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ABSTRACT

In this paper we present the results of the stability analysis of a simple shear flow of an incompressible fluid with a piecewise linear velocity

profile in the presence of a magnetic field. In the flow, a finite transitional magnetic-free layer with a linear velocity profile is sandwiched by

two semi-infinite regions. One of these regions is magnetic-free and the flow velocity in the region is constant. The other region is magnetic

and the fluid in it is quiescent. The magnetic field is constant and parallel to the flow in the transitional layer. The fluid density is constant both

in the magnetic as well as the magnetic-free regions, while it has a jump-type discontinuity at the boundary between the transitional layer and

the magnetic region. The effect of gravity is included in the model, and it is assumed that the lighter fluid is overlaying the heavier one, thus no

Rayleigh-Taylor instability is present. The dispersion equation governing the normal-mode stability of the flow is derived and its properties are

analysed. We study stability of two cases: (i) magnetic-free flow in the presence of gravity, and (ii) magnetic flow without gravity. In the first

case, the flow stability is controlled by the Rayleigh number, R. In the second case, the control parameter is the inverse squared Alfvénic Mach

number, H. Stability of a particular monochromatic perturbation also depends on its dimensionless wavenumber α. We combine the analytical

and numerical approaches to obtain the neutral stability curves in the (α,R)-plane in the case of the magnetic-free flow, and in the (α,H)-plane

in the case of the magnetic flow. The dependence of the instability increment on R in the first case, and on H in the second case is treated.

We apply the results of the analysis to the stability of a strongly subsonic portion of the heliopause. Our main conclusion is as follows: The

inclusion of a transitional layer near the heliopause into the model increases by an order of magnitude the strength of the interstellar magnetic

field required to stabilize this portion of the heliopause in comparison with the corresponding stabilizing strength of the magnetic field required

when modelling the heliopause as a tangential discontinuity.

Key words. magnetohydrodynamics (MHD) – solar wind – instabilities – ISM: general

1. Introduction

Magnetohydrodynamic (MHD) shear flows are common in

space plasmas. Well-known examples of such flows are the

flows near the magnetopauses of the Earth and other planets,

the flows close to the heliopause and the flows at the bound-

aries of the fast and slow streams of the solar wind. Also some

flows observed in the solar atmosphere can be treated as shear

flows. Studying stability of MHD shear flows is of a consid-

erable importance for the understanding of the physical pro-

cesses in space plasmas and for a correct interpretation of the

observations.

One of the simplest MHD shear flows is a plane MHD tan-

gential discontinuity. In such a flow, the flow velocity is paral-

lel to the plane, the background quantities are constant on both

sides of the plane, while across the plane the quantities pos-

sess a jump-type discontinuity. In the case of incompressible

plasmas the stability criterion for an MHD tangential discon-

tinuity is rather simple. It was obtained by Syrovatskii (1957)

and Chandrasekhar (1961). The dispersion equation governing

the stability of MHD tangential discontinuities in compressible

plasmas was obtained by Fejer (1964). The stability criterion

in an explicit form can be derived from this dispersion equa-

tion only in some particular cases.

When a tangential discontinuity is unstable, the growth rate

of the unstable normal modes is proportional to the wave num-

ber and, therefore, unbounded. Hence, an initial value prob-

lem for an unstable discontinuity is ill-posed. This property

is related to the fact that modelling of real flows with strong

transverse gradients by introducing discontinuities is unphysi-

cal. In reality, at the location of strong gradients there is always

a transitional layer of finite thickness in which the background

quantities vary strongly but remain continuous. A mathemat-

ical treatment of shear flows with transitional layers of finite

thickness is considerably more complicated than a treatment of

flows with tangential discontinuities. The reason for this is that

the linear differential equations one has to deal with have vari-

able coefficients in the former case, while the equations have
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constant coefficients in their respective domains in the latter

case. As a result, in general, it is impossible to obtain in a

closed analytic form a dispersion equation governing the stabil-

ity of a shear flow possessing a finite transition layer. Instead,

the frequency as a function of wavenumber for the eigenmodes

for such a flow has to be determined by solving numerically

an eigenvalue problem for a differential equation with variable

coefficients.

However, there exists one known exception from this gen-

eral situation. Specifically, when the fluid is incompressible

and a shear flow has a piecewise linear profile the linearized

stability equations admit a rather simple explicit analytic so-

lution. The existence of such a solution allows one to obtain

the dispersion equation explicitly in terms of elementary func-

tions. The main difference between the dispersion equation for

flows with the tangential discontinuities and for shear flows of

incompressible fluids with the piecewise linear velocity pro-

files is that the former are polynomial both with respect to

the wave frequency ω and the wavenumber k, while the lat-

ter are polynomial only with respect to ω and transcendental

with respect to k. The stability analysis of simple flows of in-

compressible fluids with piecewise linear velocity profiles can

be found, e.g., in Chandrasekhar (1961) and Drazin & Reid

(1981).

In this paper we extend the stability analysis of incompress-

ible flows with piecewise linear velocity profiles to include the

effect of magnetic field. Generally, the MHD equations do not

admit explicit analytic solutions even when the fluid is incom-

pressible, the magnetic field is uniform and the velocity profile

is piecewise linear. There are, however, some particular cases in

which such a solution is possible. We treat in the paper one such

a case. In this case, it is supposed that a uniform magnetic field

is present in the half-space occupied by a motionless plasma,

while the half-space occupied by a shear flow is magnetic-free.

The velocity profile of the shear flow is piecewise linear. Both

the magnetic field and the shear flow are parallel to the divid-

ing plane. For this particular magnetic plasma configuration we

obtain a dispersion equation in an explicit form and carry out a

stability analysis.

The paper is organized as follows. In the next section we

give a formulation of the stability problem and derive the dis-

persion equation. In Sect. 3, properties of the dispersion equa-

tion are addressed. In Sect. 4 a particular case of a magnetic-

free flow, with the effect of gravity included, is treated. In

Sect. 5 we study the stability of a magnetic flow without grav-

ity and discuss possible applications of the results to the he-

liopause stability. In Sect. 6, a summary of the results is pre-

sented and conclusions are drawn.

2. Problem formulation and derivation

of the dispersion equation

We treat stability of the magnetic plasma configuration

sketched in Fig. 1. In this configuration, the magnetic field,

B0(z), is in the x-direction of Cartesian coordinates x, y, z, it

is uniform and non-zero in the upper half-space, (z ≥ 0), and

g

B

ρ

ρ

V

z

x

0

1

2

h−
0

Fig. 1. Sketch of the base state. The gravity acceleration, g, is directed

downwards when ρ1 < ρ2, and upwards when ρ1 > ρ2.

zero in the lower half-space, (z < 0). The magnetic field is

given by

B0(z) = B̃0(z)ex, with B̃0(z) =

{
B0, z ≥ 0,

0, z < 0,
(1)

where ex is the unit vector in the positive x-direction and B0 is

a positive constant. The plasma density is equal to

ρ(z) =

{
ρ1, z ≥ 0,

ρ2, z < 0,
(2)

where ρ1 and ρ2 are constant and generally ρ1 � ρ2. The plasma

velocity is supposed to have the form V0 = V0(z)ex, where

V0(z) is given by

V0(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, z ≥ 0,

−Vm(z/h), −h ≤ z ≤ 0,

Vm, z ≤ −h,

(3)

with Vm being a positive constant. The effect of gravity is mod-

elled by assuming that the gravity force represented through

the constant gravity acceleration, g, is acting in the z-direction:

g = −gez, where ez is the unit vector in the z-direction and g is

a constant.

In the case when g(ρ2 − ρ1) < 0 the model is always unsta-

ble with respect to perturbations propagating in the y-direction

owing to the Rayleigh-Taylor instability. As we are interested

in the MHD instability related only to the shear velocity profile

we exclude the Rayleigh-Taylor instability from the analysis

by assuming that g(ρ2 − ρ1) > 0. Taking into account that the

total pressure (which is the sum of the kinetic and magnetic

pressures) has to be continuous at z = 0, we obtain that the

equilibrium pressure, p0, is given by

p0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p00 − ρ1gz, z ≥ 0,

p00 − ρ2gz +
B2

0

2µ
, z < 0,

(4)

where p00 is an arbitrary constant and µ is the magnetic perme-

ability of vacuum.

In the analysis, we treat only the y-independent perturba-

tions of the base state. Such perturbations are governed by the

following system of linearized MHD equations, for z > 0 and

z < 0,

∂u

∂x
+
∂w

∂z
= 0, (5)
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∂u

∂t
+ V0

∂u

∂x
+ w

dV0

dz
= −1

ρ

∂p

∂x
, (6)

∂w

∂t
+ V0

∂w

∂x
= −1

ρ

∂

∂z

⎛⎜⎜⎜⎜⎝p +
B̃0bx

µ

⎞⎟⎟⎟⎟⎠ +
B̃0

µρ

∂bz

∂x
, (7)

∂bx

∂t
= B̃0

∂u

∂x
− V0

∂bx

∂x
+ bz

dV0

dz
, (8)

∂bz

∂t
= B̃0

∂w

∂x
− V0

∂bz

∂x
· (9)

Here u and w are the x and z-components, respectively, of the

perturbation velocity, bx and bz are the x and z-components,

respectively, of the perturbation magnetic field, and p is the

perturbation pressure.

The system of Eqs. (5)–(9) has to be supplemented with the

boundary conditions at the magnetic interface, (z = 0), and at

the surface (z = −h) where the first derivative of the base ve-

locity profile is discontinuous. Let the equation of the perturbed

magnetic interface be z = η(t, x). Then the kinematic boundary

condition and the continuity condition for the total pressure at

z = 0 read

w1 = w2 =
∂η

∂t
, and (10)

p1 +
B0bx

µ
− ρ1gη = p2 − ρ2gη, (11)

respectively. At z = −h, the vertical perturbation velocity, w,

and the perturbation pressure, p, must be continuous:

w1 = w2 and p1 = p2. (12)

For studying the normal-mode stability of the model, we

assume that all the perturbation quantities have the form

φ(z) exp(ikx− iωt), where k is a real-valued wavenumber and ω

is a frequency that generally is complex-valued. Substitution

of the normal-mode expressions into the system (5)–(9) results

in a system of ordinary differential equations in each region,

z < 0 and z > 0, for the amplitudes, φ(z), of the corresponding

perturbation quantities. One eliminates all the dependent vari-

ables from the system, except for w(z), and obtains that in both

regions, z < 0 and z > 0, the amplitude of the normal-mode

perturbation vertical velocity, w(z), satisfies the equation

d2w

dz2
− k2w = 0. (13)

Here and further in the text, the character used for denoting

a dependent physical quantity will be used for denoting the

normal-mode amplitude of the quantity. In terms of w, the am-

plitudes of other perturbation variables read

u =
i

k

dw

dz
, bx = −

iB0

ω

dw

dz
, bz = −

kB0

ω
w, (14)

p =
iρ

k

(
ω − kV0

k

dw

dz
+ w

dV0

dz

)
· (15)

We note that the perturbations have to vanish as |z| → ∞.Under

this condition, the general solution of Eq. (13), for k > 0, takes

the form

w =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A1e−kz, z > 0,

A+ekz + A−e−kz, −h < z < 0,

A2ek(z+h), z < −h,

(16)

where A1, A2, A+ and A− are arbitrary constants. We treat here

only the case k > 0. Owing to the symmetry, the results for

k < 0 are similar. By using (14) and (15) it is straightforward

to obtain similar expressions for u, bx, bz and p. Substitution of

these expressions and of that given by Eq. (16) into the bound-

ary conditions (10) and (11), and in the conditions (12) of con-

tinuity of w and p at z = −h, results in a system of five linear

homogeneous algebraic equations for A1, A2, A+, A− and η. The

condition that this system has a non-trivial solution gives us the

dispersion equation of the problem,

D0(α,Ω) ≡ 2Ω3 + 2(∆U − α)Ω2 + (U −W)Ω + UW = 0, (17)

where α = kh is the dimensionless wave number and the other

quantities are

s =
ρ2

ρ1

, ∆ =
s − 1

s + 1
, Ω =

ωh

Vm(1 + ∆)
, U =

2α − 1 + e−2α

2(1 + ∆)
,

(18)

W =
α[2R + αH(1 − ∆)]

(1 + ∆)2
, R =

gh∆

V2
m

, H =
B2

0

µρ1V2
m

· (19)

Here R is the Richardson number and H is the inverse square

of the Alfvénic Mach number. Since g(ρ2 − ρ1) > 0, it holds

that g∆ > 0 and hence R > 0. We see from (17)–(19) that, for

any fixed α and ∆, the only parameter controlling the stability

is W. For α � 0, the latter can vary owing to the variation of R

or H. Since (1 − ∆) > 0, under these conditions, for a fixed

α > 0, the effect of enhancement of the magnetic field, i.e., in-

crease of H, is equivalent to the increase of R for a fixed value

of H. The quantity Ω can be considered as a scaled dimension-

less frequency. For fixed s, R and H, the frequency, Ω, can be

calculated as a function of α by using Eq. (17).

Here it is worth to make one comment. In general, the sys-

tem of Eqs. (5)–(9) has a singularity in the region −h < z < 0

corresponding to a critical layer. The position of this critical

layer is determined by the equation V0(z) = ω/k. In particular,

such a singularity was found by Murawski (2000) who stud-

ied the effect of flows on the solar f -modes. However, when

the velocity profile is linear, the term responsible for the singu-

larity in the Taylor-Goldstein equation (Eq. (15) in Murawski,

2000) disappears, and this equation reduces to Eq. (13). As a

result, there is no singularity in the system of Eqs. (5)–(9), and

no critical layer in the flow considered in our paper.

3. Properties of the dispersion equation

In this section we address some general properties of the dis-

persion equation given by Eq. (17). Since the dispersion equa-

tion function, D0(α,Ω), defined by Eq. (17) is a cubic poly-

nomial with real coefficients with respect to Ω, it has, for any
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value of wavenumber, α, and any combination of the param-

eters involved, either three real Ω−roots, or one real root and

two complex conjugate roots. In the former case the flow is

stable, and it is unstable in the latter case. The discriminant,

D, of D0(α,Ω) as a cubic polynomial of Ω is given, up to the

factor 4, by

D = 2W3 +
[
(α − ∆U)2 + 18U(α− ∆U) − 27U2

−6U]W2 + 2U[4(α − ∆U)3 − (α − ∆U)2

−9U(α − ∆U) + 3U]W + U2[(α − ∆U)2 − 2U
]
. (20)

Equation (17) has only one real root when D < 0 and three

real roots when D ≥ 0 (see e.g. Korn & Korn 1961). Hence,

a monochromatic wave with a dimensionless wavenumber α is

unstable when D < 0 and stable when D ≥ 0.

The discriminant, D, is a cubic polynomial with respect

to W. When 0 < α ≪ 1, this polynomial has only one real

root, W0
1
, given by

W0
1 =
α2(1 − ∆)

2(1 + ∆)
+ O(α3). (21)

Therefore, it holds that D < 0 when W < W0
1

and D ≥ 0 when

W ≥ W0
1
. Hence, long waves, i.e., α ≪ 1, are unstable in the

model when W < W0
1

and stable otherwise.

When α ≫ 1 the polynomial in (20) has three real roots.

One of them is approximately −1/8, and the two others are

given to the leading order in α by the respective expressions

W∞1,2 =
(2α − 1)(α − 1 − ∆/2) ± 4(1 + ∆)1/2α3/2e−α

(1 + ∆)2
· (22)

Thus, in this case for W∞
2
< W < W∞

1
it holds that D < 0 and

short waves, i.e., α ≫ 1, are unstable, whereas for W < W∞
2

and W > W∞
1

we have D ≥ 0 and short waves are stable.

The number of real roots of the polynomial D given by

Eq. (20) is determined by its discriminant D̃: D has only one

real root if and only if D̃ < 0 and three real roots if and only

if D̃ ≥ 0. From the above results for long- and short-wave ap-

proximations it follows that D̃ < 0 when α ≪ 1, and D̃ ≥ 0

when α ≫ 1. Our numerical computations for a dense repre-

sentative set of values of |∆| ≤ 0.99 and intermediate values of

α = O(1) showed that, in each case considered, there exists a

value of α, α0(∆), such that D̃ < 0 for α < α0 and D̃ > 0 for

α > α0.

We also established by using computations that the factor

C = [(α−∆U)2−2U] in the free term of the cubic polynomial D

of W given by Eq. (20), and with it the free term U2C, is nega-

tive and the coefficient of W2 in D is positive at α = α0. Hence,

for the values of α that are slightly greater than α0, the prod-

uct of the three real roots of the polynomial D is positive, and

their sum is negative implying that there are two negative roots

and one positive. By using the expression for U given in (18)

one obtains that C ≈ −α2/2 for 0 < α ≪ 1, C ≈ α2/(1 + ∆)2

for α ≫ 1, and the function dC/dα has only one positive zero.

This implies that C as a function of α also has only one positive

zero which we denote by αc. We have C < 0 for 0 < α < αc

and C > 0 for α > αc. Since C(α0) < 0, it follows that α0 < αc.

We know that, for α ≫ 1, there are two positive roots and one

Fig. 2. αc as a function of s. The s-axis is logarithmic.

negative (see (22)). Since the roots are continuous functions

of α, it follows that the number of positive and negative roots

can change when α varies only if one of the roots becomes zero

at a parituclar value of α. Since C > 0 for α > αc, we know

that this does not happen when α decreases from α ≫ 1 to αc.

Hence, we conclude that there are two positive and one nega-

tive root for α > αc.

From the above consideration of D̃ and C, and of the de-

pendence of the real roots of D on the signs of D̃ and C, we

obtain that the polynomial D has only one real positive root

when 0 < α < α0, two negative roots and one positive root

when α0 < α < αc, and one negative root and two positive

roots when α > αc.

Since W > 0, we are only interested in positive roots of the

polynomial D. Summarizing our analysis we conclude that D

has one positive root, W1, when α < αc, and two positive roots,

W1 and W2 (with W2 < W1.) when α > αc. The dependence

of αc on s is shown in Fig. 2. The implication of this results

for the flow stability formulated in terms of the parameter W is

as follows. Each normal mode with α < αc is unstable when

W < W1 and stable when W > W1; each normal modes with

α > αc is unstable when W2 < W < W1 and stable when either

W < W2 or W > W1.

4. Stability of a magnetic-free flow

In this section we study the flow stability in the absence of mag-

netic field, i.e., H = 0. Stability of similar flows was studied by

Chandrasekhar (1961) and Drazin & Reid (1981).

We start the analysis by treating the case R = 0, i.e., W = 0.

In this case, the dispersion equation, D0(α,Ω) = 0, has for

each α the roots

Ω1 = 0, and Ω2,3 =
α − ∆U

2
± 1

2

√
C

=
α − ∆U

2
± 1

2

√
(α − ∆U)2 − 2U.

(23)

We established in the previous section that C < 0 for 0 <

α < αc and C > 0 for α > αc. Therefore, the normal modes

with 0 < α < αc are unstable and with α > αc are stable.

The growth rate of the unstable normal modes, γ = ℑ(Ω),
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Fig. 3. The maximum growth rate, γM, as a function of s for the case

R = 0. The s-axis is logarithmic.

where ℑ indicates the imaginary part of a quantity, is

given by

γ =
1

2

[
2U − (α − ∆U)2

]1/2
. (24)

The function γ = γ(α) satisfies γ(αc) = 0, and by using the

expression for U given in (18) one can show that γ(α) has ex-

actly one maximum, γM, in the interval [0, αc]. The dependence

of γM on s is shown in Fig. 3. We note that ∆ = 0 when s = 1

and, in such a case, from (19) it follows that R = 0 for any

value of g.

We now proceed to treating the case R � 0. Since H = 0, it

holds that W = 2αR(1+∆)−2, see (19). Let R1,2 =
1
2
α−1W1,2(1+

∆)2, where W1,2 are defined at the end of Sect. 3. Then from the

results of that section it follows that (i) the normal modes with

α < αc are unstable when R < R1 and stable when R > R1, and

(ii) the normal modes with α > αc are unstable when R2 < R <

R1 and stable when either R < R2 or R > R1.

When α≪ 1, R1 is given by

R1 =
α

4

(
1 − ∆2

)
+ O
(
α2
)
. (25)

When α ≫ 1, R1 and R2 are given by the approximate

expressions

R1,2 =
(2α − 1)(2α − 2 − ∆)

4α
± 2(1 + ∆)1/2α1/2e−α, (26)

respectively. It follows from Eqs. (25) and (26) that R1 is a

monotonically increasing function of α for α ≪ 1 and α ≫ 1,

and R2 is a monotonically increasing function of α for α ≫ 1.

Our computations showed that R1 and R2 are monotonically

increasing functions of α for all intermediate values of α. The

neutral curves R = R1(α) and R = R2(α) are presented in Fig. 4

for different values of s.

Since the functions R = R1(α) and R = R2(α) are monoton-

ically increasing, there exist the respective inverse functions,

α = αR
1
(R) and α = αR

2
(R), and these latter are also mono-

tonically increasing functions of their argument. When R is

fixed, a normal mode with the wavenumber α is unstable if

αR
1
(R) < α < αR

2
(R), while it is stable if either α < αR

1
(R) or

α > αR
2
(R). The dependence of the dimensionless growth rate γ

on α is shown in Fig. 5 for R = 1 and four different values of s.

This dependence is qualitatively the same for all the values of R

and s treated.

We also calculated the dependence of the maximum growth

rate of the unstable normal modes, γM = maxα[γ(α)], on R.

This dependence is shown in Fig. 6 for different values of s.

The curves for large and small values of s have different qual-

itative features. For large values of s, γM(R) is a monotoni-

cally decreasing function of R, while for small s it possesses

a maximum. It can be shown by using Eq. (26) that γM ≈
1
2
R1/2(1 + ∆)1/2e−R when R ≫ 1.

5. Stability of a magnetic flow without gravity

In this section we study the flow stability in the presence of

magnetic field (H � 0), but without gravity (R = 0).

In this case W = α2H(1−∆)/(1+∆)2. We introduce the no-

tation H1,2 = α
−2W1,2(1+∆)2/(1−∆), where W1,2 are the posi-

tive W−roots of the polynomial D defined in Sect. 3. Then from

the results of that section it follows that (i) a normal mode with

α < αc is unstable when H < H1 and stable when H > H1, and

(ii) a normal mode with α > αc is unstable when H2 < H < H1

and stable when either H < H2 or H > H1. When α → 0

it holds that H1 → 1
2
(1 + ∆) = s/(1 + s). The criterion for

instability in this limit, i.e., H < H1, can be rewritten in the di-

mensional variables as V2
m > V2

KH
= B2

0
(ρ1+ρ2)/(µρ1ρ2), where

VKH is the Kelvin-Helmholtz threshold velocity, see Eqs. (18),

(19). This result is in compliance with the classical result on

the Kelvin-Helmholtz instability: the limit α → 0, for a fixed

non-zero k, corresponds to a tangential discontinuity (h = 0),

which is stable when Vm < VKH and unstable otherwise (see

e.g., Syrovatskii 1957; Chandrasekhar 1961).

When α ≫ 1, H1 and H2 are given by the corresponding

approximate expressions

H1,2 =
1

1 − ∆

⎡⎢⎢⎢⎢⎢⎣
(
2 − 1

α

) (
1 − 2 + ∆

2α

)
± 4e−α

(
1 + ∆

α

)1/2⎤⎥⎥⎥⎥⎥⎦ , (27)

with H1 > H2. Computations showed that, for |∆| ≤ 0.99,

the quantities H1 and H2 are monotonically growing functions

of α. The dependence of H1 and H2 on α is shown in Fig. 7 for

different values of s.

It follows from equation (27) that H1,2 → 2/(1−∆) = 1+ s

as α → ∞. Since both H1 and H2 are monotonically growing

functions of α, it holds that H1,2 < 1+ s for any value of α. This

implies that all the normal modes in the flow are stable when

H > 1 + s, while for any H < 1 + s there exist unstable normal

modes in the flow. In the dimensional variables the stability

criterion, i.e., H > 1 + s, is written as

V2
m <

B2
0

µ(ρ1 + ρ2)
=

s

(1 + s)2
V2

KH

def
= V2

c , (28)

see Eqs. (18), (19). From Eq. (28) it follows that the presence of

a transitional layer with a continuous variation of the velocity

strongly reduces the instability threshold, Vc. The ratio of the

instability threshold for the continuous flow, Vc, to the instabil-

ity threshold for the tangential discontinuity, VKH, is equal to
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Fig. 4. Graphs of R = R1(α) (upper curves) and R = R2(α) (lower curves) for several values of s. A normal mode with the wavenumber α is

unstable if the point (α,R) is in the region between the curves and stable otherwise.

Fig. 5. Growth rate γ as a function of α for R = 1 and four different

values of s. The dashed, dotted and dash-dotted curves correspond to

s = 100, s = 2 and s = 0.5 respectively, the solid curve shows 0.1 × γ
for s = 0.01.

√
s/(1 + s). Hence, Vc/VKH is equal to 1/2 for s = 1, to 0.2875

for s = 0.1 and s = 10, and to 0.099 for s = 0.01 and s = 100.

Since the functions H1(α) and H2(α) are monotonically

increasing, the inverse functions αH
1

(H) and αH
2

(H) to H1(α)

and H2(α), respectively, are monotonically increasing as well.

When H < s/(s + 1), the normal modes with α satisfying

0 < α < αH
2

(H) are unstable, while the normal modes with

α satisfying α > αH
2

(H) are stable. When s/(s+1) < H < 1+ s,

the normal modes with α satisfying αH
1

(H) < α < αH
2

(H)

are unstable, while the normal modes with α satisfying either

α < αH
1

(H) or α > αH
2

(H) are stable.

The dependence of the growth rate, γ, on α is qualitatively

somewhat similar to that shown in Fig. 5, though there are two

differences. The first difference is that, in the present case, the

left boundary of the instability interval is at α = 0 when H <

s/(s+1). The second one is that, for the values of H that are not

much greater than s/(s+1), the curves do not look as symmetric

as those in Fig. 5, whereas their maxima are shifted to the right

boundary of the instability domain. Since these differences are

quite minor, we do not present the plots of γ versus α.

In Fig. 8 the dependence of the maximum growth rate with

respect to α, γM = maxα[γ(α)], on H is shown for several val-

ues of s. Similar to the case shown in Fig. 6, in the present case

γM(H) is a monotonically decreasing function of H for large

values of s, while for small s it possesses a maximum. For the

values of H that are slightly below the instability threshold, i.e.,

H = 1 + s − δ, where 0 < δ ≪ 1, we have

γM ≈
[
(s + 1)(2s + 1)

8sδ

]1/2
exp

(
−2s + 1

δ

)
· (29)

Interestingly enough, from the left panel of Fig. 8 it is seen that

for s = 0.01 and s = 0.05 weaker magnetic field, i.e., H → 0,

renders the model generally less unstable because in this limit

γM decreases.

As an example of application of the obtained results we

consider the stability of the heliopause. When the supersonic

flow of the solar wind interacts with the supersonic flow of the

interstellar medium an interaction region is formed. This re-

gion is bounded by the bow shock that decelerates and com-

presses the interstellar medium flow and by the termination

shock that decelerates and compresses the solar wind flow (see

e.g. Baranov et al. 1970, 1976; Baranov 1990). Between these

two shocks there is a region with a strong transverse gradient

of the velocity component parallel to the shocks. This region,

called the heliopause, can be, and is often, modeled as a sort

of a tangential discontinuity separating the decelerated inter-

stellar medium and the solar wind. A similar region is formed

when two stellar winds collide in a binary star system (see e.g.

Myasnikov & Zhekov 1991, 1993, 1998).

To our knowledge, the heliopause stability was first treated

by Fahr et al. (1986). Following that work, the problem of the

heliopause stability received a considerable attention in the lit-

erature. A recent review of the studies on the heliopause stabil-

ity can be found in Ruderman (2000).
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Fig. 6. Maximum growth rate, γM = maxα[γ(α)], as a function of R for six values of s. The solid, dashed and dotted curves correspond to

s = 0.01, s = 0.1 and s = 0.5, respectively, in the left panel, and to s = 2, s = 10 and s = 100, respectively, in the right panel.

Fig. 7. Graphs of H = H1(α) (upper curves) and H = H2(α) (lower curves) for several values of s. A normal mode with the wavenumber α is

unstable if the point (α,H) is in the region between the curves and stable otherwise.

Fig. 8. Maximum growth rate, γM = maxα[γ(α)], as a function of H for six values of s. The solid, dashed and dotted curves correspond to

s = 0.01, s = 0.05 and s = 0.2 respectively in the left panel, and to s = 1, s = 10 and s = 100 respectively in the right panel.

In their study, Fahr et al. (1986) discussed, in particular, the

effect of the interstellar magnetic field on the heliopause sta-

bility. They considered a portion of the interaction region close

to the apex point. In this portion, the flows of the decelerated

interstellar medium and the solar wind are strongly subsonic,

and hence the fluid can be treated as being incompressible. The

heliopause was modeled by Fahr et al. (1986) as a true disconti-

nuity and, thus, they applied the stability criterion for an MHD

tangential discontinuity in an incompressible ideal fluid. If one

neglects the magnetic field of the solar wind then, according

to this criterion, the discontinuity is stable if and only if the

velocity jump at the discontinuity, Vm, satisfies the inequality

Vm < VKN = B0

√
(ρ1 + ρ2)/(µρ1ρ2).

A typical value of the density ratio of the solar wind and

the interstellar medium compressed at the shocks is s = 0.01.

The velocity variation, Vm, through the heliopause ranges from

zero to about 75 km s−1 in the portion of the interaction re-

gion where the flow can be considered as incompressible (see
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e.g. Baranov et al. 1976; Ruderman et al. 2004). A typical

value of the electron number density in the interstellar medium

is about 0.1 cm−3. Since the bow shock is supposed to be

weak, this value can also be taken as being typical for the

electron density in the interstellar medium behind the shock.

From here the density of the interstellar plasma is estimated as

ρ1 ≈ 1.7 × 10−25 g cm−3. Given this, we obtain by using the

stability criterion for a true discontinuity, Vm < VKH, that the

portion of the interaction region where the flow can be consid-

ered as incompressible is stable if and only if the magnitude of

the interstellar magnetic field, B0, is greater than about 10−6 G.

There are indications that the fields of such a magnitude or even

of greater magnitudes exit in the interstellar medium (see e.g.

Frisch 1989).

However, if we relax the assumption that the heliopause is

a true tangential discontinuity and instead use the continuous

model of the present paper then the stabilization result is quite

different. In the continuous case, the heliopause is stable if and

only if Vm < Vc = B0/
√
µ(ρ1 + ρ2), see (28). Therefore, for

the heliopause to be stable, B0 has to be greater than about

10−5 G. The magnetic field of a lower order of magnitude

can destabilize the heliopause. This can be seen, for instance,

from Fig. 8 showing the maximum growth rate of the normal

modes, γM, as a function of H. For s = 0.01, the function

γM(H) attains its maximum at H ≈ 0.205. From (19) it fol-

lows that for this value of H the value of B0 varies from zero to

about 5 × 10−6 G when Vm is varying from zero to 75 km s−1.

Consequently, the stability threshold for the magnetic field of

the heliopause predicted based on a true discontinuity assump-

tion, i.e., B0 ≈ 10−6 G, is by one order of magnitude lower than

that obtained within the present continuous layer model, i.e.,

B0 ≈ 10−5 G.

6. Summary and conclusions

In this paper, we studied the linear stability of a simple shear

flow of an incompressible fluid with a continuous piecewise

linear velocity profile in the presence of gravity and magnetic

field. An explicit expression for the dispersion equation gov-

erning the linear flow stability was derived and its main prop-

erties were investigated. We treated separately the case where

there is gravity but no magnetic field, and then the case where

there is a magnetic field but no gravity. An analytical and a nu-

merical approaches were combined to obtain the neutral curves

in the wavenumber–Richardson number plane in the first case,

and in the wavenumber–inverse squared Alfvénic Mach num-

ber plane in the second case. We also analysed the depen-

dence of the growth rate of the unstable normal modes on the

Richardson number in the first case, and on the inverse squared

Alfvénic Mach number in the second case.

The most interesting result obtained in our analysis is that

introducing a transitional layer with the varying velocity mag-

nitude in place of a true tangential discontinuity destabilizes

the flow. The flow without a transitional layer (MHD tangen-

tial discontinuity) is unstable if and only if the velocity jump,

Vm, is greater than the Kelvin-Helmholtz threshold velocity,

VKH, whereas the flow with a transitional layer is unstable if

and only if Vm is greater than a lower threshold, specifically

Vm > Vc, where Vc =
√

sVKH/(1 + s) < VKH, with s being the

density ratio of the magnetic-free and magnetic domains of the

flow.

We applied the results to the stability of a strongly subsonic

portion of the heliopause. Our main conclusion is that the pre-

viously obtained estimates for the interstellar magnetic field,

B0, required to stabilize this portion of the heliopause have to

be revised. The presence of a transitional layer increases the es-

timate for the value of B0 by one order of magnitude in compar-

ison to that obtained on the basis of modelling the heliopause

as a tangential discontinuity.
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