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Abstract  This paper compares several published methods for clustering chemical structures, 

using both fingerprint-based and graph-based similarity measures.  The clusterings from each 

method were compared to determine the degree of cluster overlap.  Each method was also 

evaluated on how well it grouped structures into clusters possessing a non-trivial substructural 

commonality.  The methods which employ adjustable parameters were tested to determine the 

stability of each parameter for datasets of varying size and composition.  Our experiments suggest 

that both fingerprint-based and graph-based similarity measures can be used effectively for 

generating chemical clusterings; it is also suggested that the CAST method, suggested recently for 

the clustering of gene expression patterns, may also prove effective for the clustering of 2D 

chemical structures. 

 

INTRODUCTION 

Cluster analysis methods are used to identify groups, or clusters, of similar objects in 

multivariate datasets 1.  In brief, a cluster analysis involves the following components: a set of 

objects, each of which is represented by one or more attributes; a measure of the similarity (or 
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dissimilarity or distance) between pairs of objects, between an object and a cluster, or between a 

pair of clusters; and a clustering method that processes the similarity data to identify groups that 

are (hopefully) both homogeneous and distinct.  The reader should note that there may be several 

different algorithms that can implement a particular clustering method; for example, Rohlf 

reviews a range of algorithms for the single linkage method 2, which is an hierarchic 

agglomerative method that fuses pairs of clusters on the basis of the objects, one in one cluster 

and one in the other, that are most similar to each other.  Many other methods, conversely, are 

defined solely in algorithmic terms, e.g., the Jarvis-Patrick method 3 that has been extensively 

used in previous studies of chemical clustering and that is one of the methods considered later in 

this paper. 

 

Biological taxonomy4 provided the basis for the development of many of the clustering 

techniques that are available today, but these are now used in a wide range of application 

domains, with the current interest in data mining spurring the introduction of many new methods.  

Structural features provide an obvious source of attributes for chemical applications of clustering 

but early studies of the use of such features 5-8 were restricted to very small datasets.  An 

extensive series of studies by Willett and co-workers in the early and mid-Eighties (as reviewed 

in 9) demonstrated the use of large-scale clustering for the selection of compounds for biological 

screening and for the processing of substructure search output, and highlighted the Jarvis-Patrick 

method as providing an appropriate combination of effectiveness and efficiency.  Later work 10-

12 demonstrated the greater effectiveness of Ward’s method 13 and the availability of improved 

algorithms for this method 14 have allowed it to join Jarvis-Patrick as the most widely used 

clustering method for chemical applications.   

 

The structural features that are normally used in chemical clustering are the fragment 

substructures encoded in a fingerprint to enhance the efficiency of 2D substructure searching.  

The similarity between two molecules is then computed as a function of the number of bits (and 

thus fragment substructures) that are common to the fingerprints representing those molecules.  

The Tanimoto coefficient is generally used to calculate such similarities but there are many other 

coefficients that can be used for this purpose.  Fingerprint-based similarities can be calculated 
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extremely rapidly and have been found to perform reasonably well in practice, but there are 

many other ways in which one might seek to quantify the structural relationships between pairs 

of molecules 15.  One such approach uses a maximum common subgraph isomorphism 

algorithm to identify the largest substructure common to a pair of molecules, with the size of this 

maximum common substructure (MCS) being determined by some function of the numbers of 

constituent atoms and/or bonds.  This provides a natural way of calculating the degree of 

similarity between a pair of molecules but the NP-complete nature of the maximum common 

subgraph isomorphism problem has ruled out the large-scale use of MCS-based similarities.  We 

have recently described a new MCS algorithm, called RASCAL, that is sufficiently rapid in 

execution to permit graph-based similarity searching of large chemical databases 16, 17 and that 

seems to provide a viable complement, or even an alternative, to existing, fingerprint-based 

approaches to virtual screening 18.   

 

Given the close relationship that exists between similarity searching (where a single target 

molecule is matched against each of the molecules in a database) and clustering (where each 

molecule is matched against every other molecule in a database) this paper seeks to assess the 

suitability of graph-based similarity measures for chemical clustering and to compare their 

effectiveness with that of fingerprint-based measures.  The natural starting point for such an 

evaluation is to take the current clustering methods of choice (i.e., Ward’s method and the Jarvis-

Patrick method, for which there is already a large body of practical experience) and to use them 

to process graph-based similarities, with the results from conventional fingerprint-based 

similarities providing a benchmark of comparison.  However, we have taken the opportunity to 

consider several additional clustering methods, one of which has been designed specifically for 

use with graph-based measures of chemical similarity. 

 

GRAPH-BASED AND FINGERPRINT-BASED CLUSTERING 

Terms And Definitions 

All graphs referred to in the following text are assumed to be simple, undirected graphs.  For an 

introduction to graph-related concepts and notation, the reader is referred to a standard text on 
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graph theory such as the recent book by Diestel 19.  A graph G consists of a set of vertices V(G) 

and a set of edges E(G) representing lines connecting all or some of the vertices in V(G).  A 

subgraph of G is a graph whose vertices and edges are subsets of G preserving the connectivity 

between the vertices and edges.  A maximum common edge subgraph (MCES) is a subgraph 

common to two or more graphs consisting of the largest number of edges possible.  Figure 1 

illustrates the MCES G12 between two molecular graphs G1 and G2. 

 

In this paper, two different types of similarity measure are investigated, feature-based measures 

and cost-based measures, these corresponding to the use of fingerprints and of structure diagrams 

(i.e., 2D chemical graphs), respectively.  In feature-based measures, a set of features or invariants 

is established from a structural description of a graph, and these features are then used in a vector 

representation to which various distance or similarity coefficients can be applied.  Similarity 

coefficients obtained using the feature-based approach are functions of the relative number of bit 

positions that are set in each fingerprint (as reviewed by Willett et al. 15).  For instance, the well-

known Tanimoto coefficient is given as c/(a+b-c) where a and b are the number of features 

present in the two structures being compared and c is the number of features in common between 

the two structures.  In our experiments, the feature-based measures are calculated using Daylight 

fingerprints, which have been shown previously to be effective in chemical database studies 20. 

 

In cost-based measures, the similarity between two compounds reflects the number of edit 

operations that are required in order to transform one structural graph into the other.  Recently, an 

efficient cost-based method based on the MCES, and called RASCAL, has been published 16, 17.  

RASCAL can be used with the same similarity coefficient formulae as are used with the feature-

based methods 18 , the difference being that the size of each graph is used to replace the number 

of features representing each structure.  Therefore, the size of the MCES graph G12 replaces the 

number of features in common, and the sizes of the two molecular graphs being compared replace 

the number of bits set in each respective fingerprint.  For example, the Tanimoto coefficient is 

given as )/( 122112 GGGG −+ . 
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In its simplest form, the graph size is determined by treating atoms and bond pairs equally (i.e., 

)()( 121212 GEGVG += ).  However, it has been found 18 that the RASCAL approach better 

approximates a chemical notion of similarity using  

( )( )12 12 12( ) 1 ( , ) 1 ( )V G n p G E Gβ α+ ⋅ − ⋅ − ⋅  

for |G12|, and  

1 1( ) ( )V G E Gβ+ ⋅  and 2 2( ) ( )V G E Gβ+ ⋅  

for |G1| and |G2|, respectively. The function n(p,G12) represents the number of unconnected 

subgraph components in the MCES (G12) containing p or more edges: if all subgraphs have fewer 

than p edges, then n(p,G12) will be assumed to be the total number of subgraph components.  The 

constant β  reflects the additional weight assigned to matched bond pairs with respect to 

compatible atoms, and the constant α  is a penalty score for each unconnected component present 

in G12.  It has been found that values of  p=3, = 0.05α , and 2.0β =  are effective in discerning 

chemical similarity, and are used in all of the experiments reported here.  The current analysis also 

uses strict atom and bond typing so that only atoms and bonds of the same type can be matched, 

e.g., chlorine cannot match to fluorine.  It may be possible to improve the results of a graph-based 

method by allowing some “fuzziness” in the compatibility between the various atom and bond 

types, but this prospect is not investigated here.  

 

Clustering Methods 

Five different clustering methods were evaluated in this study.  Two of them (Ward’s 13 and 

Jarvis-Patrick 3) are well-known within the chemical information community and have previously 

proven effective for the clustering of chemical structures.  The other three have been selected 

from the clustering literature as being new to the clustering of chemical structure databases and 

hence appropriate for evaluation.  Each method is described briefly below: the reader is referred to 

the original publications for details of the various procedures.  In addition, the algorithm of 

Umesh 21 was also investigated, but in preliminary investigations it proved inferior to the others 

tested and was therefore omitted from further consideration. 

  Ben-Dor et al. (CAST) 22:  The CAST method is based on an approximate clique-finding 

algorithm that avoids much of the costly enumeration necessary in traditional algorithms, and that 
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uses a threshold parameter t to establish cliques of mutually similar objects.  Adjustable 

parameter(s):  t. 

  Jarvis-Patrick 3:  This clustering method uses a table of k nearest neighbors for each 

object being clustered, and then sequentially merges clusters which have at least kt nearest 

neighbors in common.  Adjustable parameter(s):  k and kt. 

  Raymond-Willett 23:  This method is based on a greedy algorithm that establishes clusters 

using a technique involving line graphs.  It is a fuzzy clustering procedure in that it allows for the 

possibility of overlapping clusters using three adjustable similarity thresholds.  Adjustable 

parameter(s):  S, Sa and Sb. 

  Ward 13:  This is Ward’s well-known hierarchical clustering method, which establishes a 

hierarchy of clusterings whereby each level in the hierarchy represents a unique clustering.  A 

representative clustering is typically selected using a rapidly calculable cluster validation index.  

The use of cluster validation indices in conjunction with Ward’s algorithm has been studied in 

detail, and it was found that Kelley’s validation index 24 was among the best of those tested 20.  

In our studies, Ward’s method will be used in conjunction with the Kelley index.  Adjustable 

parameter(s):  none. 

 Yin-Chen 25:  This approach is basically a two phase threshold method.  It uses a built-in 

constant for thresholding as published, but we have found that converting this constant to an 

adjustable parameter yt affords significantly greater flexibility (a value of yt equal to 0.5 is 

equivalent to the originally published method).  Adjustable parameter(s): yt. 

 

PARAMETER OPTIMISATION 

Methods 

To evaluate the relative quality of the clusterings resulting from the various methods, we compare 

each calculated clustering with a reference clustering of the same data.  In our experiments, we 

have used the seven datasets used in a previous evaluation of cluster validation indices 20 as well 

as two additional datasets created specifically for these trials.  The characteristics of each dataset 

are summarized in Table 1.  Each dataset was manually clustered in order to establish an ‘ideal’ 

clustering.  This procedure is obviously subjective to a certain degree but, we believe, represents a 

reasonable partitioning of the structures.  Four of the datasets were taken directly from the NCI 
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anti-HIV database.  Three are taken from the Pfizer corporate compound collection, and the two 

final datasets are a subset of the ID Alert database.  These datasets represent various possible 

scenarios that may arise in a practical application.   

 

NCI-A and NCI-B contain multiple distinct, but similar, structures, and NCI-C and NCI-D contain 

a more random assortment of structures.  PD-X is a diverse set of compounds determined to be 

active in a high-throughput screening assay, and PD-Y and PD-Z are combinatorially synthesized 

compounds derived from a single scaffold for a single project.  The clusters contained in ID-1 and 

ID-2 are diverse in that some of the clusters contain closely related compounds while others 

contain more loosely related compounds.  Some clusters are structurally related to other clusters, 

and other clusters are distinct from all other clusters.  Each dataset was evaluated for self-

similarity by calculating the average nearest neighbor (ANN), average farthest neighbor (AFN), 

and the overall average similarity for all neighbors (AAN).  The results are listed in Table 2.  As 

previously mentioned, the combinatorial sets display a marked degree of self-similarity. 

 

In this paper, we use two separate methods to evaluate the clusterings resulting from each method 

by comparing them with a reference clustering.  The first comparison measure is the well-known 

Jaccard coefficient 26 given as: 

cba

c
CCJ

−+
=),( 21 , 

where c is the number of pairs of structures that share a common cluster in both respective 

clusterings (C1 and C2), a  is the number of pairs of structures that share a common cluster in the 

first clustering C1, and b is the number of pairs of structures that share a common cluster in the 

second clustering C2.  The Jaccard measure ranges from zero to one, where zero indicates a 

perfect mismatch and one indicates a perfect match.  In our studies, C1 will indicate the reference 

clustering for a particular dataset, and C2 will represent the calculated clustering resulting from 

each method. 

 

The second comparison measure is based on the distance between two clusterings using an 

assignment procedure, where the distance can be regarded as the number of misclassified 

structures when a calculated clustering is compared to the reference clustering.  Gusfield 27 has 
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proposed a method whereby the distance between two clusterings C1 and C2 is calculated using 

),(),( 2121 CCANCCD −= , where N is the set of structures in the reference clustering C1 and 

A(C1,C2) is the value of the assignment of the clusters from clustering C1 to clustering C2.  

 

The value of A(C1,C2) is calculated by first constructing an assignment matrix where each row i 

corresponds to a unique cluster in C1 and each column j corresponds to a unique cluster in C2.  

The value of each element (i,j) in the assignment matrix consists of the number of structures that 

cluster i and cluster j have in common.  The value of A(C1,C2) then corresponds to the value of the 

linear assignment of the assignment matrix.  A linear assignment is a subset of elements (i,j) in the 

assignment matrix whose sum is the maximum possible subject to the constraint that no two 

selected elements can be located in the same row or the same column in the matrix.  Efficient 

algorithms exist for this procedure 28, 29. 

 

Results 

With the exception of Ward’s, all of the clustering methods considered in this study involve the 

use of adjustable parameters.  This presents a problem for the general application of these 

methods since, in order for a particular clustering method to be useful to the general practitioner, 

the user must have some idea of what parameter values to use with each method for a given 

problem.  This raises two questions.  What is a good ‘rule of thumb’ value to use for each 

adjustable parameter for a given problem?  Are these values consistent from one problem to 

another?  To be an effective general purpose method, it must be possible to determine a 

representative value for each parameter for a given clustering method, and these representative 

values must be consistent across similar problems.  The less variable a clustering method’s 

parameters are, the easier it is for non-expert users of the method to apply it in practice. 

 

To determine the most appropriate values for each methods adjustable parameters, we have run 

several optimization experiments.  These used the ScatterSearch optimization procedure 30, 31, 

with the objective functions to be minimized being –J(C1,C2) and D(C1,C2), respectively, where 

C1 is the manual reference clustering and C2 is the calculated clustering.   
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Fingerprint-based clustering 

The optimization procedure was performed for the CAST, Jarvis-Patrick, and Yin-Chen methods 

for all nine datasets using Daylight fingerprints and the Tanimoto coefficient.  The Raymond-

Willett algorithm has not been included in this analysis because it proved to be ineffective for use 

with fingerprint-based similarity coefficients.  This is hardly surprising as it has been designed 

specifically for the processing of graph-based similarity measures.  In addition, Ward’s (using the 

Kelley level selection index) algorithm was included to serve as the benchmark method due to its 

success in previous analyses 20.  The results of the optimization study are presented in Table 3, 

which lists the optimal value for each adjustable parameter as well as the corresponding Jaccard 

and Gusfield score for the resulting calculated clustering. 

 

Table 3 shows that the CAST, Jarvis-Patrick, and Yin-Chen methods all performed substantially 

better than the benchmark Ward’s/Kelley method.  The resultant objective function values for the 

Jaccard and Gusfield measures for the optimal clusters were also relatively consistent between 

methods.  Further inspection of the data, however, reveals that the adjustable parameter values 

corresponding to the optimal clusterings for Jarvis-Patrick display considerable variability with 

respect to the various datasets, as well as between the Jaccard and Gusfield objective functions.  

This indicates that while the Jarvis-Patrick method is capable of producing high quality 

clusterings, it does not appear that there exists a predictable range for each adjustable parameter 

that would provide an optimal or near-optimal clustering with any degree of confidence.  The 

reason for this is that the other methods tested operate on the values of the pair-wise similarity 

coefficients directly, whereas Jarvis-Patrick operates on the ordered list of nearest-neighbour 

rankings.  If the relative sizes of the clusters present in the data vary widely, then a particular 

nearest-neighbor ranking cut-off that works well for a cluster of particular size may not work well 

for another cluster of a markedly different size.  For this reason, Jarvis-Patrick will tend to 

perform best when the clusters are approximately the same size. 

 

This contrasts with the CAST and Yin-Chen methods, where we consider the datasets containing 

diverse sets of compounds separately from the combinatorially generated compounds possessing a 

common scaffold.  The CAST method demonstrates relatively narrow ranges of values for which 

its adjustable parameter (t) provides optimal or near-optimal clusterings.  For instance, the value 

 9



of t ranges from 0.713 to 0.766 with an average of 0.740 for the combinatorial sets (PD-Y and 

PD-Z) and from 0.284 to 0.486 with an average of 0.384 for the diverse datasets.  Like the CAST 

method, the Yin-Chen method also exhibits a substantial degree of consistency between the 

optimal clusterings resulting from the Jaccard and Gusfield objective functions.  However, it does 

not display the high degree of consistency with respect to the various datasets exhibited by CAST.  

The higher values associated with the combinatorial sets are conspicuous, but the level of 

consistency noted between the diverse datasets with CAST algorithm isn’t present with Yin-Chen, 

as the value of yt ranges from 0.373 to 0.799 for these datasets. 

 

While it is not possible to claim that one clustering method is the ‘best’, especially when 

evaluated on a limited number of datasets, it appears that the CAST method can be used by non-

experts with a reasonable degree of confidence that the resulting clusters will represent a 

reasonable facsimile of a chemist’s notion of a chemical series.  Based on the data presented in 

Table 3, it is suggested that a ‘rule of thumb’ value for CAST’s adjustable parameter t when used 

in conjunction with Daylight fingerprints and the Tanimoto coefficient is approximately 0.38 for 

diverse sets of compounds and 0.74 for combinatorial sets possessing a common scaffold.  The 

value of 0.38 for diverse sets of compounds is an interesting discovery considering that the 

threshold parameter t for the CAST algorithm is simply an average similarity threshold.  CAST 

iteratively increases the size of a cluster by adding a compound to an existing cluster if the 

average similarity between the compound and all other compounds in the cluster is greater than t.  

The value of this cluster similarity threshold value is in marked contrast to those established for 

similarity searching 18.  This is due primarily to the fact that clustering uses all pair-wise 

similarities between objects in a cluster, which tends to mitigate the presence of inappropriate 

pair-wise similarity values; whereas, similarity searching only considers the pair-wise similarity 

values between the query compound and the database of compounds, ignoring the potentially 

compensating information contained in the similarities between all of the compounds in the 

database. 

 

Graph-based clusterings 

The optimization procedure described above was then applied to the RASCAL-derived, graph-

based similarities, as detailed in Table 4.  The RASCAL similarity measure requires the use of a 
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minimum similarity index threshold, MSI, for which a value of 0.6 (for the Wallis coefficient, 

which is the graph form of the Tanimoto coefficient18) was used for experiments involving the 

CAST, Jarvis-Patrick, and Yin-Chen methods.  The value of 0.6 was found to be low enough so 

as not to affect the results of these methods.  In contrast, the Raymond-Willett method is 

dependent upon the selected value of MSI, where it is used in lieu of the adjustable parameter S.  

It was found that an MSI value of 0.7 and 0.85 worked well for the diverse sets and combinatorial 

sets (PD-Y and PD-Z), respectively.  As a note, since the use of the MSI threshold in RASCAL 

omits pair-wise similarities less than the threshold from further consideration, it was assumed for 

the purposes of the CAST method that any missing similarity values had a value of 0.5.  The use 

of a threshold enables very substantial reductions in computation 16,17 but is a limitation when 

used in a clustering context especially when, as here, many different datasets need to be 

processed. 

 

The results of the experiments with the RASCAL similarities show many of the same patterns 

observed with the fingerprint similarities.  Although the Jarvis-Patrick method demonstrates more 

consistency with respect to the adjustable parameters when used in conjunction with RASCAL 

rather than fingerprints, it still exhibits more variability than is desirable for a general purpose 

procedure.  The CAST, Raymond-Willett, and Yin-Chen methods demonstrate similar objective 

function results for each of the datasets; however, CAST shows the most consistency in its 

adjustable parameter t, ranging from 0.752 to 0.803 with an average of 0.769 for the 

combinatorial sets (PD-Y and PD-Z) and from 0.511 to 0.584 with an average of 0.540 for the 

diverse datasets (all others). 

 

In comparison with the graph-based clusterings, the fingerprints scored consistently higher on the 

combinatorial sets possessing a common scaffold (PD-Y and PD-Z) as well as two of the NCI 

datasets (NCI-C and NCI-D).  It is interesting to note that these sets possess the most subjective 

clusterings as the differences between the clusters in the combinatorial sets are subtle and the 

clusters in NCI-C and NCI-D tend to be more loosely related (not necessarily direct structural 

analogues).  For the ID Alert datasets (ID-1 and ID-2), the graph-based clusterings outperformed 

the fingerprint-based clusterings: these clusters tended to constitute structural analogues with the 
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characteristics that some clusters are distinct from all other clusters, but there are also clusters 

that are structurally related to other clusters in the dataset. 

 

 

 

MANUAL INSPECTION OF CLUSTERINGS 

Methods 

Although the quantitative comparisons described above give an objective assessment of behavior 

in somewhat contrived situations, we wanted to compare the methods in a situation more closely 

related to a practical task.  One obvious application of such methods is to generate groupings that 

might be designated as “series” in a medicinal chemist’s perception.  This corresponds to a 

common task in the conduct of HTS protocols where typically an initial large and diverse set of 

primary hits must be organized for analysis.  To simulate this situation, a customized collection 

of 1325 diverse drugs and drug candidates covering a broad spectrum of therapeutic classes and 

chemical types was used as a dataset.  Each method was applied using the optimized parameter 

settings determined above to partition the dataset.  Several known classes were then examined 

with the following questions in mind: how effectively were the compounds grouped; were there 

situations where one method was superior to another; and was there any evidence for 

complementarities between methods in difficult cases?  Since the performance of the graph-

based methods was of special interest in this work, groups were chosen for examination where an 

MCES-based approach might be expected to perform particularly well; in addition, cases were 

sought where differences might be expected from a fingerprint method. 

 

It bears repeating at the outset of this part of the discussion that, although the group selections 

were driven by the commonality of their biological effects, the methods being used here for 

partitioning use only topological chemical information.  Thus, it is the effectiveness of grouping 

by chemical class that is most central; if biological commonality is also observed then that is a 

fortuitous, but not critical, factor in the determination of effectiveness.  The following classes 

were chosen for illustration: tetracycline antibiotics, angiotensin antagonist antihypertensives, 

calcium antagonist dihydropyridines, antifungal agents, β-lactam antibiotics, angiotensin 

converting enzyme (ACE) inhibitors and opiate analgesics.  For each of the groups, the cluster 
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membership and frequency are given for Ward’s/Kelley, Jarvis-Patrick/6:10, and CAST using 

Daylight fingerprints, and CAST using RASCAL similarities, in each case with the parameter 

settings derived from the first part of the study.  What is of interest here for a determination of 

effectiveness is the number of clusters required to include all members of the series (and number 

of singleton members) and the degree to which each series is cleanly discriminated from other 

compounds in the dataset, i.e., the number of “non-series” compounds in class clusters.  Further, 

could subsets be perceived or were “extraneous” compounds “interesting” in any sense?  A 

summary of the observations on these series is given in Table 5 for the compounds listed in 

Table 6.  For each class or major subclass examined, the number of members and the ANN 

similarity (Tanimoto using Daylight fingerprints) as an indication of the diversity of the 

collection are recorded.  This is followed, for each method, by the number of clusters and 

singletons, the size of the largest single cluster and the purity of that cluster.  An ideal result 

would be a single pure cluster with no singletons for each grouping of interest. 

 

Results 

The first three classes have large and common ring templates. They show a decreasing level of 

internal similarity as measured by their mean nearest neighbor similarities.  The tetracyclines, 

with their unique and characteristic template are efficiently grouped and discriminated by all 

methods.  The smaller and somewhat more diverse dihydropyridines are also effectively grouped 

by all methods except for one analog which is clearly a substantial structural variant from the rest 

and is a singleton in all methods.  The RASCAL method also fails to include one additional 

analog which is grouped appropriately by all the other methods.  This compound, nilvadipine, 

differs from all the others by having one of the ring methyl groups replaced by a cyanide group.  

The common substructure method might have been expected to be the most sensitive to this 

minor structural change.  The angiotensin-2 antagonists show a very low internal similarity by 

fingerprint methods: clustering based on fingerprints might hence be expected to find these too 

far apart to group, in spite of the presence of the biphenyl tetrazole as a large common 

substructure.  Indeed, the Ward’s method fails to group these compounds at all, while the Jarvis-

Patrick and CAST/Daylight methods do find a subset of three compounds to group.  These 

compounds, however, are grouped with other non-class compounds as shown by the low purity 

of the clusters.  The commonality that is keyed upon appears to be a smaller fragment related to 
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the benzyl imidazole moiety rather than the “pharmacophoric” biphenyl tetrazole.  This is 

deduced by examining the non-class compounds retrieved. The RASCAL method does what is 

expected and groups all five appropriately. 

 

The next two groups represent therapeutic groupings which each contain two clearly 

recognizable structural subclasses.  In the case of the antifungals, the two classes have very little 

in common structurally.  The conazoles, all of which are characterized by an elaborated 

phenethyl imidazole or triazole moiety are grouped cleanly by all methods.  However, the Jarvis-

Patrick method is the only one to get all of them into one cluster. Ward’s method fails to include 

four which appear as singletons, while the two CAST methods break this group into two or three 

clusters, respectively, with RASCAL generating the most partitions.  The four compounds of the 

nitroimidazole subclass are grouped into a single cluster by all methods except RASCAL which 

misses one as a singleton.  In this group, there is one extraneous compound included by all 

methods.  Upon examination, this turned out to be an antitumor candidate which also contained 

the nitroimidazole moiety and which was otherwise quite similar to the compounds in this 

subset.  The Jarvis-Patrick and CAST/Daylight methods also put these same five compounds 

cleanly into their own cluster, while Ward’s method failed to discriminate them from a large 

number of other small compounds.  The extra compound included is correct from a chemical 

viewpoint, if not from a biological one. 

 

The β-lactam antibiotics are slightly more complicated in that, in addition to the well recognized 

subclasses of the cephalosporins and penicillins, which themselves have a high degree of internal 

similarity, there are five additional β-lactams more distantly related structurally.  The internal 

similarity, except for the miscellaneous class, is much higher than for the antifungal subclasses.  

Here, there is a clear difference between the CAST methods and the Ward’s or Jarvis-Patrick 

methods: the former tend to group the two subclasses together, with CAST/Daylight being more 

efficient (one clean cluster as against three or two for RASCAL on cephalosporins or penicillins, 

respectively).  Ward’s gives a high number of singletons for both subclasses as well as multiple 

clusters; Jarvis-Patrick gives one clean cluster for all cephalosporins and three for the penicillin 

analogs.  Neither of these latter methods mixes penicillins and cephalosporins at the default 

settings selected.  The miscellaneous class compounds are either singletons or members of 
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larger, undifferentiated clusters in all methods.  Surprisingly, RASCAL generated more 

subclusters than expected.  This is basically “subsetting” of the sort more commonly observed in 

Ward’s method (as seen here also). However, not all of these smaller clusters contain the same 

compounds across methods. 

 

Peptide-like drugs represent a challenge for automated series organization methods.  We 

examined the behavior of these methods with the set of 17 ACE inhibitors present in the 

collection.  Interestingly, Jarvis-Patrick gave the best result.  It grouped 12 of the 17 into one 

cluster with only two other non-class compounds.  A subset of four, also segregated by all of the 

other methods, was grouped into a second class which, however, was not very pure (22%).  

Captopril was a singleton.  The small class of four was cleanly found by Ward’s, but not by 

CAST/Daylight (38%).  RASCAL groups a different subset of 13 together, but at low purity 

(50%).  The non-class compounds in each case are primarily non-peptide drugs, not compounds 

from other peptide classes.  The operational commonality keyed on appears to be related to the 

region of the ACE inhibitors including the phenylalanine-derived moiety. 

 

As a final example, the structurally complex class of opiate drugs was examined.  This collection 

does not include any of the peptide opiates, and the one kappa compound was excluded from the 

comparison leaving 37 compounds.  Not unexpectedly, all methods split this collection into 

several clusters.  Both Ward’s and Jarvis-Patrick isolated clusters of ten and eight compounds 

that cleanly contained natural product analogs related to morphine.  In addition, a smaller clean 

cluster of four compounds with related polycyclic structures was found.  The two CAST methods 

gave larger single clusters (23 for CAST/Daylight and 24 for RASCAL), which grouped the 

compounds in all three of these clusters together, but at the expense of including non-class 

compounds (purities of 72% for CAST/Daylight and 57% for RASCAL).  Examination of the 

incorrect compounds surprisingly showed that several estrogenic compounds had been included.  

This led to the conclusion that the substructure keyed upon by the CAST methods isolated the 

phenol and alicyclic carbon ring systems but did not include the tertiary piperidine substructure 

characteristic of the opiate analgesics.  The remaining compounds in this class are the simplified 

piperidine analogs of morphine.  Small subsets of these are isolated by the fingerprint methods, 

but most fall into undifferentiated clusters in all methods. 
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Discussion 

Several conclusions can be drawn from the observations above.  When series are characterized 

by relatively large or unique ring templates, all methods tend to group their members effectively.  

There is a suggestion that the RASCAL method may do a better job if the internal fingerprint 

similarity of the collection to be grouped drops too low (angiotensin antagonists).  The β-lactams 

and opiates illustrated an interesting difference between Ward’s and Jarvis-Patrick on the one 

hand and the two CAST methods on the other.  The former methods achieved a finer but cleaner 

grouping of related structures of high complexity at the cost of generating a larger number of 

clusters, whereas the two CAST methods found regions of commonality that could consolidate 

these subgroups, but at the expense of purity or diminished coverage.  This suggests that further 

examination of the appropriate option settings for the latter methods may be necessary to tune 

these for particular types of structures.  We already know that this is the case for the better-

studied Ward’s and Jarvis-Patrick methods, especially when applied in a single pass to datasets 

with high structural diversity.  In particular,  the Ward’s/Kelley method we have used typically 

chooses a level where there is one large cluster (30-50% of the dataset) in the first pass on 

datasets with the sort of diversity represented here.  This accounts for the cases in Table 6 where 

there are very low purities for Ward’s method and where recursive clustering of this large cluster 

is necessary to generate additional groupings for more structurally similar classes.  Collections of 

small compounds with relatively simple structural commonality are still not easily differentiated 

by any of the methods.  The Jarvis-Patrick method performed quite well across the board in this 

study, but the newly proposed CAST/Daylight method also did quite well.   

 

The graph-based RASCAL methods generally did not perform as well as the fingerprint-based 

methods in partitioning this large and structurally diverse 1325-member dataset in the desired 

manner.  Examination of the compound groupings suggests that the substructures keyed upon by 

this method are more akin to queries than to “series templates” in many cases, resulting in 

decreased purity in the groupings.  A better strategy for partitioning such datasets might be to use 

a fingerprint method for the initial partitioning and then to apply RASCAL to the clusters to 

extract a more appropriate MCES for that grouping.  Finally, it must be pointed out that none of 
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these methods can be expected in general to group compounds efficiently based on 

pharmacophoric patterns, even if the latter have a large topological content. 

 

CONCLUSIONS 

Most approaches to the clustering of 2D chemical databases structures have been based on 

similarity measures calculated using fingerprint representations of chemical structure.  In this 

paper, we have discussed clusterings that are based on similarity measures calculated using graph-

based representations.  Specifically, we have applied our recent algorithm for the identification of 

maximum common edge subgraphs to the calculation of inter-molecular similarities based on the 

graph similarity coefficient of Wallis; these similarities have then been used for the 

implementation of several different clustering methods, with comparable experiments being 

carried out using a conventional, fingerprint- and Tanimoto-based similarity measure.   

 

Two groups of experiments were carried out.  The first involved an extensive series of simulations 

that were designed to identify the most appropriate parameter values for the various clustering 

methods that were studied (CAST, Jarvis-Patrick, Raymond-Willett, Yin-Chen and Ward’s), and 

the extent to which these values were dataset-dependent.  These simulations suggested that the 

CAST method of Ben-Dor et al. 22 is the most robust of those tested.  The second involved 

consideration of the bioactivity of several sets of compounds, focusing principally on the ability of 

the various approaches to highlight meaningful chemical series in datasets comparable to those 

resulting from HTS analyses.  No obvious advantage appeared to result from the use of the more 

sophisticated, graph-based similarity measures when compared to conventional, fingerprint-based 

measures.   

 

We draw two principal conclusions from the study.  First, while the results obtained from the use 

of graph-based similarities are different from fingerprint-based similarities, there is no evidence to 

suggest that one approach is consistently better than the other: each approach has its strengths and 

weaknesses, and it may be that an investigation should employ both approaches to obtain a fuller 

view of the structural relationships present within a dataset.  Second, the CAST method warrants 

further investigation as a potential alternative to the Ward’s and Jarvis-Patrick methods for the 
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clustering of chemical structure databases; not only has it proved effective in the evaluations 

carried out here, but it is also sufficiently fast to permit the processing of large chemical datasets.  
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TABLES 
Table 1.  Characteristics of the datasets use din the parameter optimization experiments.  |N|:  
number of compounds, |C1|:  number of clusters as determined by manual review, |S|:  number of 
singletons, |MW|:  average molecular weight, |R|:  average number of rotatable bonds, %L:  
percent of compounds satisfying the Lipinski Rule of Five 
 
Dataset |N| |C1| |S| |MW| |R| %L Source Comments 
NCI-A 55 7 4 306 2.5 98 NCI Anti-HIV database distinct but similar clusters 
NCI-B 79 5 2 424 10.1 78 NCI Anti-HIV database distinct but similar clusters 

NCI-C 564 45 198 439 6.9 77 NCI Anti-HIV database 
more subjective clusters than 
for NCI-A and NCI-B 

NCI-D 194 21 73 421 7.0 78 NCI Anti-HIV database random subset of NCI-C 

PD-X 305 29 43 361 5.3 92 Pfizer compound library 
diverse set found active in 
HTS 

PD-Y 345 13 7 389 6.0 96 
Pfizer combinatorial 
compound 

derived from a single scaffold 

PD-Z 538 68 18 441 10.5 97 
Pfizer combinatorial 
compound 

derived from a single scaffold 

ID-1 358 68 41 373 6.5 100 ID-Alert database 
collection of closely related 
and loosely related clusters 

ID-2 262 43 24 367 5.4 100 ID-Alert database 
collection of closely related 
and loosely related clusters 

 
 
Table 2.  Dataset similarities calculated using the Tanimoto coefficient and Daylight fingerprints.  
ANN:  average nearest neighbor, AFN:  average farthest neighbor, AAN:  average of all 
neighbors 
 

Self-Similarity Data 
Set ANN AFN AAN 

NCI-A 0.818 0.077 0.242 
NCI-B 0.916 0.133 0.401 
NCI-C 0.693 0.027 0.171 
NCI-D 0.616 0.055 0.169 
PD-X 0.739 0.082 0.197 
PD-Y 0.940 0.425 0.623 
PD-Z 0.922 0.223 0.439 
ID-1 0.708 0.059 0.194 
ID-2 0.714 0.076 0.201 
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Table 3.  Optimal Daylight fingerprint clusterings.  In this table, the objective function scores are highlighted in italics next to the corresponding 
adjustable parameter value.  Jaccard coefficients have been multiplied by 100 so that they range from 0 to 100 
 

            PD-X PD-Y PD-Z NCI-A NCI-B NCI-C NCI-D ID-1 ID-2
Jaccard 17.4       22.8 38.6 66.4 30.9 12.8 10.9 4.6 7.2

Ward’s 
Gusfield 

Kelley 
200       212 246 14 41 329 115 256 175

Jaccard 0.344 53.0 0.715 48.5 0.765 54.7 0.355 96.0 0.379 100 0.407 81.6 0.353 77.1 0.486 28.7 0.410 43.9 
CAST 

Gusfield 
t 

0.285 103 0.713 104 0.766 147 0.355 5 0.379 2 0.347 226 0.331 77 0.472 148 0.473 85 
Jaccard 0.617 47.0 0.902 47.1 0.946 53.6 0.373 96.1 0.633 100 0.692 84.8 0.683 86.7 0.799 20.4 0.720 58.3 

Y-C 
Gusfield 

yt 0.609 121 0.945 140 0.937 188 0.375 5 0.639 2 0.633 222 0.659 79 0.774 186 0.720 78 
k 19 11 10 11 37 30 13 10 32 

Jaccard 
kt 12 

46.3 
2 

46.0 
4 

61.3 
6 

91.2 
31 

88.4 
20 

72.2 
8 

71.9 
5 

26.9 
22 

41.6 

k 26         37 17 15 35 28 8 7 14
J-P 

Gusfield 
kt 16 

129 
23 

132 
9 

172 
11 

5 
25 

10 
13 

201 
2 

89 
3 

167 
9 

124 

 
 
Table 4.  Optimal RASCAL clusterings.  In this table, the objective function scores are highlighted in italics next to the corresponding adjustable 
parameter value.  Jaccard coefficients have been multiplied by 100 so that they range from 0 to 100. 
 

            PD-X PD-Y PD-Z NCI-A NCI-B NCI-C NCI-D ID-1 ID-2
Jaccard 0.547 53.7 0.752 37.0 0.767 32.5 0.571 86.6 0.511 99.5 0.518 50.1 0.513 60.2 0.584 58.2 0.537 59.6 

CAST 
Gusfield 

t 
0.548 112 0.752 156 0.803 246 0.571 9 0.511 4 0.516 282 0.514 95 0.578 85 0.540 67 

Jaccard 0.879 47.7 0.937 31.6 0.966 23.7 0.633 78.7 0.633 99.5 0.828 51.0 0.826 52.7 0.874 52.9 0.871 84.4 
Y-C 

Gusfield 
yt 0.879 138 0.935 206 0.941 307 0.633 11 0.633 4 0.810 308 0.835 104 0.875 110 0.866 59 
k 14 15 14 14 38 33 15 28 22 

Jaccard 
kt 5 

50.8 
6 

53.1 
7 

39.1 
3 

94.0 
7 

79.2 
9 

48.7 
4 

50.0 
6 

42.3 
6 

42.3 

k 15         15 16 14 38 9 7 25 18
J-P 

Gusfield 
kt 5 

158 
6 

136 
8 

250 
3 

12 
7 

18 
2 

359 
2 

130 
4 

170 
2 

139 

Sa 0.909         0.925 0.906 0.902 0.870 0.910 0.965 0.881 0.859
Jaccard 

Sb 0.555 
52.5 

0.620 
39.1 

0.598 
24.9 

0.533 
86.6 

0.540 
81.1 

0.528 
45.7 

0.491 
57.1 

0.610 
63.6 

0.479 
66.6 

Sa 0.909         0.967 0.920 0.902 0.870 0.904 0.960 0.833 0.896
R-W 

Gusfield 
Sb 0.430 

120 
0.455 

143 
0.496 

224 
0.533 

9 
0.540 

10 
0.638 

305 
0.489 

102 
0.597 

69 
0.482 

60 
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Table 5.  Results of manual inspection of the various clusterings of the 1325-member dataset. 
 

     
 #Clusters/ #Singletons 

   
 Largest cluster 

   
 Purity of largest cluster(%) 

   Comments 

Class  N ANN 
Ward/ 
Kelley 

JarPat 
(6:10) 

CAST/  
Daylight 

CAST/ 
RASCAL

Ward/ 
Kelley 

JarPat 
(6:10) 

CAST/  
Daylight 

CAST/ 
RASCAL 

Ward/ 
Kelley 

JarPat 
( 6:10) 

CAST/ 
Daylight

CAST/ 
RASCAL   

Tetracyclines                8 0.950 1/0 1/0 1/0 1/0 8 8 8 8 100 100 100 100 

Ang2-1 antags                5 0.553 0/5 1/2 2/0 1/0 1 3 3 5 - 43 75 100 

Dihydropyridines 13             0.777 1/1 1/1 1/1 1/2 12 12 12 11 100 100 100 100 
One cmpd is singleton in all 
methods 

Antifungasl 11 0.690 2/4 2/0 3/0 4/1                 

Nidazoles 4             0.610 1/0 1/0 1/0 1/1 4 4 4 3 1 80 80 75 

Conazoles 7              0.735 1/4 1/0 2/0 3/0 3 7 5 3 100 100 100 100

 
All methods include a 
nitroimidazole antitumor 
agent 

 

β-lactams              50 0.842 5/12 6/3 3/3 4/4 16 22 45 38* 100 100 90 76 
*One cmpd from misc class 
included (loracarbef) 

Cephalosporin 22             0.874 3/4 1/0 1/0 3/0 12 22 45 17 100 100 49 45 
Smaller clusters are also pure 
in all methods 

Penicillin 23              0.895 2/3 3/0 1/0 2/1 16 17 45 20 100 100 49 53 

Misc. 5             0.453 0/5 2/3 2/3 2/3 1 1 2 1 - 13 50 33 
Not grouped together or with 
other b-lactam clusters 

ACE inhibitors               17 0.797 2/5 2/1 4/2 3/0 8 12 8 13 1 86 26 50 

Opiates            37(38) 0.856 4/5 9/5 5/2 4/2 11/10/8 10/8 23 24 2/100/100 100/100 72 57 

Largest clusters contain 
morphine analogs; small 
clusters are<50%pure for 
CAST methods 

 22



Table 6.  List of compounds in each of the seven activity classes. 
 

Ang2 antagonists β-lactams cephapirin Opiates 
candesartan aztreonam cephradine acetylnormethadol 
irbesartan clavulanic_acid amdinocillin alfentanil 
losartan imipenem amoxicillin buprenorphine 
valsartan loracarbef ampicillin butorphanol 

Proprietary compound moxalactam azidocillin butylmorphine 
 cefaclor carbenicillin codeine 

Dihydropyridines cefadroxil carbenicillin_indanyl dextromethorphan 
amlodipine cefamandole carbenicillin_phenyl dezocine 
felodipine cefatrizine cloxacillin dihydrocodeine 
isradipine cefazolin cyclacillin ethylmorphine 
lacidipine cefdinir dicloxacillin etorphine 

nicardipine cefixime flucloxacillin fentanyl 
nifedipine cefmetazole hetacillin heroin 
niguldipine cefoperazone methicillin hydrocodone 
nilvadipine cefotaxime nafcillin hydromorphone 
nimodipine cefoxitin oxacillin ketobemidone 
nisoldipine cefpodoxime penicillin_G levallorphan 
nitrendipine cefprozil penicillin_V meperidine 
oxodipine ceftriaxone piperacillin meptazinol 

Proprietary compound  cefuroxime piridicillin methadone 
 cefuroxime_axetil pivampicillin methadyl_acetate 

ACE inhibitors cephacetrile sulbenicillin morphine 
benazepril cephalexin ticarcillin nalbuphine 

candoxatril cephaloglycin 
Proprietary 
compound 

nalmefene 

captopril cephalothin  nalorphine 
cilazapril  Antifungals naloxone 
enalapril Tetracyclines benznidazole naltrexone 

enalaprilat chlortetracycline metronidazole oxycodone 
fosinopril demethylchlortetracycline misonidazole pentazocine 
indolapril doxycycline tinidazole pholcodine 
lisinopril methacycline econazole prodilidine 
moexipril minocycline fluconazole profadol 

moexiprilat oxytetracycline itraconazole propiram 
perindopril rolitetracycline ketoconazole propoxyphene 
quinapril tetracycline miconazole sufentanil 

quinaprilat  sertaconazole tilidine 
ramipril  voriconazole Proprietary compound 

trandolapril    
zofenoprilat    
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Figure 1.  Example MCES for two chemical graphs 
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