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Quantum box energies as a route to the ground state levels
of self-assembled InAs pyramidal dots
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A theoretical investigation of the ground state electronic structure of InAs/GaAs quantum confined
structures is presented. Energy levels of cuboids and pyramidal shaped dots are calculated using a
single-band, constant-confining-potential model that in former applications has proved to reproduce
well both the predictions of very sophisticated treatments and several features of many experimental
photoluminescence spectra. A connection rule between their ground state energies is found which
allows the calculation of the energy levels of pyramidal dots using those of cuboids of suitably
chosen dimensions, whose solution requires considerably less computational effort. The purpose of
this work is to provide experimentalists with a versatile and simple method to analyze their spectra.
As an example, this rule is then applied to successfully reproduce the position of the ground state
transition peaks of some experimental photoluminescence spectra of self-assembled pyramidal dots.
Furthermore the rule is used to predict the dimensions of a pyramidal dot, starting from the
knowledge of the ground state transition energy and an estimate for the aspe.ra@o 2000
American Institute of Physics. [S0021-897@0)03921-9

I. INTRODUCTION proximation (in a previous articltwe have shown that the
transition energies of lens shaped structures can be success-
A huge quantity of experimental data is available onfully reproduced by using pyramids with the same dimen-
InAs/GaAs self-assembled quantum dd€Ds) since the sions. In fact, as illustrated by Andreetal.’ the strain
fabrication of samples with increasingly narrow size and unidistribution is similar for both shapes throughout most of the
form density distribution has been made easy to achieve bylot, differing only in the upper part, due to the sharp edges
the Stranski—Krastanov growth methbéslands of various of the pyramid and smooth boundary of the hemisphéhe
sizes and shapes have been reported, depending on tpeoblem lies in the use of theoretical data relative to struc-
growth conditions, such as temperature, dot material coverures with a giverQ = Qy, to fit the spectra of structures with
age, growth rate, time delay before cap regrowth, etc. different aspect ratios Qey,#Qu). A small difference in
The energy levels of such structures cannot be easilpnly one of the dimensions results in dramatic differences in
calculated, both because of the finite potential confining barthe electronic energy level$as it is shown in Table | for
rier (often of the order of 200—-500 me\and the nontrivial ~ square-based pyramids with the same base lelngtB00 A
geometry of the dot. The Schiimger equation must thus be but different heightsh=100A and h=70A. Q=1 and
solved by means of a numerical method. 1.428, respective)y so that the conclusions drawn from the
All these methods, although based on different theoreticomparison are at least inaccurate, if not misleading.
cal approaches, have a common feature: they are usually The aim of this article is to apply an extension of the
very complex and their computational demands are oftemnethod developed by Gershoetial.® originally for a rect-
very high. Therefore, most of the time they are inaccessibl@ngular quantum wir¢and only very recently successfully
to the experimentalists, who have to resort to a soitief-  applied by the authofsto the study of pyramidal shaped
polation of the available(i.e., published theoretical data in  dots, to determine a relationship between the ground state
order to interpret and analyze their spectra. The dimensionsnergy levels of self-assembled InAs pyramidal quantum
of the experimental dots are, however, almost never the onegots and those of cuboids with the same characteristics, i.e.,
which the theoretical calculations are made for. An exampleffective masses and confining potentials.
is the case of the samples grown by Sauveigal.> which The objective being to obtain the energies of the former
are lens shaped islands with typical height of 3 nm. using those of the lattefwhose solution requires a much
The estimate for their mean lateral size has been obreduced code complexity resulting in a considerably less
tained by a comparison of the photoluminescefRle spec- computational effot and therefore provide experimentalists
tra with the theoretical calculations reported by Grundmanrwith a useful and simplébut not necessarily less reliable
et al.® relative to square based pyramids with aspect ratidool to analyze their spectra.
Q=1. According to this estimate, however, the experimental  Section Il gives an overview of the method and the
structures all have differel@s (i.e. Q=1.6, 1.38, 0.916, and theory involved. In Sec. Ill results are presented and dis-
1.53, respectively and, more importantly, alQ#1. The cussed. A comparison of the predictignsing both the
problem, here, does not lay therefore in the pyramidal apeuboidal approximation and the full pyramidal calculajion
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TABLE |. Comparison between electronic energy levels of square-basedhe matrix elementd | ,'mn are given by(more details
pyramidal dots with the same base lengts 200 A and different heights can be found in Ref. ¥

h=70 andh=100 A. The difference is not only in the energy eigenvalues

(about 50 meV for each levelbut in the number of bound states as well: 6 2

for the 70 A height pyramidwhere n.b. stands for not bounend 9 for the *
100 A height one. Mmni?men? Y WV‘ﬂwmran‘ﬂlmndXdde
Level n ES (h=70A) ES (h=100A)
*
0 —259 —305 +f WV ¥imndxdydz
1 —155 —204 .
2 ~155 —204 hems 1 (II’ mm’  nn’ v
=l— —| 5+ —+—5|+
3 -77 -125 2 ) 2
4 -60 ~117 2 mgll Ly L
5 -37 -81 221 1
6 n.b. —56 X5||75 /5 [ S i
7 n.b. -31 e 2 imy mg
8 n.b. -27
9 n.b. 0 xfwvlpl*,m,n,vl/qmndxdydz
- : , —Vf b Wimndxdydz, 5
with experimental spectra of self-assembled pyramidal dots W'pl m'ns Yimndxdy ®)

is given. The summary and conclusions are given in Sec. IV.

where the subscriptV in the integrals means that the inte-
gration is over the dofwell) region. A very relevant feature
of this method is that all the integrals in E¢p) can be

In the effective mass approximation the Salinger Performed analytically.

Il. THEORY

equation for the envelope function can be written as For expanding the envelope function, we have used a
) base of 19 wave functions in each direction for the pyramids

_ h_(v _ V) W(x,y,2)+V(X.y,2)P(X,y,2) and 14 eigenfunptions for. the cuboids which is the minimum
2 m*(X,y,z) number of functions required to achieve convergence for the
—EW(x,y,2). 1) electronic energy eigenvalues to within less than 1 meV.

Standard mathematical software such as LAPA@Kthen
The envelope function of the quantum confined system ofised to solve Eq(4), where M| ni/mn iS @ 685% 6859
interest(cuboid or pyramig, ¥ (x,y,z), can be expanded in (respectively, 27442744 matrix.
terms of a complete orthonormal set of solutions of the
cuboidal problem with infinite barrier height, i.e.,

IIl. RESULTS AND DISCUSSION

‘I’(X,y,Z)ZE Qmn¥imn » (2
tmn In the self-assembled pyramidal dot material the effec-
where tive masses differ from the unstrained ones due to the com-
5 1 x pressive stress which alters the curvature of the bulk bands.
Pioon= \/\sir{lw<—— _” We have used the value of 019¢® for the effective mass of
Lx 2 Ly InAs in the conduction bandthe unstrained value is
2 y 2 1 7 o.oz:gmo), to account for the strain as suggested by Cusack
X\/L:sm<mrr|_—)\/l_:sm nW(E_L_”' et al. _
y y z z Most authors use two different values for the hole effec-

(3) tive masses, one along the symmetry axiand the other

The domaing — L /2, L /2], [~ L,/2, L,/2] have been cho- along the_ planexy nor_mal to that axis, to account for the
sen for the variation o andz, and[0, L,] for that of y. mass anlsotropy. This .ch0|ce nevertheless, increases the
Care has been taken to move the boundarigsL , L, (computatlonal com.plex.lty of.the treatment, without im-
away from the dot system, so that the energy eigenvalues aR:I(ovmg the appro>$|ma_t|on, since the mass for the motion
essentially independent of their choice. Since there is ng.ong transverse d_wectmrﬁwhere the holes spend th_e most
need to explicitly match wave functions across the boundar f their timg) remains unde_ﬂned. Furthermore, the in-plane
between the barrier and dot materials, this method is easil( 255€9Mhy of elecirons, light and heavy holes have been

applicable to an arbitrary confining potential. After substitut- ﬁvealed dby accu.ralte ca;:cuv!atlogs. n quanturrgj vt\/%éllilsgg
ing expression(2) into Eq. (1), multiplicating on the left by t_e.pseu opotential methipd' and in quantum 0 fo be

* ' . . . similar to those commonly accepted for the motion along the
U @nd finally integrating over the cuboid,L L, . . . .

m'n . . z axis. Therefore, in our calculations the hole effective mass
(where use is made of the orthonormality of the wave func—h b icted e, — _ hi
tions), obtain the matrix equation as been restrl'cte to one vamgh—rqgh,z— 0.590m, . T is

' value was estimated by Cusaekal.” through empirical

(Minm 10— ESmm 8117 6nn) &1mn=0. (4) pseudopotential andib initio local density calculations,
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TABLE II. Calculation parametersmy, well region effective massmg
barrier region effective masboth in units ofmy); V, carrier confining
potential(in meV).

Electron Heavy hole
My mg Vo My mg Vo
0.040 0.0665 450 0.59 0.3774 266

along the[001] (2) direction near the center of strained InAs
pyramidal structures with an aspect ratio of half base to

height,Q,=b/2h=1.

Also the confining potential of the carriers is affected by
the strain and differs from the square well formed by the
difference in the absolute energy of the conduction or va-

lence band edges in the bulk barrier and dot matéridie

square well(constant potentialapproximation however still
gives good results for the conduction battius the strained
value of the electron confining potential has been taken
the average over the QD, i.eVy=450meV> The same

treatment has been adopted for the heavy-hole confining po-

tential, whose average value has been ded(sme Ref. 4 for

further detail$ by fitting the theoretical data for strained

pyramids of Cusackt al..°
The same values for effective masses and potern(saks

Table 1) have been used throughout the calculations for both
cuboids and pyramids and for all the dot sizes considered.
We would like to emphasize that although the Sehro

dinger equation does not explicitly include the stréimat is,
we do not diagonalize any>@ strain Hamiltonian matrix

such as that in Ref. )2its effects are nevertheless accounted
for by the choice of strained values for effective masses an8
average confining potentialor both electrons and heavy

holeg, relative to the pyramidal dot case.

The inclusion of a detailed treatment of the microscopic
effects of the strain would, in fact, introduce excessive com-
plexity in the model and would be beyond the scope of this
work (which aims to provide the experimentalists with a
simple, easy-to-code and quick-to-run method to analyz
their spectra In order to justify the choice of the parameters
used in our calculations we, nevertheless, performed a set ?év
calculations of the strain distribution in pyramidal structures
with aspect ratioQ ranging from 1 to 4.5 using a method

based on the Green’s function techniguiking into ac-

M. Califano and P. Harrison

count the anisotropy of the elastic properties as Wellhe
carriers’ strained confining potentials were then calculated as
a function of position along the growth direction, in the
framework of the eight-banét-p theory (see, for example
Ref. 14. The results were in agreement with previously pub-
lished datd!*®>and showed that the confining potentials of
both electrons and holes are almost constant throughout the
dot for Q=2, with average values centered around 450 meV
(for the electronsand 266 meMfor the heavy holes prov-
ing our constant-confining-potential approximation as a rea-
sonable choice. The very good agreement obtained by our
simple model with several experimental transition energies
(see later is nevertheless hard to explain. A compensation
mechanism in which a positive difference in the confining
potential [i.e., between our average strained value of 450
(266) meV and the average strained value calculated for the
specific sampleis compensated by a negative difference in
the value of the effective mas&o that when the confining
agotential is<450 meV, the effective mass 1s0.04, and vice
versg, could be responsible for this little difference in the
transition energies.
Figure 1 presents the results for the electron and heavy-
hole ground state energy levels of InAs square-based quan-
tum pyramids and cubes, both with aspect r&die-1 [for
the cuboids, unlike the pyramids whe@g=b/(2h), define
the aspect rati@.=b/h], as a function of the cubic root of
the volume, plotted relative to the unstrained GaAs conduc-
tion and valence band edge, respectively.

Despite the simplicity of the calculations, the ground
state electronic and heavy-hole energies given by our method
agree very well with previous, more sophisticated, theoreti-
al studies of InAs self-assembled pyramidal d{s com-
parison with those methods, as well as with experimental
data, has been presented elsewHeiteis shown that the
values (ny ,=0.59, V=266 meV) reported in Table Il
have proved to reproduce well the ground state energies of
all the experimental spectra considefed
The model, as presented in Fig. 1, predicts no bound
electron states for base lengths smaller than about GGA
§/13<334).

From Fig. 1 it is evident that for the ground state energy
els the relationship

pyr, _ Ecu i
EPY(V) Egsb(as) (6)

0 " " " -210
4 FIG. 1. Electron(left-hand sid¢ and
-100 heavy-hole (right-hand sidg ground
—~ =230 g state energy levels as a function of the
z S cubic root of the volume, for InAs
é -200 “é’ square-based pyramidal QDstri-
T ~ angle$ and cubes(squares (both
(S :?-,, -250 with aspect ratiocQ=1), with respect
-300 = to the unstrained GaAs conduction and
valence bands respectively. Fit for
400 «=1.091 dashed line.
60 80 100 120 140 160 -270
T ( A) 70 90 1 /310 130 150
V" (&)
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1.6 TABLE Ill. Comparison between the results of square-based pyramidal and
cuboidal calculationgafter the connection rule in Eq7)], and the peak
positions of the experimental PL spectra, for the ground state transition
energies of the samples of Refs. 19-21.

1.4

5 | ERY (eV) ESS (eV) ESXP(eV)
Schmidtet al.? 1.017 1.019 1.01
12 | Murray et al.® 0.962 0.964 0.961
Nodaet al.° 1.199 1.195 1.220
) 2See Ref. 19.
1 PSee Ref. 20.
1 2 3 4 5 °See Ref. 21.

Q

FIG. 2. Coefficientx of Eq. (7) as a function of the aspect rai@@ for both . . .
electrons(diamonds and heavy holegcircles. (which is not the case, as shown, for example, in RefWee

are proposing an alternative computational method for calcu-
lating the electronic ground state energy of self-assembled
holds, witha=1.091(dashed line in the figujdor the elec-  pyramidal quantum dots, that exploits the proportionality be-
trons (it is interesting to note that a similar value for the tween the solutions of the pyramid and those of a much
proportionality constantr(Q=1)=1.064 has been found simpler and more symmetrical structure: the cuboid. In other
for the GaAs/GgesAlg37As system. This value constitutes words, given a pyramidal QD, whose electronic structure is
an improvement to the one, calculated by means of a differgetermined by a characteristic set of parameters, its ground
ent approach, reported in a previous arfitleanda=1for  state energy can be obtained from a calculation where the
the heavy holes. In this particular casee., Q=1), the  pyramidal shape is replaced by a cuboidal one and use is
heavy-holes ground state energies of the cubes are the samgade of the simple proportionality rule in Eq7). The
to within 5%, as those of the pyramids, for 664/  cuhoid therefore enters only as a computational expedient
<150A, which is the region of interest, in which the typical which allows us to greatly simplify the calculatiofend not
(uniformly sized and distributed experimental self- a5 a proper QD with its specific parameters which, due to a
assembled pyramidal dot dimensions rahfgé: Neverthe- gifferent strain distribution in that structure, are expected to
less we have found that even for structures of a given shapge different from those of the pyramidThe advantage is
and volume,Ey varies depending on the particular aspectthat the integrals involved in the cuboidal calculations are
ratio Q of the dot. This variation is volume dependent in the much Simp|er than those relative to the pyramida| c(ahe
sense that the range @ within which AE,=[E,(Q)  mathematic involved extends over about 6 code lines com-
—Eg{Q=1)J/Eg{Q) (i.e., the percentual variation of the pared to more than 600 in the lafteresulting in a substan-
ground state energy of a structure with a givgrrelative to  tjally (about 20 timeslower computational time.
that of a structure wittQ=1) is, say, 3%, is smaller for Utilizing Eq. (7) anda(Q) both for the electrons and for
small volumes than it is for large volumes. In other wordsthe heavy hole¢from Fig. 2), the connection rule model has
the variation of the ground state energy wigtis smaller the  peen applied in order to predict the position of the ground
bigger the dot. This holds for both cuboids and pyramids, buktate transition peak in the experimental PL spectra of the
the size of the variation is different for the two shapes. Wesamples grown by Schmidt al.,*® Murray et al.,>° and
have found that, by varying the aspect rafiaf the square-  Noda et al.,?* which have aspect ratio® of 1.428, 2.857,
based pyramids, the relationship in E@) remains valid and 4.564, respectively[for the latter, which was a
(provided that a square-based cuboid with the same aspegictangular-based pyramid, we defined the aspect ratio as
ratio as the pyramid is usgcbut the proportionality constant g — M/(Zh)]' and thus cover a large portion of tig@
a becomes a function d. Furthermore, two differer#(Q)  variation range. The results are presented in Table Ill to-
have to be used, one for the electrons and the other for thgether with the pyramidal calculation results and the experi-
holes, as shown in Fig. 2, where every point has been obnental data.
tained as the coefficient producing the best fit of the pyrami-  The ground state transition energies calculated with the
dal dot energy curve to the cuboidal ofadter the relation-  cupoidal approximation, following the connection rule in Eq.
ship in Eqg.(6), and as illustrated in Fig.]1Equation(6)  (7), agree very well both with those obtained by means of the
therefore becomes full pyramidal calculation and with the experimental values
of such transitions. This agreement not only proves the va-
(7)  lidity of the connection rule in Eq(7), but the accuracy of
the aq,(Q) curves(in Fig. 2) as well.
where carr(=carriep implies electrons or heavy holes. It has now been proved that by knowing the dimensions
It is important to mention that by using the same param-of the pyramidal dot it is possible to deduce easily and with-
eters(i.e., strain induced effective masses and strained aversut much computational effort, the ground state transition
age confining potentialsfor both cuboidal and pyramidal energy and therefore the position of the first PL spectrum
calculations we are not implicitly assuming the strain distri-peak, using the energy of an equivalent square-based cuboid
bution in a quantum box to be the same as that in a pyramiwith the same aspect rati@nd the same characteristic pa-

Py V, ):Ecub { ' ,
gs,car( Q gs,car| m Q
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TABLE V. Theoretically predictedafter the connection rule in Ed7), IV. CONCLUSIONS
and thea,(Q) curves of Fig. 2, dimensions of a pyramidal dot with a ) ) . . .
ground state transition energ{S, =961 meV, and) ranging from 2.5 to 3. A theoretical investigation of the ground state electronic

The actual dimensions from Ref. 20 are also displayed for comparison. structure of InAs/GaAs quantum confined structures has
been presented. Energy levels of cuboids and pyramidal

h (A b (A . .

Q @ @ shaped dots have been calculated using a single-band,
2.5(the0rwa 72 360 constant-confining-potential model that has prévedwell
2.857exp) 70 400 reproduce both the prediction of more sophisticated treat-
3.0(theory) 68 409 .

ments and several features of the experimental PL spectra.
See Ref. 20. Aiming to provide experimentalists with a simple

method, easy-to-code and quick-to-run, with very limited
computational demands, to analyze their spectra, a connec-
; h id. wh | is determined b tion rule has been found which allows calculation of the
rameters as '€ pyramid, Wnose volume 1S determine yenergy levels of pyramidal dots starting from those of
Eq. (.7)' In addition the versatility of the mode_l s su_ch that, cuboids of the same materighat is, with the same effective
starting _from the PL ground state peak position, it can be}nasses and confining potentials as the pyranaisipect ratio
applied in reverse, to deduce the dimensions of the PYramiyng of suitably chosen dimensions. As an example, this rule

dal dot, allqwmg thgse expe.rlmen.tallsts who 0.'0 not havgnas then been applied to successfully reproduce the position
access to microscopic analysis equipment to estimate the siz{

f the ground state transition peaks of some experimental PL
of t_he dots they have grow(though they do need to have an spectra relative to self-assembled pyramidal dots. Further-
estimate of the aspect rati@). The latter does represent a

o o more, starting from the knowledge of the ground state tran-
limitation to the applicability of the model, but the aspect g g d

. ) . . ition energy and an estimate for the aspect rQiof a
rgth can often be estimated from supporting microscopy o yramid, the rule has been used to predict its dimensions.
similarly grown samples.
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