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Quantum box energies as a route to the ground state levels
of self-assembled InAs pyramidal dots
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University of Leeds, LS2 9JT United Kingdom

~Received 9 November 1999; accepted for publication 1 August 2000!

A theoretical investigation of the ground state electronic structure of InAs/GaAs quantum confined
structures is presented. Energy levels of cuboids and pyramidal shaped dots are calculated using a
single-band, constant-confining-potential model that in former applications has proved to reproduce
well both the predictions of very sophisticated treatments and several features of many experimental
photoluminescence spectra. A connection rule between their ground state energies is found which
allows the calculation of the energy levels of pyramidal dots using those of cuboids of suitably
chosen dimensions, whose solution requires considerably less computational effort. The purpose of
this work is to provide experimentalists with a versatile and simple method to analyze their spectra.
As an example, this rule is then applied to successfully reproduce the position of the ground state
transition peaks of some experimental photoluminescence spectra of self-assembled pyramidal dots.
Furthermore the rule is used to predict the dimensions of a pyramidal dot, starting from the
knowledge of the ground state transition energy and an estimate for the aspect ratioQ. © 2000
American Institute of Physics. @S0021-8979~00!03921-9#

I. INTRODUCTION

A huge quantity of experimental data is available on
InAs/GaAs self-assembled quantum dots~QDs! since the
fabrication of samples with increasingly narrow size and uni-
form density distribution has been made easy to achieve by
the Stranski–Krastanov growth method.1 Islands of various
sizes and shapes have been reported, depending on the
growth conditions, such as temperature, dot material cover-
age, growth rate, time delay before cap regrowth, etc.

The energy levels of such structures cannot be easily
calculated, both because of the finite potential confining bar-
rier ~often of the order of 200–500 meV! and the nontrivial
geometry of the dot. The Schro¨dinger equation must thus be
solved by means of a numerical method.

All these methods, although based on different theoreti-
cal approaches, have a common feature: they are usually
very complex and their computational demands are often
very high. Therefore, most of the time they are inaccessible
to the experimentalists, who have to resort to a sort ofinter-
polation of the available~i.e., published! theoretical data in
order to interpret and analyze their spectra. The dimensions
of the experimental dots are, however, almost never the ones
which the theoretical calculations are made for. An example
is the case of the samples grown by Sauvageet al.2 which
are lens shaped islands with typical height of 3 nm.

The estimate for their mean lateral size has been ob-
tained by a comparison of the photoluminescence~PL! spec-
tra with the theoretical calculations reported by Grundmann
et al.3 relative to square based pyramids with aspect ratio
Q51. According to this estimate, however, the experimental
structures all have differentQs ~i.e. Q51.6, 1.38, 0.916, and
1.53, respectively!, and, more importantly, allQÞ1. The
problem, here, does not lay therefore in the pyramidal ap-

proximation ~in a previous article4 we have shown that the
transition energies of lens shaped structures can be success-
fully reproduced by using pyramids with the same dimen-
sions. In fact, as illustrated by Andreevet al.,5 the strain
distribution is similar for both shapes throughout most of the
dot, differing only in the upper part, due to the sharp edges
of the pyramid and smooth boundary of the hemisphere!, the
problem lies in the use of theoretical data relative to struc-
tures with a givenQ5Q th to fit the spectra of structures with
different aspect ratios (QexpÞQth). A small difference in
only one of the dimensions results in dramatic differences in
the electronic energy levels,~as it is shown in Table I for
square-based pyramids with the same base lengthb5200 Å
but different heightsh5100 Å and h570 Å. Q51 and
1.428, respectively!, so that the conclusions drawn from the
comparison are at least inaccurate, if not misleading.

The aim of this article is to apply an extension of the
method developed by Gershoniet al.6 originally for a rect-
angular quantum wire~and only very recently successfully
applied by the authors4 to the study of pyramidal shaped
dots!, to determine a relationship between the ground state
energy levels of self-assembled InAs pyramidal quantum
dots and those of cuboids with the same characteristics, i.e.,
effective masses and confining potentials.

The objective being to obtain the energies of the former
using those of the latter,~whose solution requires a much
reduced code complexity resulting in a considerably less
computational effort!, and therefore provide experimentalists
with a useful and simple~but not necessarily less reliable!
tool to analyze their spectra.

Section II gives an overview of the method and the
theory involved. In Sec. III results are presented and dis-
cussed. A comparison of the prediction~using both the
cuboidal approximation and the full pyramidal calculation!,
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with experimental spectra of self-assembled pyramidal dots
is given. The summary and conclusions are given in Sec. IV.

II. THEORY

In the effective mass approximation the Schro¨dinger
equation for the envelope function can be written as

2

\2

2 S ¹
1

m* ~x,y ,z !
¹ DC~x,y ,z !1V~x,y ,z !C~x,y ,z !

5EC~x,y ,z !. ~1!

The envelope function of the quantum confined system of
interest~cuboid or pyramid!, C(x,y ,z), can be expanded in
terms of a complete orthonormal set of solutions of the
cuboidal problem with infinite barrier height, i.e.,

C~x,y ,z !5(
lmn

a lmnc lmn , ~2!
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The domains@2Lx/2, Lx/2], @2Lz/2, Lz/2] have been cho-
sen for the variation ofx andz, and@0, Ly] for that of y.

Care has been taken to move the boundariesLx , Ly , Lz

away from the dot system, so that the energy eigenvalues are
essentially independent of their choice. Since there is no
need to explicitly match wave functions across the boundary
between the barrier and dot materials, this method is easily
applicable to an arbitrary confining potential. After substitut-
ing expression~2! into Eq. ~1!, multiplicating on the left by
c l8m8n8

* , and finally integrating over the cuboidLxLyLz

~where use is made of the orthonormality of the wave func-
tions!, obtain the matrix equation
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are given by~more details

can be found in Ref. 4!
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where the subscriptW in the integrals means that the inte-
gration is over the dot~well! region. A very relevant feature
of this method is that all the integrals in Eq.~5! can be
performed analytically.

For expanding the envelope function, we have used a
base of 19 wave functions in each direction for the pyramids
and 14 eigenfunctions for the cuboids which is the minimum
number of functions required to achieve convergence for the
electronic energy eigenvalues to within less than 1 meV.
Standard mathematical software such as LAPACK7 is then
used to solve Eq.~4!, where M lmnl8m8n8

is a 685936859
~respectively, 274432744! matrix.

III. RESULTS AND DISCUSSION

In the self-assembled pyramidal dot material the effec-
tive masses differ from the unstrained ones due to the com-
pressive stress which alters the curvature of the bulk bands.
We have used the value of 0.04m0

8 for the effective mass of
InAs in the conduction band~the unstrained value is
0.023m0), to account for the strain as suggested by Cusack
et al.9

Most authors use two different values for the hole effec-
tive masses, one along the symmetry axisz and the other
along the planexy normal to that axis, to account for the
mass anisotropy. This choice nevertheless, increases the
~computational! complexity of the treatment, without im-
proving the approximation, since the mass for the motion
along transverse directions~where the holes spend the most
of their time! remains undefined. Furthermore, the in-plane
massesmxy , of electrons, light and heavy holes have been
revealed by accurate calculations in quantum wells~using
the pseudopotential method!,10 and in quantum dots,3 to be
similar to those commonly accepted for the motion along the
z axis. Therefore, in our calculations the hole effective mass
has been restricted to one valuemhh5mhh,z50.590me . This
value was estimated by Cusacket al.11 through empirical
pseudopotential andab initio local density calculations,

TABLE I. Comparison between electronic energy levels of square-based
pyramidal dots with the same base lengthb5200 Å and different heights
h570 andh5100 Å. The difference is not only in the energy eigenvalues
~about 50 meV for each level!, but in the number of bound states as well: 6
for the 70 Å height pyramid~where n.b. stands for not bound!, and 9 for the
100 Å height one.

Level n En
el (h570 Å) En

el (h5100 Å)

0 2259 2305
1 2155 2204
2 2155 2204
3 277 2125
4 260 2117
5 237 281
6 n.b. 256
7 n.b. 231
8 n.b. 227
9 n.b. 0
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along the@001# ~z! direction near the center of strained InAs
pyramidal structures with an aspect ratio of half base to
height,Qp5b/2h51.

Also the confining potential of the carriers is affected by
the strain and differs from the square well formed by the
difference in the absolute energy of the conduction or va-
lence band edges in the bulk barrier and dot material.9 The
square well~constant potential! approximation however still
gives good results for the conduction band,3 thus the strained
value of the electron confining potential has been taken as
the average over the QD, i.e.,V05450 meV.3 The same
treatment has been adopted for the heavy-hole confining po-
tential, whose average value has been deduced~see Ref. 4 for
further details! by fitting the theoretical data for strained
pyramids of Cusacket al..9

The same values for effective masses and potentials~see
Table II! have been used throughout the calculations for both
cuboids and pyramids and for all the dot sizes considered.

We would like to emphasize that although the Schro¨-
dinger equation does not explicitly include the strain~that is,
we do not diagonalize any 838 strain Hamiltonian matrix
such as that in Ref. 12!, its effects are nevertheless accounted
for by the choice of strained values for effective masses and
average confining potentials~for both electrons and heavy
holes!, relative to the pyramidal dot case.

The inclusion of a detailed treatment of the microscopic
effects of the strain would, in fact, introduce excessive com-
plexity in the model and would be beyond the scope of this
work ~which aims to provide the experimentalists with a
simple, easy-to-code and quick-to-run method to analyze
their spectra!. In order to justify the choice of the parameters
used in our calculations we, nevertheless, performed a set of
calculations of the strain distribution in pyramidal structures
with aspect ratioQ ranging from 1 to 4.5 using a method
based on the Green’s function technique,5 taking into ac-

count the anisotropy of the elastic properties as well.13 The
carriers’ strained confining potentials were then calculated as
a function of position along the growth direction, in the
framework of the eight-bandk"p theory ~see, for example
Ref. 14!. The results were in agreement with previously pub-
lished data,11,15 and showed that the confining potentials of
both electrons and holes are almost constant throughout the
dot for Q>2, with average values centered around 450 meV
~for the electrons! and 266 meV~for the heavy holes!, prov-
ing our constant-confining-potential approximation as a rea-
sonable choice. The very good agreement obtained by our
simple model with several experimental transition energies
~see later! is nevertheless hard to explain. A compensation
mechanism in which a positive difference in the confining
potential @i.e., between our average strained value of 450
~266! meV and the average strained value calculated for the
specific sample# is compensated by a negative difference in
the value of the effective mass,~so that when the confining
potential is,450 meV, the effective mass is.0.04, and vice
versa!, could be responsible for this little difference in the
transition energies.

Figure 1 presents the results for the electron and heavy-
hole ground state energy levels of InAs square-based quan-
tum pyramids and cubes, both with aspect ratioQ51 @for
the cuboids, unlike the pyramids whereQp5b/(2h), define
the aspect ratioQc5b/h#, as a function of the cubic root of
the volume, plotted relative to the unstrained GaAs conduc-
tion and valence band edge, respectively.

Despite the simplicity of the calculations, the ground
state electronic and heavy-hole energies given by our method
agree very well with previous, more sophisticated, theoreti-
cal studies of InAs self-assembled pyramidal dots3,9 @a com-
parison with those methods, as well as with experimental
data, has been presented elsewhere:4 it is shown that the
values (mW,hh50.59, V5266 meV) reported in Table II
have proved to reproduce well the ground state energies of
all the experimental spectra considered#.

The model, as presented in Fig. 1, predicts no bound
electron states for base lengths smaller than about 60 Å~i.e.,
V1/3

,33 Å).
From Fig. 1 it is evident that for the ground state energy

levels the relationship

Egs
pyr~V !5Egs

cubS V

a3D ~6!

TABLE II. Calculation parameters:mW well region effective mass;mB

barrier region effective mass~both in units ofm0); V0 carrier confining
potential~in meV!.

Electron Heavy hole

mW mB V0 mW mB V0

0.040 0.0665 450 0.59 0.3774 266

FIG. 1. Electron~left-hand side! and
heavy-hole ~right-hand side! ground
state energy levels as a function of the
cubic root of the volume, for InAs
square-based pyramidal QDs~tri-
angles! and cubes ~squares!, ~both
with aspect ratioQ51), with respect
to the unstrained GaAs conduction and
valence bands respectively. Fit for
a51.091 dashed line.
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holds, witha51.091~dashed line in the figure! for the elec-
trons ~it is interesting to note that a similar value for the
proportionality constantael(Q51)51.064 has been found
for the GaAs/Ga0.63Al0.37As system. This value constitutes
an improvement to the one, calculated by means of a differ-
ent approach, reported in a previous article16!, anda51 for
the heavy holes. In this particular case~i.e., Q51), the
heavy-holes ground state energies of the cubes are the same,
to within 5%, as those of the pyramids, for 66 Å,V1/3

,150 Å, which is the region of interest, in which the typical
~uniformly sized and distributed! experimental self-
assembled pyramidal dot dimensions range.17–21 Neverthe-
less we have found that even for structures of a given shape
and volume,Egs varies depending on the particular aspect
ratio Q of the dot. This variation is volume dependent in the
sense that the range ofQ within which DEgs5@Egs(Q)
2Egs(Q51)#/Egs(Q) ~i.e., the percentual variation of the
ground state energy of a structure with a givenQ, relative to
that of a structure withQ51) is, say, 3%, is smaller for
small volumes than it is for large volumes. In other words
the variation of the ground state energy withQ is smaller the
bigger the dot. This holds for both cuboids and pyramids, but
the size of the variation is different for the two shapes. We
have found that, by varying the aspect ratioQ of the square-
based pyramids, the relationship in Eq.~6! remains valid
~provided that a square-based cuboid with the same aspect
ratio as the pyramid is used!, but the proportionality constant
a becomes a function ofQ. Furthermore, two differenta(Q)
have to be used, one for the electrons and the other for the
holes, as shown in Fig. 2, where every point has been ob-
tained as the coefficient producing the best fit of the pyrami-
dal dot energy curve to the cuboidal one@after the relation-
ship in Eq. ~6!, and as illustrated in Fig. 1#. Equation~6!
therefore becomes

Egs,carr
pyr ~V,Q !5Egs,carr

cub F V

acarr
3 ~Q !

,QG , ~7!

where carr~5carrier! implies electrons or heavy holes.
It is important to mention that by using the same param-

eters~i.e., strain induced effective masses and strained aver-
age confining potentials! for both cuboidal and pyramidal
calculations we are not implicitly assuming the strain distri-
bution in a quantum box to be the same as that in a pyramid

~which is not the case, as shown, for example, in Ref. 5!. We
are proposing an alternative computational method for calcu-
lating the electronic ground state energy of self-assembled
pyramidal quantum dots, that exploits the proportionality be-
tween the solutions of the pyramid and those of a much
simpler and more symmetrical structure: the cuboid. In other
words, given a pyramidal QD, whose electronic structure is
determined by a characteristic set of parameters, its ground
state energy can be obtained from a calculation where the
pyramidal shape is replaced by a cuboidal one and use is
made of the simple proportionality rule in Eq.~7!. The
cuboid therefore enters only as a computational expedient
which allows us to greatly simplify the calculations~and not
as a proper QD with its specific parameters which, due to a
different strain distribution in that structure, are expected to
be different from those of the pyramid!. The advantage is
that the integrals involved in the cuboidal calculations are
much simpler than those relative to the pyramidal case~the
mathematic involved extends over about 6 code lines com-
pared to more than 600 in the latter!, resulting in a substan-
tially ~about 20 times! lower computational time.

Utilizing Eq. ~7! anda(Q) both for the electrons and for
the heavy holes~from Fig. 2!, the connection rule model has
been applied in order to predict the position of the ground
state transition peak in the experimental PL spectra of the
samples grown by Schmidtet al.,19 Murray et al.,20 and
Noda et al.,21 which have aspect ratiosQ of 1.428, 2.857,
and 4.564, respectively,@for the latter, which was a
rectangular-based pyramid, we defined the aspect ratio as
Q5Abxby/(2h)#, and thus cover a large portion of theQ
variation range. The results are presented in Table III to-
gether with the pyramidal calculation results and the experi-
mental data.

The ground state transition energies calculated with the
cuboidal approximation, following the connection rule in Eq.
~7!, agree very well both with those obtained by means of the
full pyramidal calculation and with the experimental values
of such transitions. This agreement not only proves the va-
lidity of the connection rule in Eq.~7!, but the accuracy of
the acarr(Q) curves~in Fig. 2! as well.

It has now been proved that by knowing the dimensions
of the pyramidal dot it is possible to deduce easily and with-
out much computational effort, the ground state transition
energy and therefore the position of the first PL spectrum
peak, using the energy of an equivalent square-based cuboid
with the same aspect ratio~and the same characteristic pa-

FIG. 2. Coefficienta of Eq. ~7! as a function of the aspect ratioQ, for both
electrons~diamonds! and heavy holes~circles!.

TABLE III. Comparison between the results of square-based pyramidal and
cuboidal calculations@after the connection rule in Eq.~7!#, and the peak
positions of the experimental PL spectra, for the ground state transition
energies of the samples of Refs. 19–21.

E00
pyr ~eV) E00

cub ~eV) E00
exp (eV)

Schmidtet al.a 1.017 1.019 1.01
Murray et al.b 0.962 0.964 0.961
Nodaet al.c 1.199 1.195 1.220

aSee Ref. 19.
bSee Ref. 20.
cSee Ref. 21.
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rameters! as the pyramid, whose volume is determined by
Eq. ~7!. In addition the versatility of the model is such that,
starting from the PL ground state peak position, it can be
applied in reverse, to deduce the dimensions of the pyrami-
dal dot, allowing those experimentalists who do not have
access to microscopic analysis equipment to estimate the size
of the dots they have grown~though they do need to have an
estimate of the aspect ratioQ!. The latter does represent a
limitation to the applicability of the model, but the aspect
ratio can often be estimated from supporting microscopy of
similarly grown samples.

As an example of this~reverse! application of the model,
we have deduced the dimensions of the dots whose ground
state energy transition is 0.961 eV and whose aspect ratio
ranges between 2.5 and 3~i.e., the pyramids grown by Mur-
ray et al.,20 which haveh570, b5400, andQ52.857). The
procedure is to draw two~one for the electrons and the other
for the heavy holes! graphs similar to those reported in Fig.
1, for each value of the aspect ratio. Since the cuboidal
equivalent volumes for the electronsVel

c
5Vp /(ael

3 ) are dif-
ferent from those for the heavy holesVhh

c
5Vp /(ahh

3 ) ~the
constanta being different!, one of the graphs, say the elec-
tron one, needs to be rescaled by the factorael /ahh (ahh/ael

has to be used for the heavy-hole curve!, before direct com-
parison to the other. Now in each pair of graphs, for the same
Q, there is now only one value for the volume~of the equiva-
lent cuboid!, for which Egs,el andEgs,hhsatisfy

Egs,el1Egs,hh5Egs,tr2EGaAs, ~8!

where Egs,tr is the experimental ground state transition en-
ergy andEGaAs is the GaAs band gap. The volumes of the
pyramids are finally obtained by using Eq.~7!. The results
are displayed in Table IV together with the experimental
values.

The accuracy of the prediction depends on the accuracy
to which Q is known. Otherwise by knowing one of the dot
dimensions, sayh, ~which, as the case of Sauvageet al.2

shows, is a condition more likely to happen than to have an
estimate of its aspect ratio! and the ground state transition
energy, our model allows the determination of the aspect
ratio and thus the other dimension,b. Unfortunately in this
case the connection rule is not applicable and we have to
resort to a full pyramidal calculation.

IV. CONCLUSIONS

A theoretical investigation of the ground state electronic
structure of InAs/GaAs quantum confined structures has
been presented. Energy levels of cuboids and pyramidal
shaped dots have been calculated using a single-band,
constant-confining-potential model that has proved4 to well
reproduce both the prediction of more sophisticated treat-
ments and several features of the experimental PL spectra.

Aiming to provide experimentalists with a simple
method, easy-to-code and quick-to-run, with very limited
computational demands, to analyze their spectra, a connec-
tion rule has been found which allows calculation of the
energy levels of pyramidal dots starting from those of
cuboids of the same material~that is, with the same effective
masses and confining potentials as the pyramid!, aspect ratio
and of suitably chosen dimensions. As an example, this rule
has then been applied to successfully reproduce the position
of the ground state transition peaks of some experimental PL
spectra relative to self-assembled pyramidal dots. Further-
more, starting from the knowledge of the ground state tran-
sition energy and an estimate for the aspect ratioQ of a
pyramid, the rule has been used to predict its dimensions.
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