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ABSTRACT

We present detailed results of numerical experiments into the nature of complete sunspots. The models
remain highly idealized but include fully nonlinear compressible magnetoconvection in an axisymmetric layer
that drives energy into an overlying, low-� plasma. We survey a range of parameters in which the resulting
magnetoconvection displays the formation of pore- and sunspot-like behavior and assess the coronal signa-
tures resulting from the energy generated by the magnetoconvection. The coronal heating is assumed to be a
result of the dissipation by an unspecified means of a fraction of the Poynting flux entering the corona. The
expected signatures in the EUV and soft X-ray bandpasses of the Transition Region and Coronal Explorer
and Yohkoh/SXT, respectively, are examined. This ad hoc coupling of the corona to the subphotospheric
region results in a dynamical behavior that is consistent with recent observational results. This agreement
demonstrates that even simple coupled modeling can lead to diagnostics for investigations of both subphoto-
spheric sunspot structures and coronal heating mechanisms.

Subject headings: convection — hydrodynamics — Sun: corona — Sun: magnetic fields —
Sun: X-rays, gamma rays — sunspots

1. INTRODUCTION

Sunspots offer a view into the interior workings of the
Sun. Features in the photosphere, from the cool umbra to
the details of the penumbral structure, have long been used
to deduce the underlying dynamics. As recent high-
resolution observations of the solar photosphere have been
made, these details have led us away from the axisymmetric
models of the penumbra and the old debates about shallow
or deep penumbra to models with large variations in azi-
muth and a much richer penumbral construction (Title et al.
1991; Lites et al. 1993). Similarly, observations of light
bridges (Leka 1997), umbral dots, and penumbral grains
(Sobotka, Brandt, & Simon 1997; Sobotka & Sütterlin
2001) and helioseismic observations below sunspots (Zhao,
Kosovovich, & Duvall 2001) are prompting a reconsidera-
tion of the debates on the structure beneath the umbra.

Further clues reside above the solar photosphere. X-ray
and EUV observations of active regions have revealed a
clear relationship between the loop structure above sun-
spots and the photospheric structure within them. X-ray
anemones rise from the penumbrae of sunspots and have
azimuthal structure similar to that seen in the penumbra
(e.g., Martens et al. 1996a, 1996b). EUV loops typically
emanate from the penumbral-umbral boundary or light
bridges within the umbra (Schrijver et al. 1999). Both these
observations offer clues to the structures beneath them, but
current theoretical models are inadequate for interpreting
them.

Here we begin to address this problem by developing a
simple, coupled model for the evolution of compressible
magnetoconvection beneath the photosphere and coronal
loops above it. The magnetoconvection model is based on
the axisymmetric code developed by Hurlburt & Rucklidge

(2000, hereafter HR) to study isolated flux tubes. Here we
only modify the field configuration to be one with zero net
flux, thereby capturing both footpoints of the resulting
coronal loops. The coronal model assumes a quasi-static
potential field that experiences heating from the motions of
the magnetic field in the convecting layer beneath it. We
investigate both the dynamics of the resulting magnetocon-
vection and the signatures of these dynamics in the coronal
heating.

The coupling of the motions within and below the solar
photosphere to the upper solar atmosphere allows us to
explore our ability to describe and model complete solar
structures such as sunspots. In this paper we will demon-
strate how the structure and dynamics of sunspot penum-
brae influence the structure and heating of the solar corona
and, in turn, how observations of the coronal dynamics
can provide clues to what is happening beneath the
photosphere.

Thermal convection dominates the motions within the
solar interior; the solar plasma is highly ionized and at rela-
tively high densities, so the plasma is optically thick and the
diffusion approximation is reasonable; the influence of the
magnetic field, as measured by the plasma �41, is thought
to be small. The solar corona is convectively stable, the den-
sity is low so the plasma is optically thin, radiative transport
is dominant, and the magnetic field dominates the dynamics
with �5 1. The transition between these two regimes occurs
somewhere in the vicinity of the photosphere, and hence
prior work has focused on one region or the other as sepa-
rate computational domains.

Our approach is to combine distinct models of the two
regimes and then couple them, to build a composite sys-
tem. The subphotospheric magnetoconvection model is
that of HR. The coronal field structure is defined by a
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potential field specified by the surface boundary condi-
tions of the magnetoconvection model. Coronal heating
is assumed to be quasi-static with the heating rate deter-
mined from the dynamic boundary conditions at the sur-
face. In this way, the coupling of the two regimes is
achieved via the magnetic field with the upper boundary
condition required by the magnetoconvection models act-
ing as a lower boundary condition for the coronal field
model and the subsequent heating of coronal loops.
Future work will develop a more rigorous coupling by
including feedback from the thermodynamical require-
ment of the corona to the magnetoconvection model.

The present paper is organized as follows: x 2 summarizes
the magnetoconvection model, the equations and numerical
analysis of which are detailed in x 3.We discuss the behavior
of the magnetoconvection in x 4 and the extension of the
boundary condition into the corona in x 5. The heating
model and results appear in x 6 and a comparison with
observations in x 7.We discuss our conclusions in x 8.

2. THE MODEL

The key properties that distinguish the dynamics within
the convection zone from those in the corona are the
plasma �, the relative densities, and the dominant means
of energy transfer. In the high-density, high-� convection
zone, modest, subsonic flows of a few hundred meters
per second to a few kilometers per second are sufficient
to dominate over the magnetic field, and energy transport
then becomes a balance between the convection and ther-
mal diffusion. In the low-density, low-� corona, flows on
the order of hundreds of kilometers per second approach
the local Alfvén speed, while the optically thin plasma
radiates freely into space. The two regions are quite dis-
tinct in their properties, and thus proper treatment of
both probably calls for different approaches. (For this
discussion we have omitted the chromosphere, which is
both difficult to handle and relatively thin on the scales
we are considering. It must of course be included at some
point, but for convenience we dismiss further discussion
of it here.) Our model is an extreme case of addressing
the coupling between the convection zone and corona.
We ignore radiative properties within the convection zone
and keep the physical properties of the fluid there quite
simple. We assert that the magnetic field in our model
corona dominates and that the response time to any foot-
point motions is rapid compared to convective timescales.
This quasi-static model takes the field to be potential at
all times and assumes that the relaxation between two
potential states occurs instantaneously. This provides an
upper boundary condition on the magnetoconvection
occurring below it. Since we are assuming that there is a
large difference in density between the convecting region
and the corona (which is in fact larger than that found
between water and air on Earth), we further require that
the mass flux out of the photosphere be zero everywhere.

Thus, our simplest model consists of a convecting layer
with zero mass flux and a potential field imposed at the
upper boundary. The coronal field is the potential that
matches the field distribution at the boundary and that is
heated by the underlying convection. The source of heating
is the Poynting flux emanating from the upper boundary.

3. EQUATIONS AND NUMERICAL METHODS

We solve the partial differential equations (p.d.e.’s) that
describe compressible magnetoconvection in axisymmetric
geometry using the formulation and numerical code devel-
oped byHR. A layer of electrically conducting gas experien-
ces a uniform gravitational acceleration g directed
downward and possesses a shear viscosity l, a thermal con-
ductivity K, a magnetic diffusivity �, and a magnetic perme-
ability l0, all of which are assumed to be constant. We
assume that the fluid satisfies the equation of state for a per-
fect monatomic gas with constant heat capacities cv and
cp ¼ cv þ R�, where R� is the gas constant. The velocity
field u, magnetic field B, temperature T, pressure P, and
density � depend on time t and on the cylindrical coordi-
nates ðr; �; zÞ. The relevant p.d.e.’s are then the continuity
equation,

@�

@t
þ

D

x �u ¼ 0 ; ð1Þ

the compressible Navier-Stokes equation,

@�u

@t
þ

D

x �uu ¼ �

D

Pþ �gẑzþ
1

l0
ð

D

� BÞ� B

þ lðr2
uþ

1

3

DD

x uÞ ; ð2Þ

the total energy equation,

�cv
@T

@t
þ u x

D

T

� �

¼ �P

D

x uþ Kr2T þQd ; ð3Þ

where Qd denotes the combined viscous and ohmic dissipa-
tion (described in HR), and the induction equation,

@B

@t
¼

D

� ðu � BÞ þ �r2
B with

D

xB ¼ 0 : ð4Þ

These are augmented by the equation of state for a perfect
gas, P ¼ R��T .

The equations can be simplified by restricting our consid-
erations to axisymmetric solutions. With this assumption,
we need only useA, the � component of the vector potential,
to represent the magnetic field:

B ¼ �
@A

@z
; 0;

@A

@r
þ
A

r

� �

: ð5Þ

Unlike our various related papers onmagnetoconvection,
we will here display all variables in dimensional form. For
this we need to select appropriate reference quantities to
convert the dimensionless form of the p.d.e.’s as presented
by HR to physical quantities. The dimensionless quantities
that specify the model are h, the initial temperature gra-
dient; m, the polytropic index; �, the ratio of specific heats;
� and �, the viscous and magnetic Prandtl numbers; R, the
Rayleigh number at midlayer; and �0, the plasma beta at
z ¼ 0, r ¼ 0, which is the ratio of gas pressure to magnetic
pressure.

Here we are interested in flows on the scale of super-
granules. We will assert that the layer depth in the computa-
tional domain is 10 Mm, corresponding to roughly super-
granular scales, and in accordance with the variation of �
with depth. The mean density and temperature at the sur-
face will be taken to be that of the photosphere, or
3� 10�4 kg m�3 and 6000 K. The sound speed in the

994 HURLBURT, ALEXANDER, & RUCKLIDGE Vol. 577



photosphere is approximately 7 km s�1, which sets a dimen-
sionless time unit at 1400 s solar time.

3.1. Boundary Conditions

Our computational domain is a cylinder of radius C, so
ðr; zÞ satisfy

0 � r � � ; 0 � z � 10 Mm ; ð6Þ

with z ¼ 0 at the photosphere. We require that all variables
be sufficiently well behaved at the axis (r ¼ 0) that the differ-
ential operators in the p.d.e.’s are nonsingular, thereby

A ¼ u ¼
@T

@r
¼

@w

@r
¼ 0 at r ¼ 0 ; ð7Þ

where u;w are the radial and vertical velocity components.
At z ¼ 10 Mm, we impose a constant-temperature, line-

tied magnetic field and an impenetrable, stress-free surface:

T ¼ 6000 K 1þ
z

10 Mm

� �

; A ¼ A0ðrÞ ; w ¼
@u

@z
¼ 0 :

ð8Þ

At the outer boundary r ¼ �, we have no lateral heat flux
across the slippery, perfectly conducting side wall:

A ¼
@T

@r
¼ u ¼

@w

@r
¼ 0 : ð9Þ

At the photosphere, we apply a radiative and potential
field condition. Specifically, we set

@T

@z
/ T4 ;

@A

@z
¼ MpotðAÞ ; ð10Þ

where MpotðAÞ is a linear operator described by HR. The
required coefficient in the radiative loss function is not
Stephan’s constant, rather it is a constant chosen to be con-
sistent with our model. While we retain the functional form
of blackbody radiative cooling, we are not imposing realistic
solar heat fluxes, and thus we choose the proportionality
constant such that the initial, unperturbed state of the sys-
tem is a static solution to equations (1)–(4) and (8). Further-
more, we assume that this radiated energy has no influence
on the overlying corona.

4. MAGNETOCONVECTION

Table 1 presents the parameter range we examined for
our magnetoconvection model. Two relatively large aspect
ratios were considered. These were chosen in an attempt to
position the outer boundary away from where the magnetic
flux returns from the corona. This met with limited success,
however, as will be seen in the figures. Hence, this work
focuses on the large cases with � ¼ 90Mm. The value of the
initial field strength at the surface B0was also varied to span
a range in total magnetic flux. The total flux entering
through the bottom of the computational domain, �, is the
amount of magnetic flux entering within the radius where
the field reverses. It is completely specified by our choice of
axial magnetic field B0 and the horizontal extent of the com-
putational domain C.

Figure 1 displays the evolution of a magnetoconvective
solution with a magnetic flux � ¼ 3:65� 1020 Mx
(Q ¼ 300) at five instants in time. The temperature fluctua-

tion relative to the initial static state is shown as the color
background, while the velocity is indicated by the small tri-
angles, whose area is proportional to the local speed.

The magnetic flux is quickly expelled from the bulk of the
convecting layer in a few overturn times. After this transient
state, the solution slowly evolves toward an equilibrium
state consisting of a central flux concentration surrounded
by a collar flow, which is surrounded, in turn, by a second
convective roll. This outer convective roll serves to pin the
returning flux to the outer boundary. Within the central flux
concentration, much weaker convection cells form, which
can be identified with umbral dots. The overall structure of
the flow is similar to the unipolar simulations of HR. The
continuation of magnetic field lines into the corona is
included in more detail in Figure 4 to show the overlying
loop structure.

For weaker initial fields, the central flux tube becomes
more concentrated, as seen previously by HR, and the flows
appear to maintain a time-dependent behavior. In Figure 2
the flows in the region surrounding the flux tube when
� ¼ 2:11� 1020 Mx can be seen to dredge field up repeat-
edly, forming small dipolar structures. These structures are
quickly compressed into narrow flux elements protruding
through the upper boundary that are then rapidly advected
in the direction of the flow within which they first appear.
Thus, in the weak-field case the continual recycling of mag-
netic flux results in solutions that never relax to a completely
steady state.

Stronger field solutions display time dependence for
another reason. Figure 3 displays the results for a solution
with � ¼ 6:67� 1020 Mx. Now the central flux tube fills a
significant fraction of the computational domain. The flows
outside of this region attain a relatively steady state, while
small convective cells form in its interior that migrate
inward with time. These appear to be related to the magne-
toconvective traveling wave solutions first described by
Hurlburt, Matthews, & Proctor (1996).

Taken together, these three simulations seem to bracket
the types of behaviors seen in the solar photosphere. For
weak fields, porelike solutions form that possess little inter-
nal structure. As the flux increases, interior flows and small-
scale traveling waves develop. We now will turn to consider-
ing how these differing dynamics relate to the evolution of
coronal fields and to possible mechanisms for coronal
heating.

TABLE 1

Summary of Solutions

C

(Mm) Q

�

(�1018Mx)

B0

(gauss)

60........................... 100 116 670

60........................... 300 201 1200

60........................... 1000 337 2000

90........................... 100 211 670

90........................... 300 365 1200

90........................... 1000 667 2000

Note.—We consider two aspect ratios (C) and three
values of Chandrasekhar numbers Q, which correspond
to six values of emerging magnetic flux entering the
bottom of the convecting layer, �. B0 is the value of the
initial magnetic field at r ¼ 0 and z ¼ 0. The Chandrase-
khar number Q based on the axial field B0 is included for
comparison with previous work.
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5. CORONAL FIELDS

The choice of potential boundary conditions for the
upper boundary in these simulations provides some guid-
ance as to the evolution of ‘‘ coronal ’’ fields above this
arbitrary ‘‘ photosphere.’’ The geometry and evolution of
the field above the computational domain is completely
specified by the distribution of the field at the photo-
sphere. Returning to Figure 2, we can see the evolution
of the coronal field for the case with � ¼ 2:11� 1020 Mx.
As the convection sweeps the field to the axis and outer
boundary, the fields reconfigure themselves. The solution
rapidly takes on the porelike structure discussed in the
previous section. However, the nearly horizontal flux in
the range 20 < r < 60 Mm results in the repeated emer-
gence of small bipolar structures as seen at time t ¼ 41
hr. These emerging flux regions are associated with
smaller scale eddies that sweep the flux into their corre-
sponding downflows. These smaller scale cells interact
with the previously established convection cells, causing a
rapid reconfiguration of the magnetic field as they move
away from the region of emergence.

The cases with � ¼ 3:65� 1020 Mx and � ¼ 6:67� 1020

Mx, displayed in Figures 1 and 3, quickly relax to a more
stationary state after the flows rapidly sweep the field into
the periphery. Figure 4 displays the long-term steady behav-
ior of the nearly steady solution when � ¼ 3:65� 1020 Mx.
The final field attains a stationary state where the magnetic
field lines are displaced upward from the potential configu-
ration imposed in the initial static state.

It is difficult to compare these loops with observation for
several reasons. Foremost is the fact that the Sun somehow
selects specific field lines for heating and emission. The fila-
mentary structure of the loops seen by the Transition Region
and Coronal Explorer (TRACE), for instance, shows highly
intermittent brightening of loops around active regions. In
addition, comparisons between instruments sensitive to dif-
ferent coronal temperatures, such as TRACE and Yohkoh/
SXT, show dramatically different structures. These facts
serve as diagnostics for both models of coronal heating and
models of the subphotospheric magnetoconvection that
ultimately drives this heating. Models of coronal heating
and magnetoconvection must match the selective emission
seen in the corona. In the following section we present a pre-

Fig. 1.—Magnetoconvective thermodynamics for � ¼ 3:65� 1020 Mx (� ¼ 90). After a period of transient behavior (t < 20 hr), the solutions settle down
with flows sweeping the field to both ends of the computational domain. Near the axis (left) the flows are suppressed by the magnetic fields. However, small,
weak convective features persist there and slowly migrate toward the axis.
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Fig. 2.—Magnetoconvective thermodynamics for � ¼ 2:11� 1020 Mx displays persistent time dependence in the region surrounding the spot. Magnetic
fields repeatedly rise to the surface, where they are concentrated and swept away by the convective flows.



liminary parameterization for this heating and compare the
resulting coronal emissions with what would be observed by
TRACE and SXT.

6. HEATING THE CORONA

Our model asserts that the coronal fields above our mag-
netoconvective layer are potential and axisymmetric. This is
not too far from what is observed on the Sun—at least in
cases where the evolution of the magnetic footpoints in the
photosphere moves slowly relative to the response time of
the corona. In our model, the coupling between the dynam-
ics of the magnetoconvection and the heating of the overly-
ing corona is provided by the Poynting flux entering the
coronal structures. The surface distribution of the Poynting
flux in our magnetoconvection calculation (at t ¼ 0) is
shown in Figure 5 for the three choices of magnetic flux, as
specified by the Chandrasekhar number, Q. There is a large
variation in the available energy entering the corona at dif-
ferent locations within the simulated sunspot, which will
have a marked bearing on the heating observed in the coro-
nal loops.

Strictly speaking, the fact that the photospheric boundary
conditions, and consequently the coronal field, are potential
requires that all of the energy supplied by the Poynting flux
translate into a change in the total magnetic energy con-
tained in the coronal field. The condition that the corona
responds to the changing boundary via a series of potential

Fig. 3.—Magnetoconvective thermodynamics for � ¼ 6:67� 1020 Mx forms a large region of concentrated magnetic field with several weak convection
cells within it. The flows outside of this region attain a nearly steady state.

Fig. 4.—Coronal field lines for � ¼ 3:65� 1020 Mx experience signifi-
cantly different motions at their footpoints. Fields near the axis (numbered
1–10) are displaced periodically by the weak convection cells within the
model sunspot. Field lines near the edge of the spot (lines 11–15) experience
the strong converging flows that are confining the spot.
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configurations provides no mechanism for producing the
additional energy required to heat the corona. The Sun,
however, must contrive to dissipate some of the available
magnetic energy as heat in order to attain the MK tempera-
tures we detect. The amount of energy required for this
heating, while large by coronal standards, is negligible rela-
tive to the energy residing in the convection region. Hence,
we postulate that the requisite energy can be dissipated with
negligible consequences for the subphotospheric flows and,
subsequently, the potential nature of the coronal field.

We assume a heating function, EH ergs cm3 s�1, which is a
fixed, but small, fraction of the total Poynting flux entering
the loop, viz.,

EH ¼ �Ptotðra; rbÞ ; ð11Þ

where Ptot � ðE � BÞtot is the total Poynting flux entering
the corona through the surface at z ¼ 0, ðra; rbÞ represent
the radial distances from the sunspot axis of each of the
field-line footpoints, and � signifies the small fraction of the
Poynting flux that gets dissipated as heat and distributed
throughout the loop. The Poynting flux is given by the inter-
action of the flows and magnetic field at the surface via
E ¼ v � B; there is no intrinsic electrical field.

Equation (11) indicates how we relate the total heating
rate on a given field line to the dynamics of the magnetocon-
vection. However, in order to determine the distribution of
physical parameters along each loop, we need to adopt a
spatial dependence for the heating. In our previous papers
(Alexander, Hurlburt, & Rucklidge 1999; Hurlburt,
Alexander, & Rucklidge 2000) we have restricted our analy-
sis to uniform heating with EHðsÞ ¼ constant, following
Rosner, Tucker, & Vaiana (1978). However, this is inappro-
priate for loops that extend to heights above the pressure
scale height (cf. Serio et al. 1981) and is not consistent
with recent observational findings (e.g., Aschwanden,
Nightingale, & Alexander 2000b). We, therefore, parame-
terize the heating function with a base heating rate, EH0,
and an exponential scale height, sH , viz.,

EHðsÞ ¼ EH0ðsÞe
�s=sH ; ð12Þ

where s is the loop coordinate and we apply equation (12) to

each loop. Note that EH0 is not a free parameter but is deter-
mined directly from the Poynting flux and the fraction �
(eq. [11]).

This choice of a footpoint heating function has recently
been supported by observations (Aschwanden et al. 2000a;
Aschwanden, Schrijver, & Alexander 2001). These authors
have demonstrated that EUV loops observed with SOHO/
EIT and TRACE can be in hydrostatic equilibrium only if
the heating is concentrated in the lower 10–20 Mm of the
corona.We have utilized the results from a hydrostatic anal-
ysis developed by Schrijver & Aschwanden (2002) to obtain
explicit solutions for the temperature and density along the
loops. Although Aschwanden et al. (2000a; 2001) found
that many of the observed temperature and density distribu-
tions within coronal loops required that they be in an
intrinsically dynamic state, the quasi-static assumption
adopted here is adequate given the exploratory nature of
this hybrid sunspot model.

The details of the dissipation of the magnetic energy into
heat are beyond the scope of this work. However, we can
relate our assumptions to existing ideas about coronal heat-
ing. As an example, we might assume some form of wave
heating mechanism (although current dissipation models
should not be ruled out, e.g., Mandrini, Demoulin, & Klim-
chuck 2000). Because of the large atmospheric density strat-
ification from the photosphere to the corona, coronal loops
can act like interference filters for waves that are generated
in the convection zone, travel through the solar atmosphere
to the corona, then return to the convection zone (e.g., Ion-
son 1978; 1982; Hollweg 1981). The presence of an interfer-
ence filter gives rise to resonant transmission peaks in the
frequency domain that allow the necessary large energy
fluxes (104 W m�2 for active regions; Withbroe 1988) to
enter the loops. The key to the peak transmission frequency
is the length of the resonant cavity, which, in our case,
would be the length of the coronal loop. The differing coro-
nal loop lengths result in different loops being sensitive to a
different part of the wave power spectrum available.

The efficiency of resonant absorption of Alfvén waves has
been studied by a number of authors, e.g., Davila (1987),
Hollweg & Yang (1988), Ofman & Davila (1995), and
Poedts et al. (1997). All of these studies show that resonant
absorption of Alfvén waves is a viable heating mechanism
for solar coronal loops, provided that there is enough power
available in the wave frequency ranges. Beliën, Martens, &
Keppens (1999) have recently demonstrated that only a few
percent of the power supplied by the Poynting flux entering
a coronal loop is converted into heat via the resonant
absorption of Alfvén waves. It should be noted that the
model of Beliën et al. (1999) contains a complete atmo-
sphere and that resonant heating is significantly more effi-
cient (heating is 4–8 times higher) in the chromosphere and
transition region than in the corona. The lack of a chromo-
sphere and transition region in our model loop atmosphere
means that we overestimate the Poynting flux flowing into
the corona by as much as 40%. However, we assume that
this factor can be embedded in the scaling constant, �.

The distribution of temperature and density in the coro-
nal portion of our sunspot system is determined from the
usual quasi-static energy equation,

dFc

ds
¼ EHðsÞ �

�̂�ðTÞp2

4k2T2
; ð13Þ

where s is the arc length along a flux tube, T is the tempera-

Fig. 5.—Radial distribution of Poynting flux for Q ¼ 100 (black), 300
(red ), and 1000 (blue).
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ture, Fc is the thermal conductive flux,AðsÞ is the tube cross-
sectional area, p is the pressure, �ðTÞ signifies the tempera-
ture-dependent radiative loss function (cf. Tucker & Koren
1971; Rosner et al. 1978), k is the Boltzmann constant, and

dT

ds
¼ �

Fc

	0T5=2
ð14Þ

with 	0 ’ 10�6 ergs s�1 cm� 1K�7/2 is the coefficient of ther-
mal conductivity. The heights of the loops are determined
by the scale of the sunspot penumbra and the inclination of
the field at each point, r. Some of the loops modeled here
have heights larger than the pressure scale height for a 1
MK plasma (
p � 46 Mm). The pressure in each loop can-
not, therefore, be assumed constant, and so we use

pðsÞ ¼ p0e
�hðsÞ=
p ; ð15Þ

where p0 is the base pressure, hðsÞ is the height above the sur-
face, and 
pðTðsÞÞ is the pressure scale height. We further
adopt the ideal gas law such that nðsÞ ¼ p=2kT .

The quasi-static assumption is justified here since (1) all
of the flows generated in the photosphere by the convection
are purely orthogonal to the field with no component up
into the corona and (2) the convective rollover time is long
enough (1–2 hr) for the loops to reach equilibrium.

The total energy available for heating the loops is
assumed to be directly proportional to the total Poynting
flux entering the loop from the base. This energy is then dis-
tributed throughout the loop volume per equation (12). In
order to test the effect of the heating scale height sH , we
present solutions for sH 2 ½10; 30� Mm. Rather than arbi-
trarily specifying the constant fraction, �, of the Poynting
flux dissipated as heat in the coronal loops, we determine it
from the requirement that at least one of the loops in our
system attains a maximum temperature of 1 MK. This is
accomplished by adopting a scaling of � ¼ 3:2� 10�4,
which results in the apex temperature of loop 1 (see Fig. 6)
reaching 1 MK at the end of its calculated evolution when
the system has reached a steady state. The fact that �5 1 is
consistent with our earlier statements that the energy
required to heat the corona can be dissipated with negligible
consequences for the coronal field configuration. The
chosen value of � was determined assuming a heating scale

height of sH ¼ 30Mm. The corresponding base heating rate
is EH0 ¼ 4:5� 10�5 ergs cm�3 s�1. Thereafter, the heating
in all other loops at all other times and with all other heating
scale heights is assumed to result from the same fraction of
the Poynting flux entering the loop. Adopting the same frac-
tion for the sH ¼ 10 Mm solutions provides a direct com-
parison with the equivalent sH ¼ 30 Mm solutions; with
sH ¼ 10Mm, loop 1 at time t ¼ 41 hr 33 minutes has a max-
imum temperature of Tmax ¼ 0:52 MK and a base heating
rate of EH0 ¼ 1:27� 10�4 ergs cm�3 s�1.

In Figure 6 we show the temperature distributions in each
of the loops for the sunspot model with Q ¼ 300 at late
times when the solution had converged to a steady state.
There is a marked variation between the two cases. In com-
paring temperature profiles between Figures 6a and 6b it
should be noted that, while there is a wide variation of the
total heating within a given set of loops, equivalent loops
can be directly compared. The first thing to notice is that
regardless of the distribution of the heating, the different
loops attain a wide variety of coronal temperatures with the
longer scale height resulting in higher maximum tempera-
tures. Second, the degree of isothermality of the coronal
portion of the loops increases as we move to smaller heating
scale heights. Finally, we note that the choice of energy flux
dissipation, �, allows for the presence of cool loops with
Tmax � 0:5 MK in the small scale height solutions. It is
important to note that the scaling, �, is the same for all
loops in our model. This is equivalent to the assumption
that each loop has the same ability to tap into the energy
provided by the Poynting flux, a property that would
depend strongly on the particular heating mechanism
responsible for heating the loop. Values of � that vary from
loop to loop may be incorporated in future work to investi-
gate the role of different heating mechanisms that will have
different dissipation properties.

We show the variation of the maximum loop temperature
with time for two loops identified in Figure 4 and for two
heating scale heights in Figure 7. In all cases, the initial
start-up transient of the magnetoconvection, as it evolves
from the random initial conditions to a relatively stable
state, results in large temperature swings. These swings are
primarily a response to dramatic restructuring of the fields

Fig. 6.—Temperature profiles for each of the field lines identified in Fig. 4. Each panel represents a heating rate with a different heating scale height: (a)
sH ¼ 10Mm, (b) sH ¼ 30Mm.
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during the evolution to stable structures (compare to the
corresponding times in Fig. 1). After approximately 20 hr,
when a stable spot has formed, the peak temperatures
decay toward stable values. The heating profiles are dis-
played for representative times (the same as those in Fig. 1)
in Figure 10.

7. OBSERVATIONAL DIAGNOSTICS

The combination of a sunspot model, whereby the surface
field is completely specified, with a coronal heating model,
in which plasma parameters are determined for a given
energy input, allows us to explore the role of convection
region dynamics in generating the observed coronal emis-

sion characteristics. The comparison of expected emissions
from different telescopes provides a diagnostic capability
for investigating the heating function in these loops. The
temperature and density distributions generated from a
solution to the quasi-static energy equation (13) allow
us to specify completely the emission expected in the
various channels (filters) of the TRACE (SXT) telescope
through knowledge of their respective temperature response
functions:

FiðTÞ ¼ A

Z

s

nðsÞ2GiðTÞds :

FiðTÞ is the flux expected in TRACE channel i (or SXT fil-
ter i),A is the loop cross-sectional area, n is the electron den-
sity, GiðTÞ is the appropriate response function, and ds is
the element of the loop at temperature T.

Figure 8 shows the expected distribution of emission
from the coronal flux tubes in the 171 and 195 Å lines of
TRACE (see Handy et al. 1999) and the Al.1 filter of
Yohkoh/SXT (Tsuneta et al. 1991) for two values of the
heating scale height, which generate maximum tempera-
tures in the ranges 0.52–2.9 and 1–3.5 MK, respectively.
The distinctly different patterns of emission in the differ-
ent instruments present a diagnostic capability for investi-
gating coronal heating. In particular, we note that the X-
ray emission is confined to a hot core of compact loops
that are overlain by long cool EUV loops. It is also
apparent that the distribution of Poynting flux at the
coronal base results in a nonuniform distribution of the
emission with particular loops highlighted (Fig. 9). The
combination of distinct distributions of emission in the
different temperature regimes allows for a more quantifi-
able comparison with observation.

Another potentially useful diagnostic is the observation
of time variability in the coronal loops. Associating this
behavior with the dynamical development of the input

Fig. 7.—Variation of loop apex temperatures with time for loops 1 and
15 from Fig. 6 with sH ¼ 10 Mm (solid lines) and sH ¼ 30 Mm (dashed
lines).

Fig. 8.—Emission characteristics for temperature distributions shown in Fig. 6. The upper panels represent a heating scale height of sH ¼ 10 Mm, while
sH ¼ 30 Mm in the lower panels. In each row we show the TRACE 171 Å, TRACE 195 Å, and SXT/Al.1 emission distributions, respectively, from left to
right.
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energy (i.e., the Poynting flux at the base) provides a natural
tie-in to and diagnostic tool for the magnetoconvective
processes. As the magnetoconvection progresses, the input
flows alter the v � B forces at the base of the field lines,
which in turn results in a change of the heating via the coro-
nal dissipation of a ‘‘ constant ’’ fraction of the varying
Poynting flux. The timescale for the variation of the Poynt-
ing flux is on the order of a convection cell rollover time
(�1–2 hr), while a typical response time for coronal loops is
significantly faster. Consequently, we assume that the
‘‘ steady state ’’ energy input at each time is determined by
the instantaneous value of the Poynting flux.

Figure 10 displays the distinct time development in the
three coronal channels for the parameters chosen here. Once
again we can see significant differences between the EUV
and soft X-ray emission. The bulk of the X-ray emission is
centered on the hot compact loops as highlighted in Figure
8. The temporal development of the coronal emission exhib-
its a number of interesting properties. First, the magneto-
convection causes a transfer of the bulk of the heating
toward the shorter core loops with time, resulting in an
active region in which a hot core of compact loops is sur-
rounded by longer cooler loops. This is often observed in
active regions targeted by both SXT and TRACE. An exam-
ple is shown in Figure 11.

Second, the progression of the heating with time results in
an apparent upward motion of bright loops, despite the fact
that the field lines are not varying significantly in position.
This is a direct result of the time-varying injection of energy
from the magnetoconvective motions at the surface boun-
dary. This sort of behavior can often be seen in TRACE
movies of the nonerupting active region corona. The time-
scales in Figure 10 are fairly long but do indicate the diag-
nostic capability of the dynamically varying data for
yielding information on the coronal heating process.

8. SUMMARY AND DISCUSSION

The coupling of the motions within and below the solar
photosphere to the chromosphere and corona is one of the
fundamental issues in solar physics. Our long-term goal is to
understand this coupling through the development of
numerical models that can be directly compared with obser-
vation. In this paper we have presented preliminary results
that show the potential for this line of research.

The key to the approach taken here is that we assume a
direct relationship between the dynamics of the subphoto-
spheric magnetoconvection and the dynamic heating of dis-
tinct flux tubes in the solar corona. This generates a wide
variety of observational signatures that can be tested against
current observations of active regions by instruments
aboard TRACE, SOHO, and Yohkoh. (In this work the
emission expected in the SOHO/EIT would be only slightly
different from that seen in TRACE because of the different
sensitivities.)

Our survey of magnetoconvective solutions with differ-
ing amount of magnetic flux ranges between porelike sol-
utions with small total magnetic flux (cf. HR) and the
magnetoconvective traveling wave solutions (cf. Hurlburt
et al. 1996) at large total flux. All three cases considered
exhibit an enhanced heating at the umbra/penumbra
boundary with the radial position of this ‘‘ collar ’’
increasing as the total flux increases. For the porelike sol-
utions (� ¼ 2:11� 1020 Mx; Table 1) the heating falls off
more slowly and with less structure as we move deeper
into the umbra, with the consequence (not shown) that
larger loop structures will receive significant and compa-
rable heating. This manifests as diffuse emission sur-
rounding a brighter and hotter core, similar to that
depicted in Figure 8. The weak, traveling convective
motions with our model umbra for the higher flux cases

Fig. 9.—TRACE 171 Å image of NOAA AR 9017 on 2000 June 2. One can see various sets of loops distributed nonuniformly. Compare with the top left
panel of Fig. 8.
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may induce apparent rising motion in the relatively static
coronal fields as the location of maximum Poynting flux
migrates inward.

In our coronal modeling we considered two different
heating scale heights, sH ¼ 10 Mm and sH ¼ 30 Mm, with
the results shown in Figures 6 and 8. The solutions with the
larger heating scale height exhibited hotter loops with stron-
ger temperature gradients (Fig. 6). As the heating scale
height increases, the overlying loop structures start to

appear in the TRACE 171 Å channel while the lower lying
loops appear brighter in the TRACE 195 Å and SXT chan-
nels (Fig. 8). The often observed appearance of large cool
loops surrounding a hot compact core is enhanced at the
larger scale heights. This is consistent with the general trend
of the hydrostatic solutions approaching the uniform heat-
ing solutions of Rosner et al. (1978) or Serio et al. (1981) as
the ratio of scale height to loop length, sH=L, increases (see
Aschwanden & Schrijver 2002).

Fig. 10.—Time development of emission in theTRACE 171 and 195 Å channels (left and center columns) and the SXTAl.1 filter (right column). TheTRACE
and SXT sequences are scaled independently, with the flux in DN s�1 shown.
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These results indicate that a coupled model, where the
subphotospheric physics has a direct and well-understood
impact on the radiation and dynamics of the corona, allows
us to utilize the wealth of coronal observations, in space,
time, and temperature, to gain insight into the physics of
magnetoconvection. Moreover, it provides a direct link
between the energy generation, as subphotospheric and
photospheric kinematics, and its dissipation, as heating and
dynamics in coronal loops, allowing us not only to investi-
gate the viability of different loop heating models but to
explore the heating of active regions as part of a single distri-
bution of coupled processes. Determining the reason for the
observed spatial distribution of heated loops in a coronal
volume is as important, if not more so, as determining the
heating mechanism for individual loops. Only by modeling
full active regions and determining their relationship to the
source of the energy can we truly say that we understand the
coronal heating problem. The present paper takes a first
step in that direction by addressing the direct relationship
between the subphotospheric dynamics and the spatial dis-
tribution of heated coronal loops.

Future work will see the development of a more detailed
coupling between the subphotospheric and coronal regimes.

This will require the inclusion of a chromosphere and transi-
tion region as well as a means to include more feedback
from the coronal behavior to the model of magnetoconvec-
tion. A fully time-dependent heating model incorporating
flows is also a necessary step if we are to achieve these goals.

Once all of the necessary enhancements to the model are
in place, a detailed comparison with photospheric and coro-
nal observations, more rigorous than the qualitative com-
parison presented here, will be possible. Having such a fully
integrated model of something as complex as a sunspot will
allow us to gain significant insight into the physics govern-
ing the subphotospheric dynamics of sunspots and into the
nature of magnetoconvection in general.

We wish to thank N. Weiss, M. Proctor, A. Title, R.
Shine, and T. Tarbell for their insights and observations, R.
Rauwendaal for assisting in the computations, and M.
Aschwanden for discussion about the hydrostatic atmo-
sphere calculations. This work was supported by NASA
through grant NAG5-7376 at Lockheed Martin and grant
NAG5-3077 at Lockheed Martin and Stanford. A. M. R. is
grateful for support from the Royal Astronomical Society.

Fig. 11.—Observation of an active region by the TRACE 171 Å filter (yellow) and SXT (blue) with surface magnetic field provided by SOHO/MDI
(green/red ). Figure courtesy of R. Nightingale.
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