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Spin-Polarized Electron Transport Processes at the
Ferromagnet/Semiconductor Interface

J. A. C. Bland, Atsufumi Hirohata, Yong-Bing Xu, Christian M. Guertler, and Stuart N. Holmes

Abstract—Circularly polarized light was used to excite elec-
trons with a spin polarization perpendicular to the film plane
in ferromagnet/semiconductor hybrid structures. The Schottky
characteristics at the interface were varied by using NiFe, Co
and Fe as the ferromagnet. The Schottky characteristics were
clearly observed with NiFe and Co/GaAs, while almost ohmic

characteristics were seen with Fe/GaAs. At negative bias a
helicity-dependent photocurrent, dependent upon the magnetiza-
tion configuration of the film and the Schottky barrier height, was
detected upon modulating the polarization from right to left cir-
cular. For the magnetization along or perpendicular to the surface
normal, the helicity-dependent photocurrent or 0, respec-
tively, was measured. The asymmetry = ( 0) ( + 0)
of the helicity-dependent photocurrent decreases upon increasing
the doping density of the GaAs substrates. also decreases with
photon energy as found for the polarization of photoexcited
electrons in GaAs. In NiFe/GaAs samples for = 1 59 eV,

= 16% for + = 1023 m 3 and = 23% for
= 1025 m 3 doped substrates, i.e. is comparable in mag-

nitude to the theoretically predicted spin polarization of 50% for
the optically pumped conduction band in GaAs. The results pro-
vide unambiguous evidence of spin-polarized electron transport
through the ferromagnet/semiconductor interface and show that
the Schottky barrier height controls the spin-polarized electron
current passing from the semiconductor to the ferromagnet.
The asymmetry data indicates that spin-polarized electrons are
transmitted from the semiconductor to the ferromagnet with a
high efficiency.

Index Terms—Ferromagnet/semiconductor interface, photon
helicity, Schottky barrier, spin-polarized electron.

I. INTRODUCTION

T
HE POSSIBILITY of realizing a spin-dependent field

effect transistor (spin FET) [1] remains an important

goal in magnetoelectronics [2]. Since Datta and Das raised the

possibilities for developing a spin FET [1], a great number

of studies [3]–[6] on device structures based on ferromagnet

(FM)/semiconductor (SC) hybrid systems have been carried

out. A spin FET, for example, offers the prospect of fast opera-

tion and miniaturization [2]. Johnson described spin-dependent

electron transport in a Au film-based transistor [3]. In such

a device, the operation depends on both the injection of a

spin-polarized current into the SC [4], [5] and the “spin filter”

effects in the FM [6]. Attempts to inject a spin-polarized
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electron current to a SC using a FM metal indicate that such

polarized current may be very small [5], [7], [8]. On the other

hand, significant spin injection from a ferromagnetic SC to a

nonmagnetic SC has been claimed at low temperature [9]–[11].

One way of achieving spin injection is based on

spin-dependent tunneling through metal/oxide insulator/semi-

conductor (MOS) junctions. The possibility of passing a

spin-dependent current through thin film tunnel junctions

of both Co/Al O /GaAs and Co/ -MnAl/AlAs/GaAs using

photoexcited spin-polarized electron has been discussed by

Prins et al. [12]. For the former structure, a spin-dependent

tunneling current was reported, while only magneto-optical

effects were seen in the latter structure. A great many studies

of spin-dependent tunneling through MOS junctions have since

been reported. As these measurements have been performed

using back illumination of the circularly polarized light,

optically excited electrons in the SC can be used to realize

spin-polarized scanning tunneling microscopy (SP-STM) using

sharp SC tips as theoretically proposed [14], [32]. Some recent

experiments suggest that such SP-STM may provide magnetic

information [15], [33].

However, due to the presence of the oxide interface, the

spin-polarized tunneling through the MOS junction mechanism

is very sensitive to interface properties. For the direct FM/SC

interface, a Schottky barrier is formed which also gives rise

to tunneling under appropriate bias conditions with highly

doped SC. In such a system, circularly polarized light can

excite spin-polarized electrons mainly in the SC. Due to the

spin polarization at the Fermi level in the metal, the FM layer

can be expected to act as a “spin filter” for polarized electrons

transported through the interface. Alvarado et al.have observed

spin-polarized electron transport at the FM/SC interface using

electroluminescence (EL) [16]. However, it is still not clear

whether spin-polarized tunneling at the direct FM/SC interface

occurs through the Schottky barrier (in either direction).

Evidence of spin-polarized current effects associated with

photoexcited electron transport at Schottky diode interfaces

based on NiFe/GaAs and Co/GaAs structures has been demon-

strated recently [17]–[19]. However, these effects are seen at

forward bias and do not correspond to tunneling from the SC

to the FM [17], [18]. In such experiments, the advantage of

photoexcitation is that the electron polarization in the SC can

be controlled via the light polarization. A polarized electron

current from the SC to the FM can therefore be included under

appropriate bias conditions to test spin-polarized electron

transport at the FM/SC interface. In addition, the effect of spin

injection from the FM to the SC can be expected to add to or

subtract from the total spin-polarized electron current.

0018–9464/00$10.00 © 2000 IEEE
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Fig. 1. Schematic configuration of the photoexcitation experiment. The
laser (� = 515, 633 and 780 nm, and power 30, 5 and 3 mW, respectively)
is polarized in the 45 direction. Right/left circular light is produced using a
PEM. The bias dependent photocurrent is determined by I � V measurement
methods combined with a lock-in technique. A schematic view of the FM/GaAs
hybrid structure (3 mm� 3 mm) is also shown in this diagram. Two Al contacts
on the surface (0.5 mm � 0.5 mm � 550 nm) and an ohmic contact on the
bottom are used for the measurement. The value of the variable resistance
for the measurement was chosen to be approximately the same as that of the
resistance between the FM and the GaAs substrate. The magnetization MMM in
the FM and the photon helicity ��� are shown with the field applied normal to
the sample. Experimental configurations, (a) without (I ) and (b) with (I ) a
magnetic field, are also shown in the inset.

Here we present results which clarify the dependence of spin-

polarized transport on the Schottky barrier height. We fabri-

cated 5 nm thick ferromagnetic layers (Ni Fe , Co and Fe)

directly onto GaAs substrates in an ultrahigh vacuum (UHV)

chamber. Conventional measurements were performed

both with and without photoexcitation. A circularly polarized

laser beam was then used together with an external magnetic

field to investigate the spin-dependence of the photocurrent at

the FM/GaAs interface at room temperature. By varying the

Schottky barrier according to either the various FM materials or

the doping density in the SC, the roles of photoexcitation in the

SC and the FM are investigated. The photon energy dependence

of the spin-dependent photocurrent is also studied and compared

with that measured by photoemission experiments. For the FM,

permalloy was chosen due to a large polarization difference at its

Fermi level [20] and a small magneto-optical background [due

to magnetic circular dichroism (MCD)], and compared with Co

and Fe samples. Since the epitaxial growth of the FM transition

metals on GaAs substrates has been well established [21], GaAs

substrates were chosen for the present study [22].

II. EXPERIMENTAL PROCEDURE

Fig. 1 shows a schematic diagram of the photoexcita-

tion set-up with front illumination at room temperature.

Conventional measurements were made to investi-

gate the Schottky characteristics of the samples. Laser light

( nm) perpendicular to the sample surface

was used and the bias dependence of the current through the

FM/GaAs interface ( V) was measured

with and without optical excitation. The polarization of the

beam was then modulated from right to left circular using a

Fig. 2. Bias dependence of the current through the FM/GaAs (100) interface
without photoexcitation (I � V curve) for the case of Ni Fe /GaAs (n =
10 m ), Co/GaAs (n = 10 m ) and (c) Fe/GaAs (n = 10 m ).

photo-elastic modulator (PEM) with 100% circular polarization

at a frequency of 50 kHz. For the polarized illumination mode,

the bias dependence of the ac helicity-dependent photocurrent

through the interface was probed both (a) in the remanent

state and (b) under the application of a magnetic field

( T) sufficient to saturate the magnetization along the

plane normal . In the case of , the photon helicity is

perpendicular to the magnetization of the FM , while

the helicity is either parallel or anti-parallel to the magnetization

for . and are a measure of the difference in

photocurrent for right/left circular polarization for the in-plane

and perpendicular magnetization configurations, respectively.

We produced samples of 3 nm Au/5 nm FM/GaAs (100) and

(110) ( , and m doped) using

molecular beam epitaxy (MBE) techniques in UHV. The ohmic

contacts on the bottom of the - and -type substrates were pre-

pared by evaporating 100 nm thick GeAuNi and AuBe, respec-

tively, and then annealed at 770K for two minutes. The GaAs

substrates were cleaned for two minutes using an oxygen plasma

and loaded into the UHV chamber. The FM films were epi-

taxially grown at a rate of approximately one monolayer per

minute by e-beam evaporation. The substrate temperature was

held at 300K and the pressure was around mbar during

the growth. The deposition rate was monitored by a quartz mi-

crobalance which was calibrated using RHEED oscillations of

Fe on a Ag (100) single crystal substrate. After the growth, the

FM films were covered by a Au capping layer. Two Al elec-

trical contacts were evaporated onto the Au layer. A computer

controlled bias voltage was applied between one Al contact and

the bottom ohmic contact and the current through another Al

contact and the substrate was measured using a lock-in tech-

nique. As the polarized laser beam enters from the Au capping

layer side, these structures provide a way of avoiding laser ab-

sorption at the bottom surface of the SC, as occurs under back

illumination [23].

III. RESULTS AND DISCUSSION

A. Characteristics with Various Ferromagnets

Fig. 2 shows the curves of the FM/GaAs (100) samples

without photoexcitation measured by the four-terminal method.
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The Schottky barrier of these samples varies as the barrier

defines the shape of the curves via the Schockley equation

The value of the ideality factor [23] was found to be 6.7 and

2.9 for NiFe and Co, respectively, while in the case of Fe, the

characteristic is almost ohmic. It should be noted that

the curves of both NiFe and Co samples also contain

ohmic linear components and this makes it difficult to estimate

the Schottky barrier height.

Representative curves, corresponding to the bias de-

pendence of the photocurrent, was also measured for these sam-

ples with unpolarized photoexcitation. The same set-up as that

of the measurement was used but with laser illumination.

Intensity modulation of the laser beam at 105 Hz was used to

create a reference signal for the lock-in amplifier to separate the

photocurrent contribution to the total current. The entire

curves except that of the Fe sample are shifted to negative cur-

rent values as expected for conventional Schottky diodes [24].

The Schottky barrier height has been reported to be

0.66–0.70 eV for both Ni and Fe [25], which is approximately

the same as the bias voltage at which the NiFe diode is turned

on. With Co as the FM, the device is turned on at a bias of 0.4 V.

The Schottky barrier height for Co/GaAs has been reported to

be 0.42–0.66 eV [25] in agreement with our observation. With

Fe, however, no photocurrent is detected at zero bias, which

may be consistent with both the existence of an intermixed

interfacial layer and an absence of midgap states [26]. The

resistance of the Fe/GaAs system with photoexcitation is higher

than that without photoexcitation.

Difference between the characteristics of the samples

are expected, since the electrcin structure differs. In the case of

NiFe, since the density of states can be assumed to be almost the

same as that of Ni [27], [28], the density of states is at its max-

imum at the Fermi surface and sharply decreases away from the

Fermi level [28]. With Co, the density of states at the Fermi en-

ergy exhibits a broad maximum within 0.5 eV from the Fermi

energy [29]. It is therefore easy to detect the photocurrent from

these two systems. In Fe, however, since the density of states

is neither large nor sharp around the Fermi level [27], the pho-

tocurrent should be extremely small.

B. Helicity-Dependent Photocurrent with Various FM

The helicity-dependent photocurrent observed using a He–Ne

laser ( nm) is shown in Fig. 3 with and without

perpendicular saturation. In the case of NiFe/GaAs (100)

( m ) [see Fig. 3(a)], for instance, it should be noted

that the observed helicity-dependent photocurrent values for

and satisfy as previously reported [17]. Both and

possess an offset due to the photocurrent across the interface

discussed above. The bias dependence of the helicity-dependent

photocurrent difference of nA is almost

constant in the bias range of V. The negative values

of both and mean that electron current mainly flows from

the FM to the SC. The valence band electrons in the SC are ex-

cited into the conduction band by the circularly polarized light

and tunnel through the Schottky barrier into the FM as shown

Fig. 3. Bias dependence of the helicity-dependent photocurrent without (solid
line with open circles, I ) and with the applied magnetic field (solid line with
closed circles, I ) in the case of (a) Ni Fe /GaAs (100) (n = 10 m ),
(b) Co/GaAs (100) (n = 10 m ) and (c) Fe/GaAs (100) (n = 10

m ). The magnetization M in the FM and the photon helicity ��� are also shown
without and with the field application.

schematically in Fig. 4(a). In the remanent state [see left hand

side of Fig. 4(a)], since the magnetization in the FM is orthog-

onal to the photoexcited spin polarization, both up and down

spin electrons in the SC can flow into the FM, which opposes the

electron current from the FM. At perpendicular saturation [see

right hand side in Fig. 4(a)], on the other hand, the up spin elec-

tron current from the SC is filtered due to the spin split density

of states at the Fermi level of the FM. This means that more net

current flows into the SC at perpendicular saturation than that in

the remanent state, as observed resulting in . The obser-

vation that provides clear evidence that spin-polarized
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Fig. 4. Schematic diagrams illustrating (a) the “spin filter” and (b) the spin
injection mechanism for photoexcited electron transport at the FM/SC interface.

transport from the SC to the FM occurs under the application of

a perpendicular magnetic field (“spin filter” effects).

In Fig. 3(a), the bias dependence of the helicity-dependent

photocurrent is shown. Since electrons are also excited in the

permalloy layer by both the bias and the photon energy, inelas-

tically scatter and then propagate over the barrier [23], the neg-

ative peak A is more likely to be related to spin-polarized trans-

port from the FM to the SC as shown in Fig. 4(b) (spin injec-

tion). At , the conduction band in the SC flattens and

electrons can easily enter the SC from the FM. The Schottky

barrier height has been reported to be 0.66–0.70 eV for Ni

and Fe [25], which is approximately the same as the bias voltage

for peak A.

With m , a similar tendency can be seen [19], al-

though peak A for is much broader than that of . In reverse

bias, a constant difference between and is again observed

( 0.06 A). In the case of m , the difference is

observed to be less than 3 nA and to satisfy , suggesting

that these features are related to the height of the Schottky bar-

rier at the interface. Both and are again constant in reverse

bias but of almost the same magnitude, which means that there

is no significant spin-polarized current through the interface.

Fig. 3(b) shows the helicity-dependent photocurrent observed

with Co/GaAs (100) ( m ). is almost con-

stant ( 99 nA), while fluctuates by approximately 1.13

0.31 A. The difference is almost zero for much of the

bias range, except close to peak A. This provides a clear check

on possible experimental asymmetries.

Similarly to the NiFe samples, peak A is also seen (at

V) as previously reported [18]. It should be noted that these

values of the bias voltage correspond to a broad maximum of

the spin polarization in Co as discussed above [29]. The peak is

again probably related to spin-polarized current (spin injection)

from the FM to the SC as discussed above. It should be noted

that spin injection effects are larger than spin filter effects in

Co/GaAs, which suggests that Co may be an appropriate choice

Fig. 5. Bias dependence of current through the Ni Fe /GaAs (100) (n =

10 , 10 and p = 10 m ) interface obtained without photoexcitation
(I � V curve).

of material for spin injection devices as already used [12]. With

m , nA, which corresponds to a decrease

with increasing doping density as observed with NiFe/GaAs.

The position of peak A shifts to V, which is similar

to that seen with the NiFe/GaAs samples.

Fig. 3(c) shows the Fe/GaAs (100) ( m ) results.

is almost constant ( 0.92 nA), while is approximately

4.3 nA). is calculated to be about 3.4 nA. No particular

peak is seen, which is consistent with the ohmic characteristics

of the Fe/GaAs samples. This also provides a check on possible

experimental asymmetries.

C. Polarization with Variable Doping Density

Since permalloy samples show both a large photocurrent

at zero bias and good Schottky characteristics, we focus on

the dependence of the spin-polarized electron transport on the

Schottky barrier height using NiFe/GaAs samples.

Fig. 5 shows the curves of the Ni Fe /GaAs

(100) samples without photon excitation measured by the

four-terminal method. It should be noted that every

curve possesses a small feature (A) in forward bias around

the Schottky barrier height . The ideality factor [23] was

calculated to be 6.7, 5.4 and 4.0 for , and

m , respectively. These samples also contain

ohmic linear components in the curves. By varying the

doping density, the Schottky barrier height is changed in the

NiFe/GaAs hybrid structures.

The asymmetry of the spin-polarized current through the

NiFe/GaAs interface induced by

He-Ne laser light is shown in Fig. 6 for three different values of

the GaAs doping density. With m , for example,

almost constant asymmetry ( %) can be seen in the bias

range of V, which is likely to be related to the

spin-polarized photocurrent propagating from the SC to the FM

as discussed above. For m , the corresponding

value is %, while for m , . It

should be noted that these values of depend on the resistivity

across the FM/SC interface. The total resistance is 60, 200 and

15 for the , and m doped

substrates, respectively. We conclude from the above results
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Fig. 6. Bias dependence of asymmetry P = (I � I )=(I + I ) with
Ni Fe /GaAs (100) (n = 10 , 10 and p = 10 m ).

that the magnitude of the spin-polarized current in reverse

bias scales with the Schottky barrier height, as is expected for

spin-polarized tunneling across the barrier. This asymmetry is

much larger than the estimated value (0.2%) caused by MCD

[17] and MCD effects can therefore be excluded.

A small peak A for m ( V) at the

Schottky barrier height is again seen in this figure, although

the feature is small. The position of the feature is almost the

same as that of peak A in Fig. 3(a), which again supports the

view that the spin-polarized current (spin injection) from the

FM to the SC is enhanced at . At peak A, is estimated

to be 2.5%, which is much larger than was previously observed

in similar samples (0.5%) [17]. Peak A is also seen with

m around 0.7 V, which is almost at the same value of bias

voltage at which peak A is observed in the helicity-dependent

photocurrent [19]. With m , peak A is seen at

V. As peak A shifts toward 0 V with increasing doping

density, we conclude this peak shift is due to the lowering of the

Schottky barrier height with doping. Peak A also becomes

broader with doping density.

In the case of Co/GaAs, the asymmetry decreases with in-

creasing doping density as observed with the NiFe samples.

The difference in the helicity-dependent photocurrent is also

almost constant and is different from that observed with the

Co/Al O /GaAs system, in which few % at reverse

bias, diverges gradually at zero bias and does not show any peak

at forward bias [13]. Since MCD in Co has been reported to be

0.15% [13], the MCD effects on the helicity-dependent pho-

tocurrent measurements can again be excluded. For the Fe/GaAs

structures, the asymmetry is again difficult to estimate but is

found to decrease with doping density.

These observations suggest that the spin-polarized photocur-

rent from the SC to the FM is suppressed by electron transport

(spin injection) from the FM to the SC under the application of

a forward bias .

D. Asymmetry with Variable Photon Energy

The photon energy dependence of the current asymmetry

was also measured. The absolute value of increases with

Fig. 7. Schematic diagram of the allowed transitions for right (��� , solid
lines) and left (��� , dashed lines) circularly polarized light with GaAs at room
temperature. The selection rule is �m = +1 for ��� and �m = �1 for
��� . The numbers near the arrows represent the relative transition probabilities.
The magnetic quantum numbers are also indicated at the energy levels. The
heavy and light holes are abbreviated to hh and lh, respectively.

decreasing photon energy from almost zero ( eV)

up to 20% ( eV), which corresponds closely to the

reported photon energy dependence of the photoelectron spin

polarization in GaAs [30].

In GaAs, the valence band maximum and the conduction

band minimum is at with an energy gap eV at

room temperature, indicating that the only transitions induced

by the photon energy occurs at (direct gap semiconductor)

[30], [31]. The valence band ( -symmetry) splits into four-fold

degenerate and two-fold degenerate states, which lie

eV below at , whereas the conduction band

( -symmetry) is two-fold degenerate as schematically

shown in Fig. 7. When , circularly polarized light

excites electrons from to . According to the selection

rule , the two transitions for each photon helicity

and are possible, however the relative transition

probabilities for light and heavy holes need to be taken into

account in order to estimate the net spin polarization [30].

Although the maximum polarization is expected to be 50% in

theory, the maximum is experimentally observed to be 40%

at the threshold [10], [30]. Since the polarization also depends

on the thickness of the overlayers [10], our results for the

estimated asymmetry between 16–23% with and

doped substrates, respectively, are in a good agreement with

these reported values. For , the polarization

decreases due to the mixture of light and heavy hole states with

the split-off valence band states, which have an opposite sign

[30].

These spin-polarized photoexcited electrons flow into the FM

as described in Fig. 4. In the remanent state, both up and down

spin electrons can pass across the Schottky barrier. At perpen-

dicular saturation, on the other hand, since spin polarization oc-

curs at the Fermi level, the up spin electrons are unable to pene-

trate the FM as described in Section III-B. Since the magnitude

of the spin polarization at the Fermi level is Fe Co NiFe

[27]–[29], the NiFe/GaAs structures possess the most efficient

spin filtering effect for the photoexcited electrons from GaAs.

This corresponds to the observed asymmetry of almost the

same magnitude as the maximum spin polarization in GaAs.

The observed photon energy dependence of therefore sup-

ports our interpretation that spin-polarized electron transport
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from the SC to the FM occurs at room temperature with high

efficiency.

IV. CONCLUSION

We have observed a clear difference in the helicity-dependent

photocurrent through the FM/GaAs interface according to the

orientation of the sample magnetization with respect to the

helicity at room temperature. An almost constant difference

between the helicity-dependent photocurrent for perpendic-

ular and parallel configurations is observed in reverse bias

especially for NiFe/GaAs ( and m ). This

difference in photocurrent corresponds to a measure of the

spin-polarized photocurrent tunneling from the SC to the

FM associated with spin filter effects. In forward bias at an

applied bias voltage approximately equal to the Schottky

barrier height, a minor change in the bias dependence of the

helicity-dependent photocurrent was observed, suggesting the

existence of polarized electron transport (spin injection) from

the FM to the SC. The estimated excitation energy dependent

of the helicity-dependent photocurrent asymmetry was found

to be in agreement with that of the reported photoelectron spin

polarization.
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