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Modeling of Long-Time Thermal Magnetization
Decay in Interacting Granular Magnetic Materials

O. Chubykalo-Fesenko1 and R. W. Chantrell2, Member, IEEE

Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid 28049, Spain

Physics Department, York University, York YO10 5DD, U.K.

We present a general method to evaluate the long-time magnetization decay in granular magnetic systems. The method is based on
Arrhenius–Neel kinetics with the evaluation of the energy barriers in a multidimensional space. To establish a possible reversal mode,
we suggest the use of Metropolis Monte Carlo and for the mode statistical sampling—the kinetic Monte Carlo criteria. The examples
considered include long-time magnetization decay in CoCrPt low-magnetization longitudinal recording media and in a collection of Co
particles with different concentrations.

Index Terms—Energy barrier, magnetic viscosity, micromagnetics, numerical methods.

L
ONG-TIME thermal magnetization decay is an important

characteristic of granular materials, both from the funda-

mental and applied points of view. The magnetization decay

results from a complex interplay between microstructure and

magnetic interactions, which leads to energy barrier distribu-

tions. Thermal fluctuations cause a random walk of the system

in a multidimensional energy space, which ultimately produces

a decay of the initial magnetization state. From the computa-

tional point of view, the modeling of such a process without

further simplifications is rather complicated, and most authors

adopt Arrhenius–Neel kinetics and a simplified way to evaluate

the energy barriers based on the local field [1], [2]. Generally

speaking, this approach is only valid in the case when no col-

lective reversal takes place and the interactions produce a mere

perturbation on the original energy barrier. In the opposite case,

the energy barriers should be evaluated in a multidimensional

space [3]–[6]. In this paper, we present a method capable of

calculating long-time magnetization reversal in strongly inter-

acting magnetic materials.

In our approach, the low barriers in the systems (if they

exist) are overcome by integrating the stochastic Landau–Lif-

shitz–Gilbert equation. For higher barriers, similar to the

general kinetic Monte Carlo approach, our method is based

on the idea of the infrequent-event approach. As expected

in this case, the Arrhenius–Neel kinetics is applied, with the

probability of surmounting a particular energy barrier given by

(1)

where is the energy barrier, the Boltzman constant,

and is the temperature of the system. Differently from all other

previous approaches, the energy barrier is evaluated in a

multidimensional space [5], [6], thereby taking into account the

possible collective character of the reversal mode.

Different stages of the method are outlined as follows.

1) An initial magnetization state is established by min-

imizing the energy. In the present paper, this is done
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by following the hysteresis cycle, i.e., starting with the

saturation state and slowly decreasing the external field

until the remanent magnetization state at zero field is

achieved.

2) The stochastic Landau–Lifshitz–Gilbert equation is in-

tegrated during 10 000 time steps in order to overcome

small energy barriers, which could be present in the

system.

3) To evaluate the reversal frequency in the full harmonic

(Venyard) approximation [7], a normal mode analysis is

performed in the minimum. is then given by

(2)

Here, is the damping parameter, the gyromagnetic

factor, the saturation magnetization, the particle

volume, the eigenfrequencies of the energy func-

tional evaluated in the minimum, and the positive

eigenfrequencies evaluated at the saddle point. For a sim-

ilar evaluation of the reversal frequency, see also [8].

4) To force the system to choose a physically reasonable

reversal path, we use a thermal acceleration method

based on the Metropolis Monte Carlo technique with a

slowly increasing temperature. Namely, at each temper-

ature, we perform 10 000 Metropolis Monte Carlo steps.

Each 1000 steps, the energy is minimized to determine

if the system converges to a new minimum defining a

new stationary state of the system. The estimated path

is used as an initial guess to evaluate the energy barrier

in a multidimensional space. Alternatively, the choice of

the initial path could be done using Langevin dynamics

with increasing temperature such as in the temperature

acceleration method developed by Voter [9].

5) To determine a first approximation to the saddle point

separating the two minima, we use the ridge optimization

method [10]. Specifically, the roughly estimated max-

imum is used as an initial guess . The step is

taken in both sides of the maximum along the current tra-

jectory obtaining points and . These points are

moved by a step in the directions
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and , where is the multidimensional

energy function of magnetization vector. Subsequently,

the new points are joined by a straight line, and a linear

search for the maximum is made. Adaptive step

size for and is used to ensure that there exists a

maximum between the points and . The step size

is decreased each 20 steps, provided that the abso-

lute value of the gradient at the maximum is decreased.

The sequence of points converges to the minimum

on the ridge giving a crude approximation to the vicinity

of the saddle point.

6) To converge to the saddle point with a given precision,

the augmented Hessian method [11] is used. The method

is similar to that of the Newton method, but the corre-

sponding Hessian matrix is augmented by gradients. The

method converges to the nearest saddle point with a larger

convergence radius than that of the Newton method.

7) Finally, a normal mode analysis is performed at the

saddle point to ensure that the negative eigenvalue is

unique. This check is necessary to be sure that the point

found is not a higher order saddle, which may artificially

couple two independent energy barriers. In addition, the

normal mode analysis provides the means to evaluate the

reversal frequency (2) and the reversal probability (1).

8) We have found it necessary to check that the obtained

saddle point separates the basin of attraction of two

minima, of which one is the initial state. This is done by

minimizing the energy starting from the final points

and .

9) The search for the reasonable trajectory (stage 4) is re-

peated several times in order to evaluate other possible re-

versal modes. If those exist, then the reversal probability

is a sum of possible reversal probabilities corresponding

to each reversal mode.

10) The reversal modes are statistically sampled using the

kinetic Monte Carlo criterion [12] and the time—from

the exponential distribution with a probability

(3)

11) The total procedure is repeated starting from stage 2 and

the new magnetization minimum. The probability to be

moved is calculated for each particle as a number of

times the particle changed its magnetization over the total

number of the kinetic Monte Carlo steps (the number of

times the magnetization state is changed). To improve

the performance of the method, the particles with the

are frozen each kinetic Monte Carlo steps,

the particles with are frozen each ki-

netic Monte Carlo steps, the particles with

are frozen each kinetic Monte Carlo steps. The par-

ticles are frozen only for the Metropolis Monte Carlo

procedure (stage 4) but not for the determination of the

multidimensional energy barriers (stages 5–7). We used

5. This procedure is necessary to avoid the time

sampling process from being dominated by the rapidly

Fig. 1. Calculated thermal magnetization decay in CoCrPt low-magnetization
longitudinal recording medium.

Fig. 2. Volume distribution and initial energy barrier distribution, evaluated at
the remanent state, for Co particles with different concentrations.

reversing (superparamagnetic) fraction. The effects of

the superparamagnetic fraction are represented by a con-

tribution to the energy barrier from a statistically signifi-

cant “snapshot” of the magnetization state; however, they

do not contribute to the energy barriers involved in the

long-timescale relaxation.

To illustrate the performance of the method, we present in

Fig. 1 an example of the calculation of long-time magnetiza-

tion decay for low-magnetization CoCrPt longitudinal recording

medium. The recording granular medium was modeled by 40

Voronoi-type polyhedra with an average size of 6.5 nm and

random in-plane easy axes distribution with anisotropy value of

2.4 10 erg/cm and 442 emu/cm . As is clearly

observed, the recording medium is very stable, showing less

than 10% magnetization decay for 20 years. However, if a field

is applied, a similar magnetization decay

is produced during a period of two hours. A small system size

results in a statistical scatter of the data, as evident in Fig. 1, so

that an additional averaging over multiple curves (solid line in

Fig. 1) is necessary.

Another example is presented in Figs. 2 and 3. We considered

an ensemble of 400 Co particles with log-normal size distribu-

tion of average diameter 4 nm and dispersion. The
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Fig. 3. Calculated magnetization decay for Co particles with different
concentrations.

anisotropy value is taken to be 2 10 erg/cm , the mag-

netization saturation value 1400 emu/cm , and a two-di-

mensional (2-D) random anisotropy easy axes distribution was

supposed. The concentration of particles varied from a low-den-

sity structure to a closely packed structure of .

The particle arrangement was modeled by specially designed

Monte Carlo algorithm, as described in details in [13]. Essen-

tially, an initial state is produced under a compression algorithm

after the particles are placed on a squared lattice. The particles

are then allowed to move under the influence of an attractive

central potential, which leads to structures with short-ranged

order dependent upon the packing density. The algorithm pro-

duces the formation of chains and loops of particles for inter-

mediate concentrations and that of the self-organized

quasi-crystal hexagonal structure for large particles concentra-

tion .

The initial (remanent state) energy barrier distributions are

presented in Fig. 2, and the calculated magnetization decay is

shown in Fig. 3. In an interacting system, the relation between

the initial energy barrier distribution and the resulting decay has

a limited sense since the energy barrier distributions are time-

and magnetization-state-dependent characteristics [6]. In addi-

tion, the magnetization change corresponding to a particular en-

ergy barrier is larger in the case of a collective process. For

example, for a concentration of , the average cluster

size corresponding to one energy barrier is six particles, while

the concentrated system has energy barriers corre-

sponding to individual particle rotations.

However, some qualitative understanding could be gained an-

alyzing the energy barriers of Fig. 2. Some initial differences

corresponding to very small energy barriers (with the related

timescale of the order of nanoseconds) are practically not seen

in the total decay since the associated magnetization change is

small. However, at the timescale of the order of (corre-

sponding to s in a noninteracting system), the magne-

tization change is larger for systems with small concentrations

due to the fact that more barriers have values below this energy

scale. However, at a larger time scale ( s), the system with

higher concentration has a faster decay rate than that

of due to a collective process that involves larger magne-

tization changes. Consequently, the influence of magnetostatic

interactions on the character of the decay is different at different

timescales.

In conclusion, we have presented a general method to eval-

uate long-time magnetization decay in a strongly interacting

system with distributed properties. At the present moment, rea-

sonable performance of the method could be expected for sys-

tems of small sizes only, since the method involves the diago-

nalization of large-size Hessian matrices. The concrete imple-

mentation of the method is still subject to some degree of op-

timization with respect to the use of modern methods of com-

puter algebra. In addition, with the increasing availability of fast

computers, more realistic system calculations are expected to

become feasible in the near future.
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