This is a repository copy of XPS and XMCD study of Fe3O4/GaAs interface.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1846/

Article:
Lu, Y X, Claydon, J S, Ahmad, E et al. (4 more authors) (2005) XPS and XMCD study of Fe3O4/GaAs interface. IEEE Transactions on Magnetics. pp. 2808-2810. ISSN 1941-0069

https://doi.org/10.1109/TMAG.2005.854834

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
XPS and XMCD Study of Fe₃O₄/GaAs Interface

Yongxiong Lu¹, Jill S. Claydon¹, Ehsan Ahmad¹, Yongbing Xu¹, Sarah M. Thompson², Karen Wilson³, and Gerrit van der Laan⁴

¹Spintronics Laboratory, Department of Electronics, The University of York, York, YO10 5DD, U.K.
²Department of Physics, The University of York, York, YO10 5DD, U.K.
³Department of Chemistry, The University of York, York, YO10 5DD, U.K.
⁴Daresbury Laboratory, Warrington, WA4 4AD, U.K.

Ultrathin Fe oxide films of various thicknesses prepared by post-growth oxidation on GaAs(100) surface have been investigated with X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and X-ray magnetic circular dichroism (XMCD). The XPS confirms that the surfaces of the oxide are Fe₃O₄ rather than Fe₂O₃. XAS and XMCD measurements indicate the presence of insulating Fe divalent oxide phases (FeO) beneath the surface Fe₃O₄ layer with the sample thickness above 4 nm. This FeO might act as a barrier for the spin injection into the GaAs.

Index Terms—Half-metallic Fe₃O₄, post-growth oxidation, spintronics, XMCD.

I. INTRODUCTION

HALF-METALLIC Oxide Fe₃O₄ (magnetite) is one of the most promising materials for spintronic applications as it has high Curie temperature and large spin polarization at the Fermi level [1], [2]. For example, magnetite has been used as electrode material in magnetic junctions [3], [4]. To inject spin into semiconductors, such as GaAs, synthesis of Fe₃O₄/GaAs half-metal/semiconductor hybrid structure is essential. However, to inject spin into semiconductors, the electron diffusion method has proved to be less efficient compared with electron tunneling method, where there is a barrier between the spin injection source and the semiconductor [5], [6]. Previously, Fe divalent oxide, namely FeO, has been found to be an insulator with band gaps of 1.3 and 2.2 eV for the Fe 3d/O 2sp-Fe 4s and Fe 3d/O 2sp-Fe 3d transitions, respectively [7], [8]. So an interesting problem arises: can we achieve a spin tunneling hybrid structure with an insulator layer between the half-metallic Fe₃O₄ and the semiconductor GaAs?

We have demonstrated in our previous work that an ultrathin Fe film on GaAs can be oxidized into Fe₃O₄ by post-growth oxidation [9]. In this paper, we present our work on the surface and interface of the Fe oxide/GaAs(100) hybrid structure using X-ray spectroscopy techniques, namely X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). A series of samples with nominal Fe thickness of 2, 3, 4, and 6 nm were prepared by post-growth oxidation. The thickness dependencies of the interface magnetic properties and chemical composition have been investigated.

II. EXPERIMENT

The samples were prepared by post-growth oxidation of ultrathin Fe films on GaAs. After wet etching by H₂SO₄:H₂O₂:H₂O (4:1:1) solution, the GaAs(100) substrates were loaded into a molecular beam epitaxy (MBE) chamber. A thermal annealing at 800 K about 40 min followed, prior to the Fe growth. The Fe was then evaporated from a crucible, at a distance of 400 mm away from the fixed GaAs substrate. The growth rate was monitored by a quartz microbalance and set to 2 Å/min. After Fe growth, the samples were oxidized in an O₂ environment with a partial pressure of 5 × 10⁻⁵ mbar, and at a temperature of 500 K for 5 to 10 min, until a stable reflection high-energy electron diffraction (RHEED) pattern has been achieved.

The XPS measurements were done with Mg Ka radiation. The XMCD measurements were carried out in the station 1.1 of the Synchrotron Radiation Source at Daresbury Laboratory (U.K.). The resulting current output from the sample was measured in total electron yield mode as a function of the X-ray photon energy. The dichroism was obtained as the difference spectrum, I⁺ - I⁻, achieved by reversing the direction of the applied magnetic field at fixed polarization.

III. RESULTS AND DISCUSSION

Plotted in Fig. 1 are the XPS measurements of the 3-nm sample, at normal and 45° incident angles with respect to the surface. In Fe₂O₃, the Fe atoms are completely oxidized...
Fig. 3. XMCD spectra illustrating thickness dependency of the dichroism on the photon energy. The intensities are normalized to the \(\text{Fe}^{3+} \) peaks and the photon energies are shifted to the same position. The peaks from different chemical compositions are deduced from relative photon energies.

Fig. 3. XMCD spectra illustrating thickness dependency of the dichroism on the photon energy. The intensities are normalized to the \(\text{Fe}^{3+} \) peaks and the photon energies are shifted to the same position. The peaks from different chemical compositions are deduced from relative photon energies.

The positions of the \(\text{Fe}^{3+} \) peaks are shifted to the same energy. The chemical states of the peaks are deduced from the relative photon energy. Interestingly, the \(\text{Fe}^{2+} \) (octahedral) peaks have an increasing strength, while the \(\text{Fe}^{3+} \) peaks show a reduced strength upon increasing thickness. This decrease in the strength of the \(\text{Fe}^{3+} \) (tetrahedral) peak can be explained by the increase of the \(\text{Fe}^{3+} \) strength, which has an inverse strength compared with that of the \(\text{Fe}^{3+} \) in the XMCD. Hence, a constant \(\text{Fe}^{3+} : \text{Fe}^{2+} \) ratio is found on the surface of the oxide film upon increasing total thickness, taking the counteraction effect into account. Then we come to the conclusion that the surface area of the oxide is still \(\text{Fe}_3\text{O}_4 \), as also suggested by XPS measurements.

The increasing intensity of the \(\text{Fe}^{2+} \) peaks is intriguing. In the oxidation of \(\text{Fe} \) film, below the top \(\text{Fe}_3\text{O}_4 \), atomic \(\text{Fe} \) was previously found. That is, a \(\text{Fe}_3\text{O}_4/\text{Fe} \) structure might be achieved by low-temperature oxidation [11]. The Fe-O phase diagram also indicates this structure [12]. Since the atomic \(\text{Fe} \) and divalent \(\text{Fe} \) cations have different chemical environments, their energy positions on the XMCD spectrum can be identical. However, in Fig. 3, it can be concluded that there are more partially oxidized \(\text{Fe}^{2+} \) (divalent \(\text{Fe} \) cations) in the sample than the \(\text{Fe}_3\text{O}_4 \) when the thickness achieves 4 nm, and no atomic \(\text{Fe} \) was identified.

There are two possibilities for the extra \(\text{Fe}^{2+} \) cations. First, the sample is not uniform, and the chemical stoichiometry varies upon the depth from the surface to the oxide/GaAs interface. The second possibility is that there is a \(\text{FeO} \) layer below the surface \(\text{Fe}_3\text{O}_4 \) layer, whereas the surface \(\text{Fe}_3\text{O}_4 \) thicknesses keep constant. When the total thickness increases, the \(\text{FeO} \) thickness increases. Since the surface is \(\text{Fe}_3\text{O}_4 \), which has a defined quota of the \(\text{Fe}^{2+} \) cations, the extra partially oxidized \(\text{Fe}^{2+} \) cations are believed to present under the \(\text{Fe}_3\text{O}_4 \) layer. That is, more \(\text{Fe}^{2+} \) cations are generated near the oxide/GaAs interface when the total thickness increases, as indicated by Fig. 2. This possibility is supported by the oxidation mechanism [12]. Namely, a layered structure might be present in the oxide, as illustrated in Fig. 4. However, we would like to note that interfacial oxygen defects might form at the interface. These defects would be detrimental to the half-metallicity of \(\text{Fe}_3\text{O}_4 \) and efficient spin injection into GaAs. Further investigation such as high resolution transmission electron microscopy (HR-TEM) is needed.
IV. CONCLUSION

In summary, for the sample thickness below 3 nm, a uniform Fe$_3$O$_4$ has been formed on the GaAs(100), constituting a Fe$_3$O$_4$ oxide/semiconductor hybrid structure. For the thickness above 4 nm, there is an insulating FeO layer beneath the Fe$_3$O$_4$ near the interface and this insulating FeO layer might be a useful tunneling barrier for high efficiency spin injection into GaAs.

ACKNOWLEDGMENT

This work was supported in part by the White Rose Scholarship.

REFERENCES

Manuscript received February 6, 2005.