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A series of Bed-doped GaAs/AlAs multiple-quantum wells with the doping at the well center were
grown by molecular beam epitaxy. The photoluminescence spectra were measured at 4, 20, 40, 80,
120, and 200 K, respectively. The two-hole transitions of the acceptor-bound exciton from the
ground state, 1S3/2(G6), to the first-excited state, 2S3/2(G6), have been clearly observed and the
acceptor binding energy measured. A variational calculation is presented to obtain the acceptor
binding energy as a function of well width. It is found that the experimental results are in good
agreement with the theory. ©2002 American Institute of Physics. @DOI: 10.1063/1.1516872#

I. INTRODUCTION

Recently, studies of the internal transition of shallow im-
purities fresh impetus due to the potential applications in
far-infrared detectors and a solid state terahertz laser.1–5 Con-
finement of such impurities in quasi-two-dimensional
GaAs/AlxGa12xAs quantum wells~QWs! allows the tuning
of these levels in a controlled way. For device applications
the greater range the binding energy of the impurity can be
tuned over the better. In particular it is desirable that the
dipole-allowed1s–2p transition can be tuned to be outside of
the main longitudinal optical phonon bands of the semicon-
ductor.

In the GaAs beryllium is an acceptor species commonly
used in devices, it is relatively stable with respect to diffu-
sion and has a binding energy of 28 meV in the bulk.6 It has
been shown previously that when incorporated into
GaAs/AlxGa12xAs QWs this binding energy can be in-
creased substantially. Furthermore, the use ofd doping
avoids the extension of the impurity energy levels resulted
from the distribution of the dopant atoms along the growth
direct of the quantum wells. The electronic states and prop-
erties of the shallow acceptors in the
GaAs/AlxGa12xAs QWs are not understood as well as those
of shallow donors as the valence band of bulk GaAs is four-
fold degenerate and contains a cubic term that must be taken
into account to describe the acceptor states. Theoretically, the
calculation of the effect of confinement on the ideal acceptor
state in GaAs/AlxGa12xAs QWs was reported by Masselink
et al.7 Experimentally, Gammonet al. have observed the
confinement-induced splittings of acceptor levels in the
GaAs/AlxGa12xAs QWs with the resonant Raman scattering
experiments.8 Subsequently, the transitions between split-
tings of the acceptor levels have also been investigated in
detail with far-infrared transmission,9 photoluminescence

~PL!, and photoluminescence excitation experiments.10–14

However, for the Bed-doped GaAs/AlAs multiple-quantum
wells ~MQWs! with doping at the well center, there have
been few reports of either experimental or theoretical work.
However, this system is of especial interest as it represents
the maximum possible confinement for the acceptor states in
the valence band and thus the maximum possible tuning
range for the1s–2p transition of the acceptor. In this article
we measure PL spectra at various temperatures for a series of
GaAs/AlAs MQWs with Bed-doped at the well center and
the well width range from 30 to 200 Å. The acceptor binding
energy has been measured experimentally. The acceptor
binding energy is calculated using a variational calculation as
a function of the quantum-well width and compared with the
experimental results.

II. EXPERIMENT AND RESULTS

A series of Bed-doped GaAs/AlAs MQWs were grown
by molecular beam epitaxy with doping at the quantum-well
center, on a semi-insulating~100! GaAs substrate in a VG
V80 H reactor equipped with all solid sources. The growth of
the layers was performed under exact stoichiometric condi-
tion using the technique of stoichiometric low-temperature
growth,5 which ensures high quality optical materials even at
relatively low growth temperatures. Under these conditions,
the quantum-well structures were grown at 550 or 540 °C
and without interruptions at the quantum well interfaces,
which ensured negligible diffusion of the Bed layers. Prior
to the growth of the MQWs a 3000 Å GaAs buffer layer was
grown. Each of multiple-quantum well structures investi-
gated contained a same 50 Å wide AlAs barrier, while every
GaAs well layer wasd doped at the well center with Be
acceptor atoms. The doping level and the main characteris-
tics of each sample are summarized in Table I.a!Electronic mail: w.zheng@umist.ac.uk
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Photoluminescence experiments were performed from
liquid helium to room temperatures using Renishaw Raman
imaging microscope. The samples were mounted on a cold
finger of a continuous flow helium cryostat. The optical ex-
citation for the PL experiments was provided by an argon-ion
laser (5145 Å). The laser beam was focused onto a sample,
and the light returning back from the sample was collected
and passed into a spectrograph for analysis. The excitation
was typically 5 mW.

The PL spectra with above-band gap excitation have
been measured at the various temperatures for the samples in
Table I. Figure 1 shows the PL spectra at 4, 20, 40, 80, 120,
and 200 K for the sample RM1794. Three peaks are clearly
resolved at 4 K, with positions located at 794, 795.88, and
806.26 nm, respectively. The first at 794 nm is the strongest
peak and attributed to the transition of a heavy free exciton
(XCB12HH1). The second at 795.88 nm originates from the
exciton recombination bound to the neutral beryllium accep-
tor (Be0X). The energy separation between theXCB12HH1

and the Be0X is 3.7 meV, which is the energy required re-
moving the exciton from the Be0X complex. The intensity
ratio of the Be0X with the XCB12HH1 is 0.76 at 4 K and
decreases as the measuring temperature increases. As the

temperature arrives at 80 K, the Be0X peak is no longer
detectable, and the light free exciton peak (XCB12LH1) can
be observed. In addition the third peak at 806.26 nm is
weaker than theXCB12HH1 and Be0X, which is attributed to
the free-to-bound recombination (eBe0) between an electron
of then51 quantized confinement level and a hole bound to
a Be acceptor at the center of the GaAs well. As the measur-
ing temperature rises to 40 K, the eBe0 line becomes very
weak.

Figure 2 indicates the PL spectra of the sample R1392 at
different measuring temperatures. In contrast to Fig. 1, the
strongest peak at 4 K is attributed to the bound exciton,
Be0X, with a doublet structure labeled A and B. The energy
splitting between A and B is 1.3 meV, which is 1.7 meV for
a 100 Å wide GaAs/Al0.3Ga0.7As QWs.11 The B peak is due
to an excited state of the Be acceptor bound exciton. For the
sample R1303 with the same density of dopant atoms as the
sample R1392 and instead of a 150 Å wide quantum well,
the doublet structure is not observed clearly, but the bound
exciton peak, Be0X, has a weak shoulder. In Fig. 2 at the
high energy side of the Be0X is the heavy free exciton peak,
XCB12HH1 , and the intensity ratio,IBe0X /ICB12HH1 , is 6.8 at
4 K, greater than that of other three samples, respectively.
This fact is mainly due to the reduction of the free exciton
lifetime with decreasing quantum well width, since the prob-
ability for the electron-hole pairs to recombine as a free ex-
citon instead of getting captured by impurities increases with
decreasing quantum-well width.15 In addition at the lower
energy side of the eBe0, a peak labeled THT is clearly ob-
served and interpreted as the two-hole transitions~THT! of
the acceptor bound exciton. As the exciton attached to the
neutral acceptor atom recombines, there is a small probabil-
ity that some of energy emitted is absorbed by the hole

TABLE I. Characteristics of the samples: the repeated period, the quantum-
well width (Lw) , the d-doping Be concentration~P!, and the growth tem-
perature of the epitaxial layers~T!

Samples Periods Lw (Å) P (cm22) T (°C)

RM1795 400 30 231010 550
RM1794 200 100 531010 550
R1303 50 150 2.531012 540
R1392 40 200 2.531012 540

FIG. 1. Series of PL spectra for sample RM1794 (Lw5100 Å) at different
measuring temperatures showing theXCB12LH1 , XCB12HH1 , Be0X, and eBe0

peaks.

FIG. 2. Series of PL spectra for sample R1392 (Lw5200 Å) at different
measuring temperatures showing theXCB12LH1 , XCB12HH1 , Be0X, eBe0,
and THT peaks.
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bound to the acceptor, which then undergoes a transition to
an excited state leaving the acceptor, which binds the exci-
ton, in an excited state instead of the ground state. The en-
ergy of this transition is equal to that of the separation be-
tween the Be0X and THT, 29.5 meV. The THT is also
observed in RM1795 and R1303 sample, but the THT signal
intensity of the RM1795 is even weaker than that of R1303
and R1392 sample, respectively. This reason is attributed to
the smaller concentration of dopant atoms and the smaller
probability for the capture by an impurity, of an electron-hole
pair in QWs instead of recombination as a free exciton. For
the Be-doped GaAs/AlxGa12xAs QWs structures, the degen-
eracy of the valence band is lifted at theG point due to the
quantum well potential which reduces the point group sym-
metry from Td to D2d . Therefore, the ground state of the
neutral acceptor Be at the center of a quantum well splits into
two doublet levels, namely 1S3/2(G6) and 1S3/2(G7).9 The
THT peak in Fig. 2 is associated with the transition of
1S3/2(G6)→2S3/2(G6).

III. CALCULATION AND DISCUSSION

A. Theory

Under the single-band effective mass and envelop func-
tion approximations, the Hamiltonian of a hole bound to the
hydrogenic acceptor at position (0,0,z0) in the GaAs/AlAs
MQWs can be written as

H52

\2

2m*
¹2

1V~z !2

e2

4p«0«rr8
, ~1!

wherem* is the effective mass of a hole,«r is the relative
dielectric permittivity, andV(z) is the one-dimensional po-
tential. The hole-acceptor separationr8 is written as follows:

r85Ax2
1y2

1~z2z0!2. ~2!

The success of variational approaches centers around the
general choice of the trial wave function. We choose the
produce of two terms as the trial wave function of a hole, i.e.,

C5x~z !e2r8/l, ~3!

wherex(z) is the wave function of the hole in the GaAs/
AlAs MQWs without the acceptor impurity present and
e2r8/l is the simple hydrogenic wave function of the ground
state, and wherel is known as the Bohr radius, but now it is
employed as a variational parameter in order to minimize the
total energy of the system. The SchrWdinger equation corre-
sponding to the Hamiltonian of Eq.~1! becomes

2

\2

2m*
$@¹z

2x~z !#e2r8/l
12¹zx~z !¹ze

2r8/l

1x~z !¹2e2r8/l%2

e2

4p«0«rr8
x~z !e2r8/l

1V~z !x~z !e2r8/l
5Ex~z !e2r8/l, ~4!

whereE is the total energy of the system. The energyE can
be solved for any choice ofl by expanding the derivatives in

finite differences and forming an iterative shooting
algorithm.16 The variational parameter,l, is varied system-
atically with the aim of minimizing the total energy. The
acceptor binding energy,EB , is equal to the difference be-
tweenE and the ground-state energy,E1 , for the hole in the
QWs without the acceptor impurity present, and hence,

EB5E2E1 . ~5!

B. Results and discussion

In this subsection the numerical results of the binding
energies of the Be acceptor at the center of the GaAs/AlAs
MQWs as a function of the well width will be given. We use
the formulaV(z)50.33DEg(x),16 whereDEg(x) is the dif-
ference in band gaps atk50 between GaAs and
Al xGa12xAs. DEg(x) is taken to 1247x meV andx is the
mole fraction of the AlxGa12xAs barriers. Although the
single-well potentialV (z) makes it more appropriate for
completely decoupled quantum wells, it will also be appro-
priate for MQWs with thick barriers that no hole wave func-
tion can penetrate. The effective massm* is used as the
heavy-hole mass of 0.62m0 , the typical value in bulk GaAs,
wherem0 is the mass of an electron in the free space. The
relative dielectric permittivity,«r , is set to 17.2. In previous
theoretical calculations, a great deal of attention has been
paid to the roles of the effective mass and the dielectric con-
stant mismatches at interfaces in semiconductor hererostruc-
tures, and their effects on the shallow impurity energy levels
in the QWs.17–19 With m* and «r parameters given earlier,
we deduce the acceptor binding energy of 28.0 meV for very
large well widths, which is in good agreement with the ex-
perimental result in bulk GaAs.6 Figure 3 illustrates the ac-
ceptor binding energy for the on-center Bed-doped in GaAs/
AlAs MQWs with a well width range from 5 to 300 Å. The
solid circle dots show the acceptor binding energies gotten
from the PL experimental measurements. According to the
eBe0 position of the PL spectra, the acceptor binding energy
EB(Be) can be determined using the relation20

FIG. 3. Magnitude of the binding energy as a function of the quantum-well
width (Lw) for neutral acceptors Be at the centers of the GaAs wells sur-
rounded by AlAs barriers. The solid circle dots indicate the experimental
data, and the curve represents the theoretical calculation.
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EB~Be!5E~XCB12HH1!1EBX2E~eBe0!, ~6!

where E(XCB12HH1) and E(eBe0) are the energies of the
XCB12HH1 and eBe0 lines, respectively, and whereEBX is the
binding energy of the heavy exciton and can be deduced
from the accurate calculation of Andreani and Pasquarello.21

In Fig. 3 it can be find that the theoretical calculation is in
good agreement with the experimental results. The acceptor
binding energy increases as the quantum-well width de-
creases, and has a peak with a maximum atLw57 Å. This is
due to the finite barrier and is similarly seen in quantized
donor and exciton calculations.22,23 For very narrow wells,
the increasing confinement energy pushes the hole closer to
the top of well, eventually forcing it to ‘‘spill over the top,’’
thus leading to decreases in the binding energy. As the well
width increases, the acceptor binding energy tends towards
its bulk value of 28 meV.6 The acceptor binding energy in
this article is consistent with that of theG6 ground state in
the literature.7

IV. CONCLUSIONS

We have investigated experimentally and theoretically
the acceptor binding energy of a series of GaAs/AlAs
MQWs d-doped with Be at the center of wells. The PL spec-
tra are measured at the various temperatures and the two-
hole transitions of the acceptor-bound exciton from
1S3/2(G6)→2S3/2(G6) have been clearly observed. The bind-
ing energy of the shallow Be acceptor at the center of the
MQWs has been measured experimentally. Using a varia-
tional calculation the acceptor binding energy has been cal-
culated as a function of the quantum-well width. It is found
that the experiment results are in good agreement with the
theory.
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