules following predicate calculus,

e.g.:

IF (a) = B
IF (AAB) = C
IF (AVB) = ¢
IF (NOT A) = D.

The system can deal with multiple arity rules (i.e. rules with multiple
variables in the antecedent and consequent), with value inheritance and mul-
tiple occurrences of variables, and with the exclusive-OR problem. CMM is

0 0 1 1

Figure 16.1: CMM Binary Associative Memory.

not a new idea (see [19]), which allows the association of binary vectors using
a matrix of binary weights. Pairs of binary vectors are associated by setting
weights as shown in Figure 16.1. As such, CMM can be seen as a single layer
neural network with binary weights, which uses a Hebbian learning rule.

Figure 16.1 is an example of training, in which the vectors 0101 and 0011
have become associated. The subsequent presentation of 0101 to the network
will retrieve 0011 if set weights in rows identified by set bits in the input vector
contribute to column sums. The result is 0022, which is then thresholded
appropriately to give 0011, For similar work, see Austin and Jackson [3].
Here, CMM is augmented by the use of Tensor Products (TP: [16]) to solve
the dynamic variable binding problem.

The Dynamic Variable Binding Problem

This is a problem in connectionist implementations of rule-based systems. It
is best explained using an example: If a rule has the formA A B = C, it may
be important to be able attribute values thus:

(A=z)A(B=k)=C.

When a distributed rule representation is to be used, it is important that both
the A:z and the B:k bindings can be represented unambiguously. It is clearly
useless if, having trained such a rule, the system is subsequently unable to
“remember” which variable had the value z. Furthermore, a rule may also
specify inheritance:

(A=2z)A(B=k)= (C=k).

The binding representation used therefore has to be stable to propagation
in the network. The problem of representing and propagating these bindings
is what has become known as the “Dynamic Variable Binding Problem”.

16.3 CMM Inference Engine

The system, proposed by Austin [2], consists of units that fall into two sub-
categories:

1. CMM units (associative memory units);
2. Support units (not associative memory).

The support units perform the relatively simple processing necessary to
support the CMM units, and exploit the technology to the full. This simple
processing is all that is necessary to achieve a powerful reasoning capability.

Figure 16.2 illustrates the system. Processing occurs both at the input to
the CMM units and at the output; processing fulfils the following functions,
a description of which will serve to introduce the system.

16.3.1 Lexical Token Converter

Each lexical input item is converted to a binary token for manipulation by
the system. Tokens are generated that consist of randomly allocated patterns
of N set bits out of a total of M bits (there is an optimal ratio of N : M that
gives best error rate vs. storage). Random patterns may be allocated easily
using a random number generator. Each token should be unique, however,
which means a method of ensuring uniqueness is required. For few tokens
it may be feasible to check a list of tokens each time a token is allocated;
for many tokens there are better methods available, like “Test-and-Train” [4].
This method involves using the system itself to identify whether a pattern is
already known. The values of M and N depend upon the overall size of the
CMM units and the usual arity of rules being stored (see Section 16.3.3).

16.3.2 Binding Variable and Value Tokens

Binary tensor products (TP, [16]) are used to bind variables to values, TP
vectors being obtained from a pair of tokens in two stages. The first stage is
in fact analogous to storing a pair of tokens in a binary associative memory:
with reference to Figure 16.1, the TP of 0101 and 0011 is the matrix of binary
weights. The TP vector is obtained by concatenating rows, hence:

0000 0011 Q000 0011

This is a binary vector of length M? containing N? set bits. It begs the
question, whether to allow both tokens and TP vectors as representations in
the CMM units. Clearly, if N is chosen such that N? is optimal for error rate
vs. storage in the CMM unit, N itself cannot at the same time be optimal
(see also Section 16.3.3). This is one reason why allowing both representations
may be disadvantageous, which leaves us with the problem of what to do with

f:l :l Lewiosl Token

—_—
Convarier
— == =
Verlsbles Values Verisbles Values
OCCURRENCE)

ARITY CHECK

CHM
LAVER1
W (rubbish) Valuess
vat RAW OUTPUT
. : =
I ; TP Vector TP Vactor
Identifcation > Unbercies
L> ﬁ vl |
Wariahles brogsis
WHERITANCE
(Lrc)
UNCODED OUTPUT CODED OUTPUT
v s — ==
— & e 1
Varabies Values Varistles Velues

Figure 16.2: The CMM Inference Engine.

variables not assigned a value. Such variables can be assigned either a “null”
value or a “true” value to allow conversion to TP vector form.

16.3.3 Superimposing Inputs

The TP vector(s) are superimposed (OR-ed on top of one another) prior to
being applied to the CMM units. This makes dealing with commutativity of
rule antecedents an automatic feature of the sysiem, and is a key factor in
providing an efficient partial match. Superimposing k vectors with N? set
bits gives rise to a vector with up to kN? set bits. It might therefore be more
appropriate to optimize s N2 for error rate vs. storage rather than N?, where s
is chosen depending on the predominant arity of rules in the knowledge base.

16.3.4 Identifying CMM Units of Appropriate Arity

This is necessary to enable the appropriate processing of rules with mixed
arity antecedents. For example, if the system has learned these two rules:

1, A=D.
2. AANB=E

If the antecedents were trained in a single CMM unit, subsequent ap-
plication of the token for A and thresholding appropriate for a single arity
rule would allow both rules to fire (incorrectly). To avoid this, the first layer
of CMM units must consist of a CMM unit for each arily rule that will be
encountered. Input can then be targeted to the appropriate arity CMM unit.

16.3.5 Occurrence Checking

Very simple rules, such as the example in Section 16.3.6 (see Section 16.3.6),
may involve repeated variables. For the correct processing of such rules, it is
insufficient for the input simply to be superimposed and sent to the appro-
priate arity CMM unit, because the fact that a variable is repeated cannot
be represented in this way. The solution is to extend further the first CMM
layer, such that each arity CMM unit is duplicated, or triplicated even, de-
pending on the application and the likely number of occurrences of the same
variable in rules. This allows multiple occurrences of the same variable to be
represented and, if summed appropriately, to count in thresholding.

16.3.6 Providing Separator Tokens (Training)

A single layer neural network cannot resolve the exclusive-OR problem. To do
so requires a two layer network, and this approach has also been used in our
system. For example, if separator tokens are represented here by {i,j,k,1}:

0A0= i =0
0Al= j =1

