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A Moving Mesh Finite Element Algorithm for Fluid Flow
Problems with Moving Boundaries

M. J. Baines!, M. E. Hubbard?* and P. K. Jimack?

1 Department of Mathematics, University of Reading, WhiteKnights, PO Boz 220, Berkshire, RG6 6AX,
UK. 2 School of Computing, University of Leeds, Leeds, LS2 9JT, UK.

SUMMARY

A moving mesh finite element method is proposed for the adaptive solution of second and fourth order
moving boundary problems which exhibit scale invariance. The equations for the mesh movement are
based upon the local application of a scale-invariant conservation principle incorporating a monitor
function and have been successfully applied to problems in both one and two space dimensions.
Examples are provided to show the performance of the proposed algorithm using a monitor function
based upon arc-length. Copyright © 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Moving meshes have proved to be a valuable tool in Computational Fluid Dynamics, having
been successfully applied in many different contexts, ranging from phase change and blow-up
problems to hyperbolic conservation laws and more general classes of time-dependent flow.
In this paper a moving mesh finite element method is presented for the solution of a class
of scale-invariant partial differential equations (PDEs) with moving boundaries. Although no
analysis is presented, the numerical experiments suggest that the approach exhibits similar
stability properties to standard, fixed mesh, finite element methods.

The moving mesh approach has been rekindled by recent interest in geometric integration
and scale invariance, which treats independent and dependent variables alike [4]. In this paper
the mesh equations are based on the principle of conserving the integral of a scale invariant
monitor function in time within each patch of finite elements. An additional constraint is
required to specify the mesh velocity uniquely, this being carried out through a mesh velocity
potential in the manner of [5]. Unlike most approaches to moving boundary problems, the
approximation procedure uses the PDE to obtain the mesh velocities: based upon an approach

*Correspondence to: meh@comp.leeds.ac.uk

Contract/grant sponsor: EPSRC; contract/grant number: GR/R94862/01

Copyright © 2004 John Wiley & Sons, Ltd.



2 M. J. BAINES, M. E. HUBBARD AND P. K. JIMACK

that has already been successfully applied to a range of moving boundary problems in one and
two space dimensions using the dependent variable as monitor function, [1].
1.1. Scale invariance

Scaling is a natural property of models of physical systems due to their independence of physical
units [2]. For a scale invariant problem there exist indices 8 and +y such that the scaling

t=M, x=M% wu=X\4a (1)

leaves the PDE
us = Lu (2)

(where Lu is a purely spatial operator on an evolving domain Q(¢)) and appropriate boundary
conditions invariant. For example, in the case of the porous medium equation (PME) in d
dimensions, which represents isentropic gas flow through porous media,

ug =V - (u"Vu), subject to u|ag =0, (3)

it can be shown that 8 = 1/(nd+ 2) and v = —d/(nd + 2), while for the fourth-order equation
0
we+ V- (u"VV2u) =0, subject to ulpg = %m =0, (4)

B =1/(nd+4) and v = —d/(nd + 4). A range of applications of this equation can be found in
[6] (and references therein). For both of these problems there exist known self-similar solutions,
[7, 6], which are ideal for comparison with the results obtained by numerical schemes.

1.2. Monitor Functions and Conservation

Given an initial condition for (2), a set of test functions w;, and a non-negative, solution-
dependent monitor function m(u, Vu), then one may define k; € [0, 1] such that

/wim(u,Vu) dQ = k,/ m(u, Vu)dQ = ¢;, say. (5)
Q Q

If the test functions form a partition of unity then ), k; = 1. Furthermore, conservation of
(5), as the solution u and domain €2(¢) evolve in time, may be used as the guiding principle
for a mesh movement algorithm (as in [1] with m(u, Vu) = u). For a scale invariant problem
(5) may be modified to become

/ w; m(t,u, Vu)dQ = ¢ (6)
Q(t)

where the w; are scale invariant and m is given by
m(t,u, Vu) = t P m@t Tu,t 7PVu). (7)

Note that i = m at t = 1 (which, without loss of generality, is taken to be the initial time
throughout this paper) and that, as a result of scale invariance, the ¢; are now independent
of t. We shall refer to equation (6) as the conservation principle. This equation suggests the
existence of a mapping x(t) for which scale invariance is sustained for all ¢ > 1. We next derive
the velocity x(t) explicitly by differentiating (6) with respect to ¢.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 00:1-6
Prepared using fldauth.cls



A MOVING MESH FINITE ELEMENT ALGORITHM 3

1.3. The velocity x(t)

Using Leibniz’s rule (aka the Reynolds Transport Theorem) and assuming that 3(;‘;;’ +x-Vw; =0
(i-e. the test function w; is advected with velocity %), we obtain from (6)

0 = i/ wi(t, u, Vu) dQ = / (i(wimﬂv(wim@) Q
dt Jou o \di
aﬁl am a,r’h au B

If we now substitute for du/0t from the PDE (2) this becomes an equation for x. By itself

this is insufficient to determine x uniquely in more than one space dimension. However, by

the Helmholtz Decomposition Theorem uniqueness may be obtained by additionally specifying

curl x and a suitable boundary condition. By writing curlx = curl v, where v is prescribed,

it follows that there exists a potential function ¢ such that x = v + V¢. (Since we shall not

have occasion to use a non-zero v in what follows it is set to zero, implying an irrotational %.)
Equation (8) may now be written as a weak form of an elliptic equation for ¢,

om om om
— w; V-(mV dQ:/ wi(—+(—+—-V)Lu) ds. 9
/Q(t) ( ¢) Q) ot ou oVu ( )

A convenient weak form of the equations connecting x and ¢ is
/ wi (X—V)p dQ = 0, for k=1,....d. (10)
Q(t)
We refer to (9) and (10) as the potential and velocity equations respectively.

1.4. Finite elements

Following [1], let x &~ X, a piecewise linear finite element mapping from some reference domain
(typically Q(1)). This defines a moving finite element mesh on which w; ~ W;, the usual
piecewise linear basis function at node ¢, whilst ¢ =~ ® and v =~ U are piecewise linear
approximations. The conservation principle (6) then becomes

W;m(t,U,VU)dQ = C; (11)
()

say, where the C; are known from the initial mesh and data. Similarly, the potential equation
(9) may be expressed as

om om ~ O0m

YW, - Vo dQ = /Q(t) W, (E n (% + om -v) LU) Q12

where & = 0 has been applied on the boundary (corresponding to a zero tangential mesh
velocity at the boundary). The velocity equation (10) becomes

Q(t)

W; X —V®),dd =0, for k=1,..,d, (13)
Q(t)

corresponding to the best approximation X to V® in the space spanned by the W;.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 00:1-6
Prepared using fldauth.cls



4 M. J. BAINES, M. E. HUBBARD AND P. K. JIMACK

Using the finite element expansions X = >, X;W;,® = >, ®; W;,U = >, U; W;, the
matrix forms of equations (12) and (13) can be derived. These equations form the basis of the
method whereby, given U on a mesh X, a mesh velocity X can be found. This is used to update
the mesh via forward Euler time-stepping (say), after which the solution can be recovered on
the new mesh via the conservation principle (11). Alternatively, U may also be approximated
using time-stepping based upon the weak form

W;UdQ = W; (VU - X + LU) dQ (14)
() )

with U = 0 on the boundary of Q(t).

2. MONITOR FUNCTIONS

The consequences of taking m to be the “density” monitor function u have been extensively

studied in [1]. Many other possible choices for m are possible however. For the remainder

of this paper we consider just one of these, the “arc-length” monitor (widely used because

of its tendency to move nodes in to regions where the solution gradient is high) given by

/1 + (Vu)?, although the generalisation to other monitors follows in a similar manner. From
(7) =t~ /1 + 2(6-7)(Vu)? and equation (12) then becomes

W;

V2O £ (VU2 YW VR = [ TEH(=dB+ (8- )/t 26 + (VU)2d

Q(t) ) ¢

N /  ~28— E=2B=N=1 4 2VU - V(LU)

aw V12067 4 (VU)?

dQ, (15)

while (11) becomes

Wi\ [1 4 26-0(VU)2 0 = C;. (16)
)

3. APPLICATIONS

3.1. The Porous Medium Equation (PME)

Using the values of 8 and v noted in Section 1 with the arc-length monitor, (15) gives

=1
/ i ) 4 (U W ved = [ D [ mae) 4 (v0)2do
Q) o) nd + 2
-2 1)¢—((n+2)d+4)/(nd+2) d+2 2 .
N W (d+1)t /(nd+2)+2VU - VQ i, (1)
Q) \/t—2(d+1)/(nd+2) + (VU)2
while (16) becomes
Wt/ (442, [1 4 a4/ a2 (VU2 d = O (18)
Q(t)
Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 00:1-6
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A MOVING MESH FINITE ELEMENT ALGORITHM 5

Note that due to the piecewise linear approximation it is necessary to introduce an intermediate
finite element function @ =~ LU in (17), recovered from the weak form

W; QdQ = —/ U VW; - VU dQ. (19)
() Q1)

Results for the one-dimensional equation are shown in Figure 1. In each case the results
shown were obtained using (14) to update the values of the dependent variable and the initial
mesh was uniformly spaced. The test case shown models a similarity solution to the PME of
the form given in [7, 1]. When n = 1 the scheme exhibits close to second order accuracy, while
when n = 2 (and higher) the exact solution has infinite gradient at the boundary and the
numerical order of accuracy reduces to approximately one.

Similar results are seen in two dimensions when comparisons are made with exact similarity
solutions. Figure 2 does not show a similarity solution however, instead it has been chosen to
illustrate the movement of the mesh towards a region (the moving boundary in this case) in
which the gradient of the evolving solution is steepening. The conservation of arc-length can
clearly be seen to lead to a reduction in the mesh size in the regions where the gradient has
increased sharply over time.

Porous Medium Equation: n=1

+ Approximate
§ | -o Exact
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0.9] % —©- Exact
0.8] 3
.
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01
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Figure 1. Snapshots of one-dimensional results at various times illustrating: PME with n = 1 (left);
PME with n = 2 (middle); 4th order with n = 1 (right).

3.2. A fourth-order equation

In order to apply the proposed algorithm to the fourth-order problem (4) using piecewise linear
finite elements it is necessary to express it as a pair of second order equations:

ug + V- (u"Vp) =0, p = Vu. (20)

As with the PME, appropriate values of 8 and «y (see Section 1) may be substituted into (15)
in order to obtain equations for the mesh potential function ®. Again it is necessary to replace
LU by a weak approximation, (), in this case given by

W;QdQ = —/ U™ VW; - VP dQ, (21)
() ()

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 00:1-6
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6 M. J. BAINES, M. E. HUBBARD AND P. K. JIMACK

where P is the finite element approximation to p given by

W; PdQ = — VW; - VU dQ. (22)
Q(t) Q(t)
Figure 1 shows one set of results for this fourth order equation and compares them with the
exact similarity solution given in [6, 1] when n = 1. The numerical results suggest an order of
accuracy of between 1 and 2 in one dimension and approximately 1 in two dimensions.

Porous Medium Equation: n=2 Porous Medium Equation: n=2 Porous Medium Equation: n=2
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Figure 2. Snapshots of two-dimensional results at various times illustrating the evolution of the PME
solution with n = 2 from initial conditions that do not correspond to a similarity solution: successive
slices through y = 0 (left); initial mesh (middle); final mesh (right).

4. DISCUSSION

We have presented a moving mesh finite element method based on the use of a scale invariant
conservation principle incorporating an arc length monitor function. Symmetric computational
results have been included, simply to illustrate typical behaviour and performance for this
method, but scale invariance does not depend on symmetry [2] and the technique is far more
generally applicable [1]. There is no reason why it cannot be applied much more widely, to more
complicated geometries with other monitors and other problems exhibiting scale invariance.
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