This is a repository copy of New Zealand bicycle helmet law - do the costs outweigh the benefits?

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/183/

Article:

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
New Zealand bicycle helmet law—do the costs outweigh the benefits?

M Taylor, P Scuffham

ORIGINAL ARTICLE

Methods: Three age groups were examined: cyclists aged 5–12 years, 13–18 years, and ≥19 years. The number of head and non-head injuries averted were obtained from epidemiological studies. Estimates of the numbers of cyclists and the costs of helmets are used to derive the total spending on new bicycle helmets. Healthcare costs were obtained from national hospitalisation database, and the value of injuries averted was obtained directly from a willingness-to-pay survey undertaken by the Land Transport Safety Authority. Cost effectiveness ratios, benefit:cost ratios, and the value of net benefits were estimated.

Results: The net benefit (benefit:cost ratios) of the HWL for the 5–12, 13–18, and ≥19 year age groups was $0.3m (2.6), $0.2m (0.8), and $1.5m (0.7) (in NZ $, 2000 prices; NZ $1.00 = US $0.47 = UK £0.31 approx). These results were most sensitive to the cost and life of helmets, helmet wearing rates before the HWL, and the effectiveness of helmets in preventing head injuries.

Conclusions: The HWL was cost saving in the youngest age group but large costs from the law were imposed on adult (≥19 years) cyclists.

METHODS

Objective: This paper examines the cost effectiveness of the compulsory bicycle helmet wearing law (HWL) introduced in New Zealand on 1 January 1994. The societal perspective of costs is used for the purchase of helmets and the value of injuries averted. This is augmented with healthcare costs averted from reduced head injuries.

Methods: Three age groups were examined: cyclists aged 5–12 years, 13–18 years, and ≥19 years. The number of head and non-head injuries averted were obtained from epidemiological studies. Estimates of the numbers of cyclists and the costs of helmets are used to derive the total spending on new bicycle helmets. Healthcare costs were obtained from national hospitalisation database, and the value of injuries averted was obtained directly from a willingness-to-pay survey undertaken by the Land Transport Safety Authority. Cost effectiveness ratios, benefit:cost ratios, and the value of net benefits were estimated.

Results: The net benefit (benefit:cost ratios) of the HWL for the 5–12, 13–18, and ≥19 year age groups was $0.3m (2.6), $0.2m (0.8), and $1.5m (0.7) (in NZ $, 2000 prices; NZ $1.00 = US $0.47 = UK £0.31 approx). These results were most sensitive to the cost and life of helmets, helmet wearing rates before the HWL, and the effectiveness of helmets in preventing head injuries.

Conclusions: The HWL was cost saving in the youngest age group but large costs from the law were imposed on adult (≥19 years) cyclists.

METHODS

Objective: This paper examines the cost effectiveness of the compulsory bicycle helmet wearing law (HWL) introduced in New Zealand on 1 January 1994. The societal perspective of costs is used for the purchase of helmets and the value of injuries averted. This is augmented with healthcare costs averted from reduced head injuries.

Methods: Three age groups were examined: cyclists aged 5–12 years, 13–18 years, and ≥19 years. The number of head and non-head injuries averted were obtained from epidemiological studies. Estimates of the numbers of cyclists and the costs of helmets are used to derive the total spending on new bicycle helmets. Healthcare costs were obtained from national hospitalisation database, and the value of injuries averted was obtained directly from a willingness-to-pay survey undertaken by the Land Transport Safety Authority. Cost effectiveness ratios, benefit:cost ratios, and the value of net benefits were estimated.

Results: The net benefit (benefit:cost ratios) of the HWL for the 5–12, 13–18, and ≥19 year age groups was $0.3m (2.6), $0.2m (0.8), and $1.5m (0.7) (in NZ $, 2000 prices; NZ $1.00 = US $0.47 = UK £0.31 approx). These results were most sensitive to the cost and life of helmets, helmet wearing rates before the HWL, and the effectiveness of helmets in preventing head injuries.

Conclusions: The HWL was cost saving in the youngest age group but large costs from the law were imposed on adult (≥19 years) cyclists.

METHODS

Objective: This paper examines the cost effectiveness of the compulsory bicycle helmet wearing law (HWL) introduced in New Zealand on 1 January 1994. The societal perspective of costs is used for the purchase of helmets and the value of injuries averted. This is augmented with healthcare costs averted from reduced head injuries.

Methods: Three age groups were examined: cyclists aged 5–12 years, 13–18 years, and ≥19 years. The number of head and non-head injuries averted were obtained from epidemiological studies. Estimates of the numbers of cyclists and the costs of helmets are used to derive the total spending on new bicycle helmets. Healthcare costs were obtained from national hospitalisation database, and the value of injuries averted was obtained directly from a willingness-to-pay survey undertaken by the Land Transport Safety Authority. Cost effectiveness ratios, benefit:cost ratios, and the value of net benefits were estimated.

Results: The net benefit (benefit:cost ratios) of the HWL for the 5–12, 13–18, and ≥19 year age groups was $0.3m (2.6), $0.2m (0.8), and $1.5m (0.7) (in NZ $, 2000 prices; NZ $1.00 = US $0.47 = UK £0.31 approx). These results were most sensitive to the cost and life of helmets, helmet wearing rates before the HWL, and the effectiveness of helmets in preventing head injuries.

Conclusions: The HWL was cost saving in the youngest age group but large costs from the law were imposed on adult (≥19 years) cyclists.
without use of additional police resources. We address this point in the sensitivity analysis.

Cost effectiveness, cost benefit, and net benefit

Cost effectiveness was calculated as the additional costs per head injury averted from the HWL compared with a no law policy, where costs appearing in the numerator are the costs of the HWL (that is, cost of helmets) and the benefits (denominator) are the number of serious head injuries averted over the life of a helmet (five years).

A cost benefit analysis was undertaken to indicate the rate of return on the investment. The benefit:cost ratio indicates the expected benefits if the same policy was implemented in other countries. The numerator (benefits) is the value in monetary units of head injuries averted. The cost is as above. We also calculated the net benefit (benefits minus costs) of the HWL.

A discount rate of 5% has been used for costs and outcomes. All money values are reported in New Zealand dollars (NZ $) converted to 2000 prices using the New Zealand Consumer Price Index (NZ $1.00 = US $0.45, UK £0.31, €0.50).

Sensitivity analysis and “quitters”

A one way sensitivity analysis was performed to determine the robustness of the results with respect to changes in parameter values (table 2). Helmet effectiveness was varied between the upper and lower 90% confidence intervals reported by Scuffham et al. Nominal costs for law enforcement were pro rated based on the numbers of cyclists in each age group (table 1), and in the first year of the law we assumed law enforcement costs would be double the costs of subsequent years.

In addition, we undertook an analysis with the assumption that some cyclists might have quit cycling due to the HWL rather than purchase a helmet (“quitters”). In this event, there would be a reduction in the number of both head and non-head injuries due to the reduction in number of cyclists. The number of quitters is the reduction in number of cyclists between the years 1993 and 1994 (when the law was introduced), estimated as the same percentage reduction in non-head injuries in that period. Injury data for head and non-head injuries, obtained from the NZHIS, is described elsewhere. We analysed three scenarios: (i) there were no costs associated with quitting; (ii) a cost of quitting equal to the price of a helmet ($19.95) where quitters value cycling at no more than this amount otherwise they would purchase a helmet; and (iii) an additional $30 societal cost on top of the $19.95 to account for additional costs from reduced exercise and increased motorcar use. This cost was incurred when the HWL was introduced, but the benefits (injuries averted) observed throughout the time horizon of the study.

RESULTS

The costs of the HWL cost for 5–12 year old children was relatively low because relatively few helmets for this age group were required (helmet wearing rates were 87% before the HWL) (table 3). In contrast, the cost of the law for adult

Table 1 Age group specific parameters used in the model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>5–12 years</th>
<th>13–18 years</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cyclists (1993)</td>
<td>85702</td>
<td>202985</td>
<td>596808</td>
</tr>
<tr>
<td>Helmet wearing rate in September 1993 (%)</td>
<td>86.8</td>
<td>55.9</td>
<td>38.9</td>
</tr>
<tr>
<td>Helmet wearing rate in March 1994 (%)</td>
<td>98.6</td>
<td>97.1</td>
<td>92.9</td>
</tr>
<tr>
<td>Mean hospital treatment costs for cyclists head injuries ($)†</td>
<td>1569</td>
<td>1607</td>
<td>1351</td>
</tr>
<tr>
<td>Mean hospital stay in head injured cyclists (%†≥7 days stay in head injured cyclists)</td>
<td>2.8</td>
<td>3.2</td>
<td>4.2</td>
</tr>
</tbody>
</table>

*Mean hospital treatment costs for non-head injured cyclists: $1919 5–12 years, $2909 13–18 years, and $2849 adults.
†Percentage ≥7 days stay (non-head injured cyclists): 16.2% 5–12 years, 19.8% 13–18 years, and 25.3% adults.

A one way sensitivity analysis was performed to determine the robustness of the results with respect to changes in parameter values (table 2). Helmet effectiveness was varied between the upper and lower 90% confidence intervals reported by Scuffham et al. Nominal costs for law enforcement were pro rated based on the numbers of cyclists in each age group (table 1), and in the first year of the law we assumed law enforcement costs would be double the costs of subsequent years.

In addition, we undertook an analysis with the assumption that some cyclists might have quit cycling due to the HWL rather than purchase a helmet (“quitters”). In this event, there would be a reduction in the number of both head and non-head injuries due to the reduction in number of cyclists. The number of quitters is the reduction in number of cyclists between the years 1993 and 1994 (when the law was introduced), estimated as the same percentage reduction in non-head injuries in that period. Injury data for head and non-head injuries, obtained from the NZHIS, is described elsewhere. We analysed three scenarios: (i) there were no costs associated with quitting; (ii) a cost of quitting equal to the price of a helmet ($19.95) where quitters value cycling at no more than this amount otherwise they would purchase a helmet; and (iii) an additional $30 societal cost on top of the $19.95 to account for additional costs from reduced exercise and increased motorcar use. This cost was incurred when the HWL was introduced, but the benefits (injuries averted) observed throughout the time horizon of the study.

RESULTS

The costs of the HWL cost for 5–12 year old children was relatively low because relatively few helmets for this age group were required (helmet wearing rates were 87% before the HWL) (table 3). In contrast, the cost of the law for adult

Table 2 Global parameters used in the model and sensitivity analysis. All costs are in NZ $ for 2000 (NZ $1.00 = US $0.45, UK £0.31, €0.50)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Base value</th>
<th>Maximum value</th>
<th>Minimum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of helmet (all age groups) ($)</td>
<td>17.73</td>
<td>44.44</td>
<td>8.89</td>
</tr>
<tr>
<td>Life of helmet (years)</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Discount rate (%)</td>
<td>5</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Social costs of injury with <7 days hospital treatment ($)†</td>
<td>13309</td>
<td>15970</td>
<td>10647</td>
</tr>
<tr>
<td>Social costs of injury with ≥7 days hospital treatment ($)†</td>
<td>196360</td>
<td>235632</td>
<td>157088</td>
</tr>
<tr>
<td>Law enforcement costs ($)†</td>
<td>Nil</td>
<td>200000</td>
<td>Nil</td>
</tr>
<tr>
<td>Head injuries averted per year due to the HWL</td>
<td>4.0</td>
<td>10.0</td>
<td>Nil</td>
</tr>
<tr>
<td>5–12 years</td>
<td>10.3</td>
<td>14.0</td>
<td>6.7</td>
</tr>
<tr>
<td>13–18 years</td>
<td>28.3</td>
<td>35.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Adults</td>
<td>Nil</td>
<td>5870</td>
<td>–</td>
</tr>
<tr>
<td>Number of cyclists quitting</td>
<td>47173</td>
<td>82890</td>
<td>–</td>
</tr>
<tr>
<td>5–12 years</td>
<td>Nil</td>
<td>47173</td>
<td>–</td>
</tr>
<tr>
<td>13–18 years</td>
<td>Nil</td>
<td>82890</td>
<td>–</td>
</tr>
<tr>
<td>Adults</td>
<td>0.00</td>
<td>19.95‡</td>
<td>–</td>
</tr>
</tbody>
</table>

*The social cost of a fatality was $2280000 in December 2000 currency. From the willingness-to-pay survey, preventing one permanently disabling head injury was at least as important as preventing one fatality.
†In the first year of the law (1994) we assumed law enforcement costs would be double the costs of subsequent years (that is, $400000). This cost was pro rated over the percentage of cyclists in each age group (table 1).
‡Also, including an additional $30 “other” costs of quitting cycling.
The net benefits of the HWL were positive for the youngest age group only; for the 13–18 age group and adults, the costs of the HWL exceeded the benefits. The total net cost to society of the HWL for adults was more than $1.5 million over five years.

Sensitivity analysis

The results were most sensitive to the cost of a helmet, the life of a helmet, the number of head injuries averted, and quitting cycling (table 4). If helmets were significantly cheaper, the cost per head injury averted was large due to the relatively large number of helmets required under the law (39% pre-law wearing rate).

A key parameter was the number of cyclists who quit cycling (table 4). Increased numbers of quitters reduced the numbers of both head and non-head injuries and, because fewer cyclists purchase helmets, the costs of the HWL decreased. Even when other costs of quitting were included at a substantially higher cost than a helmet, the HWL continued to be cost saving for all age groups.

DISCUSSION

This study shows that the costs associated with the HWL were far greater for adults than for children, and the HWL was cost saving in the youngest age group. The reasons were that more adults than children were required to purchase a bicycle helmet due to the law (table 3) and relatively fewer head injuries were averted in adults than children.

The important factors affecting cost effectiveness of a HWL were the cost and life of helmets (recommended replacement every five years), the effectiveness of helmets, helmet wearing rates before the HWL was introduced, and the effect on cyclist participation (quitting). However, the estimates from “quitters” may be overstated because of a general downward trend in cycling, both in New Zealand and internationally.

Because the costs of helmet promotion, publicity campaigns, passing legislation through parliament, and enforcing the HWL were not included in this analysis, the estimates underestimate the true costs of the HWL. However, these costs will...
not affect the marginal costs of the HWL. In contrast, the social costs saved due to fewer head injuries are likely to underestimate the true costs—especially for cases involving fatality or neurobehavioural damage (where costs are incurred for potentially the rest of life). Preventing one permanently disabling head injury is at least as important as preventing one fatality. Consequently, the minimum value of preventing a permanently disabling head injury is $2 million—the value of preventing one fatality. In this case, our estimates of the net benefit from helmet wearing are likely to be underestimated. Similarly, there are many other benefits of helmet wearing that were not included, such as the value of averting minor injuries, increased visibility to other road users, and increased (or reduced) cyclist cost.

Mandatory bicycle helmet wearing laws do go some way in reducing injuries to cyclists. However, bicycle helmets do have some limitations. For example, the effectiveness of helmets is reduced where collision forces are greater than 30 km per hour. Consequently, additional methods to reduce injuries to cyclists (and not only head injuries), such as cycle paths to separate cyclists from other traffic, require evaluation, including economic evaluation.

We have found that the introduction of the 1994 bicycle helmet law in New Zealand has been more cost effective when aimed at those cyclists in a younger age group. The cost effectiveness ratios between age groups differ substantially, and therefore, it is important that any future mandatory helmet wearing policies in other countries consider the costs and cost effectiveness of implementing the law to specific age groups before legislation is made.

ACKNOWLEDGEMENTS

We are grateful to the Injury Prevention Research Unit (IPRU), University of Otago for their assistance with obtaining data. In addition, we are grateful to Professor John Langley (Director, IPRU) for his helpful comments on a previous draft of this paper, and to the two anonymous reviewers who provided detailed and helpful comments. No financial support was received for this study.

REFERENCES