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Abstract This paper compares several publishedhoas for clustering chemical structures,
using both fingerprint-based amgaph-based similarity measures. The clusterings from each
method were compared to determine the degrfeeluster overlap. Each method was also
evaluated on how well it groupedrgttures into clusters posseng a non-trivial substructural
commonality. The methods which employ adjustgtdeameters were tested to determine the
stability of each parameter for datasets of varying size and composition. Our experiments suggest
that both fingerprint-based amgraph-based similarity measurean be used effectively for
generating chemical clusteringsijdtalso suggested that the A method, suggested recently for

the clustering of gene expression patterns, aigp prove effective for the clustering of 2D

chemical structures.

INTRODUCTION

Cluster analysis methods areedsto identify groups, or cltexys, of similar objects in

multivariate dataset. In brief, a cluster analysis inves the following components: a set of

objects, each of which is represesh by one or more attributes; a measure of the similarity (or
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dissimilarity or distance) between pairs of objects, between an object and a cluster, or between a
pair of clusters; and a clustering method that processes the similarity data to identify groups that
are (hopefully) both homogeneoaisd distinct. The reader shouldte that there may be several

different algorithms that can implement a marfar clustering method; for example, Rohlf

reviews a range of algorithmfor the single linkage method, which is an hierarchic
agglomerative method that fuses pairs of clusters on the basis of the objects, one in one cluster

and one in the other, that are most similaeach other. Many othenethods, conversely, are

defined solely in algorithmic tersn e.g., the Jarvis-Patrick methddhat has been extensively
used in previous studied chemical clustering and that iseonf the methods considered later in
this paper.

Biological taxonom§ provided the basis for the devetent of many of the clustering
techniques that are available today, but thase now used in a wide range of application
domains, with the current interest in datanimgy spurring the introduction of many new methods.

Structural features provide an obus source of attributes for chexai applications of clustering

but early studies of the use of such featutekwere restricted to very small datasets. An

extensive series of studies by Willett and cokeos in the early and mid-Eighties (as reviewed

in 9) demonstrated the use of large-scale clusgeior the selection of compounds for biological

screening and for the processingsabstructure search outpundahighlighted the Jarvis-Patrick
method as providing an appropriate combinatioeftectiveness and efficiency. Later wdr
12 demonstrated the greatdfeetiveness of Ward’s methotB and the availability of improved

algorithms for this method4 have allowed it to join Jarvis-Patrick as the most widely used
clustering method for chemical applications.

The structural features that are normally used in chemical clustering are the fragment
substructures encoded in a fingenprio enhance the efficiency @D substructuresearching.

The similarity between two molelas is then computed as a ftioa of the number of bits (and

thus fragment substructures) that are commothéofingerprints represeng those molecules.

The Tanimoto coefficient is generally used ttcakate such similaritiebut there are many other

coefficients that can be used for this purpo&engerprint-based similarities can be calculated



extremely rapidly and have been found to penfaeasonably well in practice, but there are
many other ways in which one might seek to gifathe structural relonships between pairs

of molecules15 One such approach uses a maximum common subgraph isomorphism
algorithm to identify the largest substructure common to a pair of molecules, with the size of this
maximum common substructure (MCS) being dateed by some function of the numbers of
constituent atoms and/or bonds. This providesatural way of callating the degree of
similarity between a pair of molecules buetNP-complete nature of the maximum common
subgraph isomorphism problem has ruled out thgelacale use of MCS-based similarities. We

have recently described a new MCS algorithmledaRASCAL, that is sufficiently rapid in

execution to permit graph-based similasgarching of large chemical databas®s17and that

seems to provide a viable complement, or eamnalternative, to existing, fingerprint-based

approaches to virtual screenihg

Given the close relationship that exists between similarity searching (where a single target
molecule is matched against each of the mddscin a database) and clustering (where each
molecule is matched against every other molegule database) this per seeks to assess the
suitability of graph-based similarity measures for chemical clustering and to compare their
effectiveness with that of fingerint-based measures. The natural starting point for such an
evaluation is to take the current clusteringhoes of choice (i.e., Wardimethod and the Jarvis-
Patrick method, for which there &@ready a large body of practicaperience) and to use them

to process graph-based similarities, withe thesults from conventional fingerprint-based
similarities providing a benchmaof comparison. However, weave taken the opportunity to
consider several additional clustering methodg oihwhich has been designed specifically for

use with graph-based measures of chemical similarity.

GRAPH-BASED AND FINGERPRINT-BASED CLUSTERING
Terms And Definitions
All graphs referred to in the following text aresamed to be simple, undirected graphs. For an
introduction to graph-related conds@nd notation, the reader igeeed to a standard text on



graph theory such as the recent book by DidstelA graphG consists of a set of vertic®$G)
and a set of edgds(G) representing lines connecting all or some of the verticé@). A
subgraph of G is a graph whose vertices and edges are subs@paserving the connectivity
between the vertices and edges. maximum common edge subgraph (MCES) is a subgraph
common to two or more graphs consisting & targest number of gds possible. Figure 1

illustrates the MCE$;, between two molecular grapds andG..

In this paper, two different types eimilarity measure are investigatdéeature-based measures
andcost-based measures, these correspondinghe use of fingerprintand of structure diagrams
(i.e., 2D chemical graphs),ggectively. In feature-basedeasures, a set of feats or invariants

is established from a structuralsdeiption of a graph, and these i@@ts are then esd in a vector
representation to which variousstince or similarity coefficients can be applied. Similarity

coefficients obtained using the fae¢-based approach are functimighe relative number of bit

positions that are set in each fingerprint (as reviewed by Watlett 19). For instance, the well-
known Tanimoto coefficient is given a#(atb-c) wherea andb are the number of features
present in the two structures being comparedcasdhe number of feates in common between

the two structures. In our experiments, theueabased measures areccddted using Daylight

fingerprints, which have been shown previouslype effective in chemical database studfés

In cost-based measures, the similarity lestv two compounds reflectse number of edit
operations that are required in order to transform one structurdl mntapthe other. Recently, an
efficient cost-based method based on theB8Cand called RASCALhas been publishekf: 17
RASCAL can be used with the same similaritgimient formulae as are used with the feature-
based methodk8 , the difference being that the sizeeaich graph is used to replace the number
of features representing each structufderefore, the size of the MCES graBh replaces the
number of features ioommon, and the sizes of the two molacgraphs being compared replace
the number of bits set in each respective fingetpriFor example, the Tanimoto coefficient is

given as|G,,|/(G,|+|G,| -|Gy]) -



In its simplest form, the graph size is deterad by treating atoms and bond pairs equally (i.e.,
G| =]V (GL,)|+|[E(Gy,)|). However, it has been fourkP that the RASCAL approach better

approximates a chemical notion of similarity using
V(Gp)|+ B-(1-a-(n(p.G)- 1)) |EG,,)
for |G12, and
V(G)|+ B-|[E(G)| and|V(G,)|+ B-|E(G,)
for |G4] and 5,|, respectively. The function(p,Gi2) represents the mber of unconnected
subgraph components in the MCES 4) containingp or more edges: if all subgraphs have fewer

thanp edges, then(p,G12) will be assumed to be the totaimber of subgraph components. The

constant g reflects the additional wgit assigned to matched bomairs with respect to

compatible atoms, and the constanis a penalty score for eacimconnected component present
in G12. It has been found that values pE3, «=0.05, and #=2.0 are effective in discerning
chemical similarity, and are usedall of the experimets reported here. The current analysis also
uses strict atom and bond typing so that ontyrst and bonds of the same type can be matched,
e.g., chlorine cannot match to flucein It may be possible to ingre the results of a graph-based
method by allowing some “fuzziness” in the catipility between thevarious atom and bond

types, but this prospect ot investigated here.

Clustering M ethods
Five different clustering mbods were evaluated in thigudy. Two of them (Ward'd3 and

Jarvis-Patrickd) are well-known within the chemical imfmation community and have previously
proven effective for the clustering of chemicalustures. The other three have been selected
from the clustering literature dming new to the clustering chemical structure databases and
hence appropriate for evaluation. cBanethod is described briefly belothe reader is referred to
the original publications for dails of the various proceduresin addition, the algorithm of

Umesh2l was also investigated, but in preliminary investigations it proved inferior to the others
tested and was therefore omitted from further consideration.

Ben-Dor et al. (CAST)22 The CAST method is based an approximate clique-finding
algorithm that avoids much of the costly enumerahecessary in tradihal algorithms, and that



uses a threshold parameterto establish cliques of mutually similar objects. Adjustable
parameter(s)t.

Jarvis-Patrick 3: This clustering mtaod uses a table df nearest neighbors for each
object being clusteredand then sequentially mergetusters which have at leakt nearest

neighbors in common. Adgtable parameter(sk andk:.

Raymond-Willett 23; This method is based on a greedyoaithm that establishes clusters
using a technique involvinigne graphs. It is a fuzzy clusteripgocedure in that it allows for the
possibility of overlapping clustersising three adjustable similarity thresholds. Adjustable
parameter(s)S S, andS,.

Ward 13; This is Ward’s well-known hierarchicalustering method, which establishes a
hierarchy of clusterings wherel®ach level in the hierarchypeesents a unique clustering. A
representative clustering is typically selectsing a rapidly calculable cluster validation index.

The use of cluster validation indices in conjuotwith Ward’s algorithm has been studied in

detail, and it was found that Kelley’s validation ind&was among the best of those tes#€d
In our studies, Ward’s method will be useddonjunction with the Kiéey index. Adjustable
parameter(s)none.

Yin-Chen 25 This approach is basilly a two phase threshotdethod. It uses a built-in
constant for thresholding as published, but weehBbund that convertinghis constant to an
adjustable parameter affords significantly greater flexibility (a value of equal to 0.5 is
equivalent to the originally publisdenethod). Adjustable parameter(g):

PARAMETER OPTIMISATION
Methods
To evaluate the relative quality of the clustgs resulting from the vanus methods, we compare
each calculated clustering with a reference clusgeof the same data. In our experiments, we

have used the seven datasetsd in a previous evaluatiofi cluster validation indiced0 as well

as two additional datasets created specifically fesertrials. The characteristics of each dataset
are summarized in Table 1. Each dataset was riarmhastered in order to establish an ‘ideal’
clustering. This procedure is obugly subjective to a certain degrbut, we believe, represents a

reasonable partitioning of the structures. Fouthef datasets were taken directly from the NCI



anti-HIV database. The are taken from the Pfizer corater compound colleicin, and the two
final datasets are a subset of the ID Alert base. These datasets represent various possible

scenarios that may arisearpractical application.

NCI-A and NCI-B contain multiple distinct, butrsilar, structures, and NCI-C and NCI-D contain
a more random assortment of structures. PB-A diverse set of compounds determined to be
active in a high-throughpucreening assay, amD-Y and PD-Z are conmatorially synthesized
compounds derived from a single scaffold for a sipgtgect. The clustersontained in ID-1 and
ID-2 are diverse in that som# the clusters contain closelelated compounds while others
contain more loosely related compumls. Some clusters are struatly related toother clusters,
and other clusters are distintbm all other clusters. Eactiataset was evaluated for self-
similarity by calculating the arage nearest neighbor (ANN), aage farthest neighbor (AFN),
and the overall average similarity for all neighb@k&\N). The results are listed in Table 2. As

previously mentioned, the combinatorial s#itsplay a marked degree of self-similarity.

In this paper, we use two separate methods to evaluate the clusterings resulting from each method

by comparing them with a referee clustering. The first corapson measure is the well-known

Jaccard coefficier#® given as:

ICLC) =
where c is the number of pairs of structures tishiare a common cluster in both respective
clusterings €, andCy,), a is the number of pairs of structsrthat share a common cluster in the
first clusteringC,, andb is the number of pairs of structurdst share a common cluster in the
second clustering,. The Jaccard measure ranges froeno to one, where zero indicates a
perfect mismatch and one indicateperfect match. In our studig€3, will indicate the reference

clustering for a particular dataset, a@gwill represent the calculkadl clustering resulting from

each method.

The second comparison measure is based endistance between twdusterings using an

assignment procedure, where the distance camebarded as the number of misclassified

structures when a calculated clustering impared to the reference clustering. Gusfifchas



proposed a method whereby the distance between two clust&iraggl C, is calculated using

D(C,,C,) =|N|- A(C,,C,), whereN is the set of structures in the reference cluste@n@gnd

A(C1,C,) is the value of the assignment of the clusters from clust&xing clusteringC..

The value ofA(C1,C,) is calculated by first constructing an assignment matrix where each row
corresponds to a unique clusterGp and each colump corresponds to a unique clusterGpn

The value of each elementij) in the assignment matrix consististhe number of structures that
clusteri and clustej have in common. The value AfC1,C,) then corresponds to the value of the
linear assignment of theessignment matrix. A linear assignment is a subset of elem@nits the
assignment matrix whose sum is the maximuraspme subject to the constraint that no two
selected elements can be located in the sameorathe same column in the matrix. Efficient

algorithms exist for this procedué8: 29

Results

With the exception of Ward'’s, alif the clustering methods considdrin this study involve the

use of adjustable parameters. This presanfgoblem for the general application of these
methods since, in order for a panlar clustering method to beefsl to the general practitioner,

the user must have some idea of what parametieies to use with each method for a given
problem. This raises two questions. What is a good ‘rule of thumb’ value to use for each
adjustable parameter for a given problem? #ese values consistent from one problem to
another? To be an effective general pueposethod, it must be possible to determine a
representative value for each parameter forvargclustering method, and these representative
values must be consistent across similar gl The less variable clustering method’s

parameters are, the easier it is for non-exyegts of the method to apply it in practice.

To determine the most appropriate values for each methods adjustable parameters, we have run

several optimization experiments. Theseduthe ScatterSearaptimization procedur80, 31
with the objective functionto be minimized being ¥C;,C,) andD(C1,C,), respectively, where

C, is the manual reference clustering &@ds the calculated clustering.



Fingerprint-based clustering

The optimization procedure was performed fax @AST, Jarvis-Patrickand Yin-Chen methods
for all nine datasets using faht fingerprints and the Tamoto coefficient. The Raymond-
Willett algorithm has not been included in this gs& because it proved to be ineffective for use
with fingerprint-based similarity coefficients. iBhis hardly surprising as it has been designed
specifically for the processing of graph-basedilsinty measures. In addition, Ward’s (using the

Kelley level selection index) algithm was included to serve #s benchmark method due to its

success in previous analys¥® The results of the optimizati study are presented in Table 3,
which lists the optimal value for each adjustapéeameter as well as the corresponding Jaccard

and Gusfield score for theswting calculated clustering.

Table 3 shows that the CAST, Jarvis-Patricld &m-Chen methods all performed substantially
better than the benchmark Ward’s/Kelley methdthe resultant objective function values for the
Jaccard and Gusfield measures for the optimaterisisvere also relatively consistent between
methods. Further inspection of the data, howenermreals that the adjustable parameter values
corresponding to the optimal clusterings for JaRagrick display considable variabity with
respect to the various datasets,well as between the Jaccard and Gusfield objective functions.
This indicates that while the Jarvis-Patrick method isabkgp of producing high quality
clusterings, it does not appear that there esdgtsedictable range for each adjustable parameter
that would provide an optimal or near-optingdistering with any dege of confidence. The
reason for this is that the other methods testaerate on the values of the pair-wise similarity
coefficients directly, whereas Jarvis-Patrickegies on the orderedstliof nearest-neighbour
rankings. If the relative aes of the clusters present in théadaary widely, then a particular
nearest-neighbor ranking cut-off that works well for a cluster of particular size may not work well
for another cluster of a markedly different sizéor this reason, JasvPatrick will tend to

perform best when the clustene approximately the same size.

This contrasts with the CAST and Yin-Chen hwogts, where we consider the datasets containing
diverse sets of compounds separately froenctbmbinatorially generated compounds possessing a
common scaffold. The CAST method demonstradatively narrow ranges of values for which

its adjustable paramete provides optimal or near-optimal clusterings. For instance, the value



of t ranges from 0.713 to 0.766 with an averag®.@#0 for the combinatorial sets (PD-Y and
PD-Z) and from 0.284 to 0.486 with an averag®.884 for the diverse datasets. Like the CAST
method, the Yin-Chen method also exhibits ubstantial degree of consistency between the
optimal clusterings resulting from the Jaccard and Gusfield objective functions. However, it does
not display the high degree of consistency with eesfo the various dataseexhibited by CAST.

The higher values associated with the comlbimalt sets are conspicuous, but the level of
consistency noted between the diverse dataggtGAST algorithm isn’t present with Yin-Chen,

as the value of; ranges from 0.373 to 0.799 for these datasets.

While it is not possible to alm that one clustering method ike ‘best’, epecially when
evaluated on a limited number of datasetapjtears that the CASTiethod can be used by non-
experts with a reasonable degree of confidethad the resulting clusters will represent a
reasonable facsimile of a chemsstiotion of a chemical serie®ased on the data presented in
Table 3, it is suggested thatrule of thumb’ value fo€CAST’s adjustable parametewhen used

in conjunction with Daylight figerprints and the Tanimoto dbeient is approximately 0.38 for
diverse sets of compounds add@4 for combinatorial sets posseig a common scaffold. The
value of 0.38 for diverse sets of compounds isirdaresting discovery considering that the
threshold parameterfor the CAST algorithm is simply an average similarity threshold. CAST
iteratively increases the size af cluster by adding a compound da existing cluster if the
average similarity between the compound and all other compounds in the cluster is greater than

The value of this cluster similarity threshold value is in marked contrast to those established for

similarity searchingl8. This is due primarily to the faghat clustering uses all pair-wise
similarities between objects in a cluster, whiehds to mitigate the esence of inappropriate
pair-wise similarity values; whereas, similarggarching only considers the pair-wise similarity
values between the query compound and the database of compounds, ignoring the potentially
compensating information contained in the iknties between all othe compounds in the

database.
Graph-based clusterings

The optimization procedure described above thas applied to the RASCAL-derived, graph-

based similarities, as detailed in Table 4. RASCAL similarity measwe requires the use of a
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minimum similarity index threshold\Sl, for which a value of 0.6 (for the Wallis coefficient,

which is the graph form of the Tanimoto coefficit®twas used for experiments involving the
CAST, Jarvis-Patrick, and Yin-Chen method&he value of 0.6 was found to be low enough so
as not to affect the results of these methods contrast, the Raymond-Willett method is
dependent upon the selected valudi&, where it is used in lieu of the adjustable param@ter
It was found that an MSI value 6f7 and 0.85 worked well for tliverse sets and combinatorial
sets (PD-Y and PD-Z), respectivelAs a note, since the use of S threshold in RASCAL
omits pair-wise similarities legban the threshold from furtheonsideration, it was assumed for

the purposes of the CAST method that any missingjarity values had a value of 0.5. The use

of a threshold enables very stéstial reductions in computatiok:17but is a limitation when
used in a clustering context especially whas, here, many different datasets need to be

processed.

The results of the experiments with the RASCgimilarities show many of the same patterns
observed with the fingerprint similarities. Adtugh the Jarvis-Patrick method demonstrates more
consistency with respect to the adjustable ipatars when used in conjunction with RASCAL
rather than fingerprints, it still exhibits movariability than is desable for a general purpose
procedure. The CAST, Raymond-Willett, anch3Chen methods demonstrate similar objective
function results for each of tha@atasets; however, CAST showse most consistency in its
adjustable parametet, ranging from 0.752 to 0.803 witlan average of 0.769 for the
combinatorial sets (PD-Y and PD-Z) and frén®11 to 0.584 with an average of 0.540 for the

diverse datasets (all others).

In comparison with the graph-bakelusterings, the fingprints scored condisntly higher on the
combinatorial sets possessing a common scaffold (PD-Y and PD-Z) as well as two of the NCI
datasets (NCI-C and NCI-D). It is interestingnite that these sets possess the most subjective
clusterings as the differences between the clustetse combinatorial sets are subtle and the
clusters in NCI-C and NCI-D tend to be more lelgsrelated (not necesdgrdirect structural
analogues). For the ID Alert datts (ID-1 and ID-2), the goh-based clusterings outperformed

the fingerprint-based clusterings: these clustarddd to constitute structural analogues with the

11



characteristics that some clusters are distinct from all other clusters, but there are also clusters
that are structurally related to other clusters in the dataset.

MANUAL INSPECTION OF CLUSTERINGS
Methods
Although the quantitative comparisons described algdxe an objective ssessment of behavior
in somewhat contrived situations, we wanteddmpare the methods in a situation more closely
related to a practical task. Oakvious application of such methodso generate groupings that
might be designated as “series” in a mediciclzemist’'s perception. This corresponds to a
common task in the conduct of HTS protocols wehigpically an initial large and diverse set of
primary hits must be organizedrfanalysis. To simulate thistgation, a customized collection
of 1325 diverse drugs and drug candidates covexibgpad spectrum of énapeutic classes and
chemical types was used as a dataset. Eeathod was applied using the optimized parameter
settings determined above to partition the sktta Several known classes were then examined
with the following questions in mind: how efteely were the compoundgrouped; were there
situations where one method svasuperior to another; andias there any evidence for
complementarities between methods in difficcdises? Since the performance of the graph-
based methods was of special interest in this work, groups were chosen for examination where an
MCES-based approach might be expected toopmriparticularly well; in addition, cases were

sought where differences might beected from a fingerprint method.

It bears repeating at thautset of this part of the discussitimat, although thgroup selections

were driven by the commonality of their biologiagffects, the methods being used here for
partitioning use only topological chemical infortiaa. Thus, it is the effectiveness of grouping

by chemical class that is most central; if biological commonality is also observed then that is a
fortuitous, but not critical, faot in the determination of effectiveness. The following classes
were chosen for illustration: tetracycline antibiotics, angiotensin antagonist antihypertensives,
calcium antagonist dihydropyiites, antifungal agentsp-lactam antibiotics, angiotensin

converting enzyme (ACE) inhibite and opiate analgesics. Faach of the groups, the cluster

12



membership and frequency are given for WaKgdey, Jarvis-Patricl6:10, and CAST using
Daylight fingerprints, and CASTising RASCAL similarities, in each case with the parameter
settings derived from the first paot the study. What is of intest here for a determination of
effectiveness is the number ofisters required to include all méers of the series (and number
of singleton members) and the degree to which sacies is cleanly discriminated from other
compounds in the dataset, i.eg thumber of “non-series” compounidsclass clusters. Further,
could subsets be perceived or were “extranecosipounds “interestingin any sense? A
summary of the observations oresle series is given in Tabefor the compounds listed in
Table 6. For each class or major subclasamexed, the number of members and the ANN
similarity (Tanimoto using Daylight fingerprisit as an indication othe diversity of the
collection are recorded. This is followedr feach method, by the number of clusters and
singletons, the size of the largest single clusterthadpurity of that cluster. An ideal result

would be a single pure cluster with singletons for each grouping of interest.

Results

The first three classes have large and comnmmantemplates. They show a decreasing level of
internal similarity as measured by their meaanest neighbor similarities. The tetracyclines,
with their unique and characteristic templare efficiently grouped ahdiscriminated by all
methods. The smaller and somewhat more déveilsydropyridines are s effectively grouped

by all methods except for one analog which is cjeasubstantial structural variant from the rest
and is a singleton in all metds. The RASCAL method alsoilfato include one additional
analog which is grouped appropriately by all giker methods. This compound, nilvadipine,
differs from all the others by kieng one of the ring methyl groups replaced by a cyanide group.
The common substructure method might have been expected to be the most sensitive to this
minor structural change. Thagiotensin-2 antagonists show a véoy internal similarity by
fingerprint methods: clustering $&d on fingerprints might hence brpected to find these too
far apart to group, irspite of the presence of the biplyk tetrazole as a large common
substructure. Indeed, the Ward’s method failgrmup these compounds at all, while the Jarvis-
Patrick and CAST/Daylight methods do findsabset of three compounds to group. These
compounds, however, are grouped with other class compounds as shown by the low purity
of the clusters. The commonality that is keygdn appears to be a smaller fragment related to

13



the benzyl imidazole moiety tfger than the “pharmacophoric” ghienyl tetrazole. This is
deduced by examining the non-class compountglieved. The RASCAL method does what is

expected and groupd éive appropriately.

The next two groups represenherapeutic groupings whiclkeach contain two clearly
recognizable structural subsses. In the case thie antifungalsthe two classes ka very little

in common structurally. The conazoles, afl which are characterized by an elaborated
phenethyl imidazole or triazole moiety are gred cleanly by all methodddowever, the Jarvis-
Patrick method is the only one to get all of them into one cluatard’s method fails to include
four which appear as singletons, while the @AST methods break thgroup into two or three
clusters, respectively, with RASCAgenerating the most partiis. The four compounds of the
nitroimidazole subclass are grouped into alsimfuster by all methods except RASCAL which
misses one as a singleton. In this group,etherone extraneous compound included by all
methods. Upon examination, thigried out to be an antitumoandidate which also contained
the nitroimidazole moiety and which was athise quite similar tothe compounds in this
subset. The Jarvis-Patrick and CAST/Daylighgéthods also put these same five compounds
cleanly into their own clustemvhile Ward’s method failed to discriminate them from a large
number of other small compounds. The extanpound included is correct from a chemical

viewpoint, if not from a biological one.

The B-lactam antibiotics are slightly more complicated in that, in addition to the well recognized
subclasses of the cephalosporins and penicilvhgh themselves have a high degree of internal
similarity, there are five additiondd-lactams more distantly related structurally. The internal
similarity, except for the misceli@ous class, is much higher thfan the antifungal subclasses.
Here, there is a clear difference between th&SCAnethods and the Ward’s or Jarvis-Patrick
methods: the former tend to group the two sugsea together, with CAST/Daylight being more
efficient (one clean cluster as against three or two for RASCAL on cepballus or penicillins,
respectively). Ward’s gives a high number ofgéétons for both subclasses as well as multiple
clusters; Jarvis-Patrick gives @mlean cluster for all cephalospm and three for the penicillin
analogs. Neither of these latter methods migenicillins and cephaporins at the default

settings selected. The miflaeeous class compounds are eitBergletons or members of
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larger, undifferentiated clusters in all metls. Surprisingly, RASCAL generated more
subclusters than expected. This is basicalljpéetting” of the sort more commonly observed in
Ward’s method (as seen here also). Howeverahaif these smaller clusters contain the same

compounds across methods.

Peptide-like drugs represent a challenge &otomated series organization methods. We
examined the behavior of these methods wita set of 17 ACE inhitors present in the
collection. Interestingly, Jarvis-Patrick gave thest result. It grouped 12 of the 17 into one
cluster with only two other non-class compounds.uBset of four, also segregated by all of the
other methods, was grouped into a second cMssh, however, was not very pure (22%).
Captopril was a singleton. The small clasdaifr was cleanly found by Ward’s, but not by
CAST/Daylight (38%). RASCAL groups a differesubset of 13 together, but at low purity
(50%). The non-class compounds in each easgrimarily non-peptide drugs, not compounds

from other peptide classes. The operational commonality keyed on appears to be related to the

region of the ACE inhibitors includg the phenylalanine-derived moiety.

As a final example, the structurally complexssaf opiate drugs was examined. This collection
does not include any of the peptide opiates|, the one kappa compound was excluded from the
comparison leaving 37 compounds. Not unexpdgtesdl methods split this collection into
several clusters. Both Ward’s and Jarvis-Ehtrsolated clusters of ten and eight compounds
that cleanly contained naturalgaluct analogs related to morphintn addition, a smaller clean
cluster of four compounds witlelated polycyclic structures wdound. The two CAST methods
gave larger single clusters (23 for CAS&light and 24 for RASCAL), which grouped the
compounds in all three of these clusters togethut at the expensa including non-class
compounds (purities of 72% f@AST/Daylight and 57% for RASCAL). Examination of the
incorrect compounds surprisinglyshed that several estrogenic compounds had been included.
This led to the conclusion that the substrietkeyed upon by the CASmhethods isolated the
phenol and alicyclic carbon ring systems but didinolude the tertiary jperidine substructure
characteristic of the opiate analgesics. The m@mg compounds in this class are the simplified
piperidine analogs of morphineéSmall subsets of these are @&eld by the fingerprint methods,
but most fall into undifferenttad clusters in all methods.
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Discussion

Several conclusions can be drawn from the obsenaabove. When series are characterized
by relatively large or unique ring templates, all methods tend to group their members effectively.
There is a suggestion that tRASCAL method may do a bettayl if the internal fingerprint
similarity of the collection to be groupelops too low (angiotensin antagonists). PHactams
and opiates illustrated an interesting differebeéween Ward’'s and Jarvis-Patrick on the one
hand and the two CAST methods on the othere fbhmer methods achieda finer but cleaner
grouping of related structures bigh complexity at the cost @jenerating a larger number of
clusters, whereas the two CAST methods foumgibres of commonality that could consolidate
these subgroups, but at the exgeatpurity or diminished covega. This suggests that further
examination of the appropriate option settingstfe latter methods maye necessary to tune
these for particular types of structures. Wieady know that this ithe case for the better-
studied Ward’s and JarvRatrick methods, especially wheppdied in a single pass to datasets
with high structural diversity. In particulathe Ward’'s/Kelley method we have used typically
chooses a level where there is one large cly8@#%50% of the dataseth the first pass on
datasets with the sort of divéysrepresented here. This accaufdr the cases in Table 6 where
there are very low purities for Ward’s method avitere recursive clusteriraf this large cluster

IS necessary to generate additional groupings for stoueturally similar classes. Collections of
small compounds with relatively simple structucammonality are still nog¢asily differentiated
by any of the methods. The Jarvis-Patrickhodtperformed quite well asss the board in this
study, but the newly proposed CAST/Dayii method also did quite well.

The graph-based RASCAL methogsnerally did not perform asell as the fingerprint-based
methods in partitioning this large and strucliyraiverse 1325-member thset in the desired
manner. Examination of the compound groupisgggests that the substructures keyed upon by
this method are more akin to queries tharf'deries templates” in many cases, resulting in
decreased purity in the groupings. A better strategpartitioning such datasets might be to use
a fingerprint method for the initial partitioningié then to apply RASCAL to the clusters to
extract a more appropriate MCES for that groupifgally, it must be pated out that none of
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these methods can be expected in general to group compounds efficiently based on

pharmacophoric patterns, even if thedattave a largeopological content.

CONCLUSIONS

Most approaches to the clustering of 2D cloaindatabases structures have been based on
similarity measures calculated using fingerprinpresentations of chemical structure. In this
paper, we have discussed clusterings that asedban similarity measures calculated using graph-
based representations. Specifically, we havdiepur recent algorithm for the identification of
maximum common edge subgraphs to the calanatf inter-molecular siffarities based on the
graph similarity coefficient of Wallis; theseimilarities have then been used for the
implementation of several different clusterimgethods, with comparable experiments being

carried out using a conventional, fingerpriattd Tanimoto-based similarity measure.

Two groups of experiments were carried out. Thet involved an extensive series of simulations
that were designed to identifyethmost appropriate parameter values for the various clustering
methods that were studied (CAST, Jarvis-kirRaymond-Willett, Yin-Chen and Ward’s), and
the extent to which these values were datdependent. These simulations suggested that the

CAST method of Ben-Doet al. 22 is the most robust of thestested. The second involved
consideration of the bawtivity of several sets of compounds, focusing principally on the ability of
the various approaches to highligheaningful chemical series oatasets comparable to those
resulting from HTS analyses. MNibvious advantage appeareddsult from the use of the more
sophisticated, graph-based similameasures when compareddanventional, fingerprint-based

measures.

We draw two principal conclusions from the study. First, while the results obtained from the use
of graph-based similarities are diéat from fingerprint-based similarities, there is no evidence to
suggest that one approach is gstemitly better than the other:akaapproach hass strengths and
weaknesses, and it may be thatrarestigation should employ both approaches to obtain a fuller
view of the structural relatiohfps present withim dataset. SecondetlCAST method warrants

further investigation as a potedttialternative to the Ward’snd Jarvis-Patrick methods for the
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clustering of chemical structeirdatabases; not only has it proveffective in the evaluations

carried out here, but it is alsofciently fast to permit the prossing of large chemical datasets.
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TABLES
Table 1. Characteristics ofdaliatasets use din the paramefgimization experimentsN||:
number of compoundsZ{|: number of clusters as determined by manual revig#wnpmber of

singletons,MW|: average molecular weigh®|:| average numberf rotatable bonds, %
percent of compounds satisfyittge Lipinski Rule of Five

U7

Dataset| N| IC4| S| MW | R | %L Source Comments
NCI-A 55 7 4 306 2.5 98| NCI Anti-HIV database distinct but similar cluster:
NCI-B 79 5 2 424 | 10.1 78 NCI Anti-HIV database distinct but similar cluster|
i d 4 . more subjective clusters thar
NCI-C 564 45 198 439 6.9 7 NCI Anti-HIV database for NCI-A and NCI-B
NCI-D 194 21 73 421 7.0 78 NCI Anti-HIV database random subset of NCI-C
PD-X 305 29 43 361 5.3 92  Pfizer compound Iibraryﬂ')l/_grse setfound active in
Pfizer combinatorial . .
PD-Y 345 | 13 7 389 6.0 96 compound derived from a single scaffolq
PD-z | 538| 68| 18| 441| 105 ot Flizer combinatorial derived from a single scaffolt
compound
ID-1 | 358 | 68| 41| 373 65 100 ID-Aledatabase collection of closely related
and loosely related clusters
ID-2 | 262 | 43| 24| 367| 54 100 ID-Aledatabase collection of closely related
and loosely related clusters

Table 2. Dataset similarities calated using the Tanimoto coefeit and Daylight fingerprints.
ANN: average nearest neighbor, AFN: averégthest neighbor, AANaverage of all

neighbors

Data Self-Similarity

Set | ANN | AFN | AAN
NCI-A | 0.818 | 0.077| 0.242
NCI-B | 0.916| 0.133| 0.40]
NCI-C 0.693| 0.027] 0.17]
NCI-D 0.616| 0.055| 0.164
PD-X 0.739| 0.082] 0.191
PD-Y 0.940| 0.425 0.623
PD-Z 0.922| 0.223 0.43
ID-1 0.708 | 0.059| 0.194
ID-2 0.714| 0.076| 0.201
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Table 3. Optimal Daylight fingerprint cltesings. In this table, the objectiveniction scores are highlighted in italicsxh# the corresponding

adjustable parameter value. Jaccard coefficients haen multiplied by 100 so that they range from 0 to 100

PD-X PD-Y PD-Z NCI-A NCI-B NCI-C NCI-D ID-1 ID-2
Ward's Jaccard Kelle 174 22.8 38.6 66.4 30.9 12.8 10.9 4.6 7.2
Gusfield y 200 212 246 14 41 329 115 256 175
CAST Jaccard t 0.344 53.0 | 0.715| 485 | 0.765| 54.7 | 0.355| 96.0 | 0.379| 100 | 0.407| 81.6 | 0.353| 77.1 | 0.486| 28.7 | 0.410| 43.9
Gusfield 0.285| 103 | 0.713| 104 | 0.766| 147 | 0.355| 5 | 0.379| 2 |0.347| 226 | 0.331| 77 | 0.472| 148 | 0.473| 85
v-C Jaccard 0.617 47.0] 0.902| 47.1 | 0.946| 53.6 | 0.373| 96.1 | 0.633| 100 | 0.692| 84.8 | 0.683| 86.7 | 0.799| 204 | 0.720| 58.3
Gusfield Y 0.609| 121 | 0.945| 140 | 0.937| 188 | 0.375| 5 | 0639 2 |0.633]| 222 | 0.659| 79 | 0.774| 186 | 0.720| 78
k 19 11 10 11 37 30 13 10 32
P Jaccard k 12 46.3 > 46.0 2 61.3 6 91.2 31 88.4 0 72.2 8 71.9 5 26.9 22 41.6
, k 26 37 17 15 35 28 8 7 14
Gusfield k 16 129 >3 132 9 172 11 5 o5 10 13 201 > 89 3 167 5 124

Table 4. Optimal RASCAL clusterings. In this table, the dbjedunction scores are highlightéditalics next to the coesponding adjustable
parameter value. Jaccard coefficients have badtiplied by 100 so that they range from 0 to 100.

PD-X PD-Y PD-Z NCI-A NCI-B NCI-C NCI-D ID-1 ID-2
car | Jaccard| | 0547 537 | 0.752] 37.0 | 0.767] 325 | 0.571] 866 | 0.511] 995 | 0.518] 50.1 | 0.513] 602 | 0584 58.2 | 0.537] 596
Gusfield 0.548| 112 | 0.752| 156 | 0.803| 246 | 0571] 9 | 0511| 4 | 0.516] 282 | 0.514| 95 | 0.578| 85 | 0.540| 67
v.c | Jaccard 0.879 47.7 | 0.937| 31.6 | 0.966| 23.7 | 0.633| 78.7 | 0.633| 995 | 0.828| 51.0 | 0.826| 52.7 | 0.874| 52.9 | 0.871| 84.4
Gusfield| ¥ [0.879] 138 | 0.935] 206 | 0.941| 307 | 0.633| 11 | 0.633| 4 |0.810] 308 | 0.835 104 | 0.875| 110 | 0.866| 59
k | 14 15 14 14 38 33 15 28 22
, Jaccard [ g 508 [—¢>{ 531 [ | 301 57| 940 || 792 g 487 | 500 g 423 g 423
. k | 15 15 16 14 38 9 7 25 18
Gusfield [—j——¢—| 158 |—¢— 136 g 250 3" 12 [—5o 18 [~ 350 51— 130 [ 170 5 139
S. |0.909 0.925 0.906 0.902 0.87D 0.910 0.96 0.48 0.8
. Jaceard ¢ 10565 | 52 [0.620] 2*! [0.508] 24 [0.533] % [0.540] 8 [0528] *°7 [0.401 571 0.610 636 0.479 s
. S, |0.909 0.967 0.920 0.902 0.87D 0.904 0.96 0.83 0.89
Gusfield 5 10.430] ' [0.455] 3 [0.496] ** [0533] ° [0.540] ° [0638] °*® [0.489 02 |58 gyl 0
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Table 5. Results of manuakipection of the various clustegs of the 1325-member dataset.

#Clusters/ #Singletons

Largest cluster

Purity of largest cluster(%)

Comments

Ward/ JarPat CAST/ CAST/ Ward/ JarPat CAST/ CAST/ Ward/ JarPat CAST/ CAST/
Class ANN Kelley (6:10) Daylight RASCAL | Kelley (6:10) Daylight RASCAL | Kelley (6:10) Daylight RASCAL
Tetracyclines 8 0.950 1/0 1/0 1/0 1/0 8 8 8 8 100 100 100 100
Ang2-1 antags 5 0.553 0/5 1/2 2/0 1/0 1 3 3 5 - 43 75 100
One cmpd is singleton in all
Dihydropyridines 13 0.777 1/1 1/1 1/1 1/2 12 12 12 11 100 100 100 100 |methods
Antifungasl 11 0.690 2/4 2/0 3/0 4/1
All methods include a
nitroimidazole antitumor
Nidazoles 4 0.610 1/0 1/0 1/0 1/1 1 80 80 75 agent
Conazoles| 0.735 1/4 1/0 2/0 3/0 100 100 100 100
*One cmpd from misc class
B-lactams 50 0.842 5/12 6/3 3/3 4/4 16 22 45 38* 100 100 90 76 included (loracarbef)
Smaller clusters are also pure
Cephalosporin| 22 0.874 3/4 1/0 1/0 3/0 12 22 45 17 100 100 49 45 in all methods
Penicillin| 23 0.895 2/3 3/0 1/0 2/1 16 17 45 20 100 100 49 53
Not grouped together or with
Misc. 5 0.453 0/5 2/3 2/3 2/3 1 1 1 - 13 50 33 other b-lactam clusters
ACE inhibitors 17 0.797 2/5 2/1 4/2 3/0 8 12 13 1 86 26 50
Largest clusters contain
morphine analogs; small
clusters are<50%pure for
Opiates 37(38) 0.856 4/5 9/5 5/2 4/2 11/10/8 10/8 23 24 2/100/100 100/100 72 57 CAST methods
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Table 6. List of compounds in eachthe seven activity classes.

Ang2 antagonists B-lactams cephapirin Opiates
candesartan aztreonam cephradine acetylnormethadol
irbesartan clavulanic_acid amdinocillin alfentanil
losartan imipenem amoxicillin buprenorphine
valsartan loracarbef ampicillin butorphanol
Proprietary compounc moxalactam azidocillin butylmorphine
cefaclor carbenicillin codeine
Dihydropyridines cefadroxil carbenicillin_indanyl dextromethorphan
amlodipine cefamandole carbenicillin_phenyl dezocine
felodipine cefatrizine cloxacillin dihydrocodeine
isradipine cefazolin cyclacillin ethylmorphine
lacidipine cefdinir deloxacillin etorphine
nicardipine cefixime flucloxacillin fentanyl
nifedipine cefmetazole hetacillin heroin
niguldipine cefoperazone methicillin hydrocodone
nilvadipine cefotaxime nafcillin hydromorphone
nimodipine cefoxitin oxacillin ketobemidone
nisoldipine cefpodoxime penicillin_ G levallorphan
nitrendipine cefprozil pecillin_V meperidine
oxodipine ceftriaxone piperacillin meptazinol
Proprietary compoung cefuroxime piridicillin methadone
cefuroxime_axetil pivampicillin methadyl acetate
ACE inhibitors cephacetrile sulbenicillin morphine
benazepril cephalexin ticarcillin nalbuphine
candoxatril cephaloglycin Proprietary nalmefene
compound
captopril cephalothin nalorphine
cilazapril Antifungals naloxone
enalapril Tetracyclines benznidazole naltrexone
enalaprilat chlortetracycline metronidazole oxycodone
fosinopril demethylchlortetracycline misonidazole pentazocine
indolapril doxycycline tinidazole pholcodine
lisinopril methacycline econazole prodilidine
moexipril minocycline fluconazole profadol
moexiprilat oxytetracyclia itraconazole propiram
perindopril rolitetracycline ketoconazole propoxyphene
quinapril tetracycline miconazole sufentanil
quinaprilat sertaconazole tilidine
ramipril voriconazole Proprietarycompound
trandolapril

zofenoprilat
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FIGURES

Figure 1. Example MCES for two chemical graphs
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