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A CNN-LSTM Hybrid Model for Wrist Kinematics

Estimation Using Surface Electromyography
Tianzhe Bao, Student Member, IEEE, Syed Ali Raza Zaidi, Member, IEEE, Shengquan Xie, Senior

Member, IEEE, Pengfei Yang, Member, IEEE, and Zhi-Qiang Zhang, Member, IEEE

Abstract—Convolutional neural network (CNN) has been
widely exploited for simultaneous and proportional myoelectric
control due to its capability of deriving informative, represen-
tative and transferable features from surface electromyography
(sEMG). However, muscle contractions have strong temporal
dependencies but conventional CNN can only exploit spatial
correlations. Considering that long short-term memory neural
network (LSTM) is able to capture long-term and non-linear
dynamics of time-series data, in this paper we propose a CNN-
LSTM hybrid model to fully explore the temporal-spatial infor-
mation in sEMG. Firstly, CNN is utilized to extract deep features
from sEMG spectrum, then these features are processed via
LSTM-based sequence regression to estimate wrist kinematics.
Six healthy participants are recruited for the participatory
collection and motion analysis under various experimental setups.
Estimation results in both intra-session and inter-session evalua-
tions illustrate that CNN-LSTM significantly outperforms CNN,
LSTM and several representative machine learning approaches,
particularly when complex wrist movements are activated.

Index Terms—sEMG, wrist kinematics estimation, deep learn-
ing, convolutional neural network, long short-term memory
network, hybrid model.

I. INTRODUCTION

DURING the past decades, there has been considerable

attention given to surface electromyography (sEMG) in

driving active prosthetic hands [1] and upper limb exoskeleton

robotics [2]. To achieve intuitive myoelectric control, machine

learning (ML) approaches, i.e. classifier-based pattern recogni-

tion (PR) and regression, have been extensively investigated in

recent literature. Unlike PR-based methods which discriminate

hand gestures in a discrete and sequential manner [3], re-

gression models focus on continuous wrist kinematics estima-

tion [4] and thus can promote simultaneous and proportional

control in multiple degrees of freedoms (DoF). Several ML-

based regression methods, including linear regression (LR),

artificial neural network (ANN), kernel ridge regression, sup-

port vector regression (SVR) and random forest (RF), have

been extensively exploited in both off-line simulations [5–9]

This work was supported in part by Engineering and Physical Sciences
Research Council (EPSRC) (Grant No. EP/S019219/1), School of Electronic
and Electrical Engineering, University of Leeds, and the National Natural
Science Foundation of China under Grant 61962019 and Grant 61702395.
(Corresponding author: Zhi-Qiang Zhang, Pengfei Yang.)

Tianzhe Bao, Syed Ali Raza Zaidi, Shengquan Xie and Zhi-Qiang Zhang
are with Institute of Robotics, Autonomous System and Sensing, School of
Electrical and Electronic Engineering, University of Leeds, LS2 9JT, UK (e-
mail: {eltb, s.a.zaidi, s.q.xie, z.zhang3}@leeds.ac.uk).

Pengfei Yang is with School of Computer Science and Technology, Xidian
University, China (e-mail: pfyang@xidian.edu.cn).

and real-time prosthetic control [1]. However, ML techniques

rely deeply on manual feature extraction [10], i.e. feature

engineering. Due to the stochastic nature of sEMG signals

[11] and serious crosstalk among muscles, useful information

can be easily obscured in hand-crafted features.

Deep learning (DL), particularly the convolutional neural

network (CNN), is now providing a new perspective for fea-

ture learning/extraction via layer-by-layer processing [12, 13].

Promising results have been achieved in sEMG-based hand

gesture recognition in the past few years. For instance, Park

et al. presented a single stream CNN and evaluated the perfor-

mance of DL learning via inter-subject estimations [14]. Atzori

et al. made a comprehensive comparison between CNN and

several ML classifiers based on the NinaPro dataset [15]. Du et

al. presented an AdaBN-based deep domain adaptation scheme

for inter-session recognition and conducted evaluations with

two more public datasets (CSL-HDEMG and CapgMyo) [16].

Wei et al. proposed a two-stage multi-stream CNN to learn the

correlations between individual muscles [17]. Ding et al. pro-

posed a parallel multiple-scale convolution architecture which

exploited different size of kernel filters [18]. In addition, there

are several pilot studies on regression-based wrist kinematics

estimation. For instance, Ameri et al. investigated a CNN-

based regression technique which outperformed a traditional

SVR-based scheme in an online Fitts’ law test [19]. Yang et

al. presented several data-augmentation approaches for CNN

in decoding 3-DoF wrist movements [20], and verified that the

proposed CNN structure outperformed SVR significantly when

confounding factors were involved [21]. Although CNN is

good at extracting spatial correlations of multi-channel sEMG

signals, it inherently ignores the temporal information during

continuous muscle contractions.

Most recently, many researchers begin to implement the

long short-term memory network (LSTM) for sEMG-based

hand pose estimation. For example, Quivira et al. applied

LSTM to build an accurate regression model for predicting

hand joint kinematics from sEMG features [22]. Teban et

al. claimed that LSTM performed better than a non-recurrent

ANN in replicating a non-linear mechanism of a real human

hand [23]. He et al. combined LSTM with ANN to exploit

both the dynamic and static information of sEMG [24]. Ali

et al. validated that a bidirectional LSTM with attention

mechanism could outperform other tested recurrent neural

networks (RNN) in sEMG-based hand gesture recognition

[25]. Despite that LSTM shows great effectiveness in capturing

temporal dependencies based on learning contextual informa-

tion from past inputs [26], all those pilot studies have only
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applied conventional hand-crafted features rather than deep

spatial features in their regression process. To this end, The

combination of CNN and RNN/LSTM is now becoming a

trend in sEMG-based motion estimation. In particular, Xia et

al. [27] proposed a recurrent convolutional neural networks

(RCNN) architecture to integrate CNN and LSTM layers for

the tracking of arm movements. Huang et al. [28] applied a

similar architecture in hand gesture classification and verified

that the proposed model outperformed SVM in three different

exercises of Ninapro Database 2.

Inspired by advantages and limitations of CNN and LSTM,

in this paper we propose a CNN-LSTM hybrid model to

combine deep feature extraction and sequence regression effi-

ciently, so that the temporal-spatial correlations of sEMG can

be fully exploited. With deep features extracted from CNN and

then processed by LSTM, wrist kinematics in single/multiple

DoFs can be reconstructed accurately. Compared with con-

ventional CNN and LSTM, CNN-LSTM is more robust to

localized distortions along time. In this study, six healthy

participants take part in experiments to perform a series of

wrist movements. Experimental results indicate that CNN-

LSTM outperforms CNN, LSTM and several representative

ML approaches in both intra-session and inter-session scenar-

ios, especially when complex wrist movements are activated in

multi-DoFs. Contributions of this paper can be summarized in

three aspects: 1) it firstly investigates the effective combination

of CNN and LSTM in wrist kinematics estimation using sEMG

signals; 2) a separate training strategy is utilized to improve

the computational efficiency and model feasibility; 3) visual

explorations of two types of features indicate that distributions

of CNN features can be better correlated with wrist motions

than many hand-crafted features.

The remainder of this paper is structured as follows. Section

II describes the proposed hybrid model, where the imple-

mentation of deep feature extraction and sequence regression

are separately elaborated. Section III introduces experimental

setups and Section IV presents estimation results in both intra-

session and inter-session evaluations. In Section V a discussion

is presented to analyse model merits, limitations, and future

work. The conclusion is then drawn in this Section VI.

II. CNN-LSTM HYBRID MODEL

As illustrated in Fig. 1, our CNN-LSTM model consists

of two steps: the first step is to implement CNN for feature

extraction and the second step is to construct LSTM for

sequence regression. In the first step CNN is utilised to extract

deep feature vector f from the sEMG matrix X which is

constructed on a segment of multi-channel sEMG signals. In

the second step, successive deep feature vectors are rearranged

into a series of feature sequences, such as [f1, f2 · · · fk],
[f2, f3 · · · fk+1], etc. The parameter k is the number of feature

vectors in a feature sequence, which denotes the time-steps in

recurrent regression. A LSTM is built to convert [f1, f2 · · · fk]
into wrist angles [y1, y2, · · · yk]. In this study, we adopt the

last output yk as the final observation of this sequence. In the

following part we will elaborate the implementation of CNN

and LSTM, together with the training process of each model.

Fig. 1: Block diagram of CNN-LSTM hybrid model.

A. CNN-based Deep Feature Extraction

1) Construction of sEMG Matrices: Firstly, we use the

sliding window method to split multi-channel sEMG into

segments, and then signals in one segment are rearranged into

a 1 × L × N matrix [27, 29]. Herein L corresponds to the

length of a sliding window and N is in accordance with the

number of sensor channels. By applying fast Fourier transform

(FFT) on each channel, the spectrum-based sEMG matrix can

be obtained as CNN inputs.

2) CNN Architecture: As illustrated in Fig. 2, the presented

CNN consists of 4 convolutional blocks (Conv Block) and

2 fully connected blocks (FC Block). Each Conv Block has

a convolutional layer, a batch normalization layer, a leaky

ReLU layer, a max-pooling layer and a dropout layer. The

convolution layer uses a kernel size of 3, a boundary padding

of 1 and the stride of 1. There are 16 kernels in the 1st and

2nd Conv Block whilst 32 in the 3rd and 4th block. The batch

normalization layer is attached to mitigate alternation made by

convolutional layers [30]. As suggested in our previous work

[31], the leaky ReLU layer is used in case of the dying ReLU

problem [32]. The max-pooling layer (a pool size of 3 and a

stride of 1) is added for sub-sampling while a dropout layer

is attached for regularization. In each FC Block, the batch

normalization layer, leaky ReLU layer and dropout layer are

added subsequently to the fully connected layer. There are 100

hidden units in the 1st FC Block and 20 in the 2nd. Outputs

of the 2nd FC Block will be utilized as the deep feature f

for LSTM-based sequence regression. Thus the dimension of

CNN features is 20.

Fig. 2: The single stream CNN architecture for deep feature extraction.
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Fig. 3: The unfolded chain structure of LSTM in time sequence with deep
CNN features.

B. LSTM-based Sequence Regression

1) Topology of LSTM: LSTM is a network designed to

encode contextual information of a temporal sequence with

feedback loops. It contains cycles that feed the network

activations from a previous time-step to influence predictions

at the current time-step [33]. The unfolded chain structure of

LSTM in an input sequence [f1, f2 · · · fk] is illustrated in Fig. 3

[34], where hj (j = 1, 2 · · · k) is the hidden state at time-step

j and cj is the activation vector. In the recurrent regression,

the LSTM unit uses previous state (hj−1, cj−1) and current

feature fj to update current state (hj , cj) and compute wrist

angle yj . In this way the historical information can be passed

recursively in the whole loop of LSTM.

2) Update of LSTM Units: Basic elements of LSTM in-

clude an input gate to control activations for the memory cell,

a forget gate to drop useless information of the past cell status,

and an output gate to control the output activations for the

ultimate state. The update of LSTM units at time-step j can

be described [35]

ij = δ (Wi [hj−1,fj ] + bi)

mj = δ (Wm [hj−1,fj ] + bm)

oj = δ (Wo [hj−1,fj ] + bo)

cj = ij ⊙ tanh (Wc [hj−1,fj ] + bc) +mj ⊙ cj−1

hj = oj ⊙ tanh (cj)

yj = Wyhj + by

(1)

where ij is the input gate, mj is the forget gate, oj is the

output gate, δ is the logistic sigmoid function, W is the weight

matrix in each gate and layer, b is the corresponding bias

vector and ⊙ is the scalar product. The initial state (h0, c0)
will be settled after model training for subsequent predictions.

C. Training of CNN-LSTM

In this study we adopt the idea of separate training following

the approach in reference [36]. Specifically, the tuning of CNN

and LSTM is conducted in two subsequent steps. Firstly, a

regression layer is attached to the presented CNN architecture

to complete a supervised learning. In this step, the model

inputs are sEMG matrices and observations are wrist angles.

Secondly, deep feature vectors are extracted from a fully

connected layer of the well-trained CNN, based on which

feature sequences are constructed to train LSTM for sequence

regression. Different from structures such as Long-term Re-

current Convolutional Networks (LRCNs) which trains CNN

and LSTM jointly [37], our model can be more efficient in

model training since the input in each time-step of LSTM is a

constant vector rather than convolution operations. Besides, the

sequential regression part can be easily optimized or replaced

without re-training the entire model [36].

1) Training Setting of CNN: Hyper-parameters of presented

CNN are mainly identified referring to pilot studies in PR

schemes [15] and then determined via empirical manual tun-

ing. As a general setting in this study, the network is trained

in a 128-sized mini-batch as employed in [19] for 50 epochs

by stochastic gradient descent with momentum (SDGM). The

dynamic learning rate of CNN is 0.0001 in initialization and

drops 90% after every 10 epochs. The slope scale is set as 0.1

in all leaky ReLU layers. The dropout rate in each dropout

layer is 30%. Other training strategies follow default settings

in Matlab 2018b.

2) Training Setting of LSTM: In our study the time duration

of a regression sequence is set to be 1 second. This achieves a

trade-off between the information quantity of temporal depen-

dencies and computational loads in practical implementation.

LSTM is trained in a 64 sized mini-batch for 100 epochs via

adaptive moment estimation (ADAM). The dynamic learning

rate is initialised to be 0.001 and drops 90% after every 10

epochs. Since LSTM is prone to over-fitting more easily than

conventional recurrent neural networks, herein only one LSTM

layer with 50 hidden units is adopted. A dropout layer with

30% dropout rate is added for regularization.

III. MATERIALS AND EXPERIMENTAL METHODS

A. Experiment Setup

Approved by the Mathematics, Physical Science and Engi-

neering joint Faculty Research Ethics Committee of University

of Leeds, UK (reference MEEC 18-006), six healthy subjects

(five males and one female, aged 24-30) took part in the

experiment. The written informed consent was obtained from

each subject before data collection. Following Fig. 4 (a), 12

bipolar electrodes were placed on the proximal portion of the

forearm to collect sEMG signals in 6 channels. Reference

electrodes were placed near the wrist. The inter-electrode

distance in the proximal-distal direction was around 20 mm

for reducing the crosstalk effect.

As shown in Fig. 4 (b), in experiments participants were

asked to perform four pre-defined wrist movement protocols.

They were allowed to quit the experiments in case of any

discomfort. The tested hand should be kept in a relaxing

state to avoid muscle fatigue, with the upper limb supported

vertically on the desk and the palm facing inside. All motions

started from this rest position. Each protocol consisted of 3

sub-trials/sessions, and each session was composed of contin-

uous wrist movements lasting around 3 minutes. A detailed

description is reported in Table I.

From Table I we can see that in P1-P3 only one DoF of

the wrist motions was activated to complete single-DoF tasks.

On the contrary, P4 aimed at multi-DoF tasks and all 3 DoFs

were involved simultaneously. Obviously, P4 is naturally more

complex and challenging compared with P1-P3 [38], but it

bears closer similarity with real-life movements [8] and can
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Fig. 4: Experiment setup [31]. (a) Electrodes placement. (b) Data acquisition.

TABLE I: List of Performed Contractions

Protocol Description Active DoF

P1 Sinusoidal contractions Flexion-extension (F-E)

P2 Sinusoidal contractions Pronation-supination (P-S)

P3 Sinusoidal contractions Radial-ulnar deviation (R-U)

P4 Co-contractions of the wrist F-E+P-S+R-U

speed up the training process. The frequency of sinusoidal

contractions was around 0.1 Hz, meaning that a cycle of wrist

rotation (such as rest-flexion-rest-extension-rest in P1) was

about 10 seconds.

In this study an attitude heading reference system (AHRS),

composed of a tri-axial accelerometer, gyroscope and magne-

tometer, was utilized to obtain hand orientation [39]. Wrist an-

gles, which worked as the ground-truth in supervised learning,

were calculated based on Euler angles from AHRS. Referring

to Fig. 4 (b), both sEMG signals and wrist movements were

recorded simultaneously with Shimmer wearable sensors [40]

attached on the back of the testing hand. Sampling rates for

accelerometer, gyroscope, magnetometer and sEMG were set

as 100 Hz, 100 Hz and 75 Hz and 1024 Hz respectively.

The online data streaming was implemented in a home-made

software based on Shimmer Matlab Instrument Driver [40].

B. Data Pre-processing

In our experiments sEMG signals were processed using a 3rd

order Butterworth high pass filter (20 Hz) to remove movement

artifacts [41] and a low pass filter (450 Hz) to remove

unusable high frequency noise [42]. A Min-Max scaling was

applied to normalize sEMG in each channel [43]. As for data

segmentation, the analysis window was set to be 100ms with

increment of 50 ms. Thus the size of sEMG matrix (1×L×N )

was 1×101×6 in our experiments. Since the time duration of

a feature sequence was set to be 1 second empirically, there

were 18 time-steps in [f1, f2 · · · fk], i.e. k = 18.

C. Model Evaluation

The analysis of sEMG-based wrist kinematics estimation

was composed of intra-session and inter-session evaluations.

To implement intra-session evaluations, the data in one ses-

sion/trial of each protocol was split into four folds, where the

first three were used for model training and the last for testing.

To avoid data leakage, the splitting should be conducted before

data pre-processing. In inter-session evaluations one whole

session was used for model training and another session in the

same protocol was used for testing. This method could better

validate the model robustness against time-dependent changes

of sEMG signals. The number of training samples extracted

by sliding windows is around 1500-2000 for intra-session

evaluations and 2000-3000 for inter-session evaluations.

In this study we used the coefficient of determination (R2)

[44] as the metric to quantify the regression performances. The

mathematical expression of R2 is

R2 = 1−
Var

(

α
d
− yd

)

Var (αd)
(2)

where α
d are measured wrist angles by the sensor in dth

DoF and yd are model estimations. According to Eq. (2), the

numerator of R2 is the mean squared error (RMSE) which is

normalized by the variance of correct labels in the denominator

[5]. Compared with RMSE, R2 is more robust to the numerical

range of labels. R2 at perfect estimation is equal to one, whilst

a negative value means that estimation errors are larger than

the variance of target values.

IV. EXPERIMENTAL RESULTS

A. Visual Exploration of sEMG Features

Visual exploration allows intuitive analysis of the distribu-

tions or potential correlations between certain variables. In

this section, t-Distributed Stochastic Neighbour Embedding (t-

SNE) is utilized to project extracted CNN features (in testing

sets) into two principal dimensions for visualization [45]. For

comparison, a widely applied temporal-spatial feature set [46–

48] consisting of mean absolute value (MAV), root mean

square (RMS), variance (VAR) and 4th order autoregressive

coefficients (4th AR) are calculated. Scatter plots of projected

sEMG features in P1 (F-E), P4 (F-E) and P4 (P-S) of intra-

session evaluations are shown in Fig. 5, where the two axes

represent two principal features, respectively. The angles of

scatters (features) are reflected in parula colormap, with the

pure yellow representing the positive maximal values in one

DoF and pure purple for the negative maximum.

From Fig. 5 we can see that in each dataset the clustering

of scatters projected from CNN features is significantly better

than that of hand-crafted features. In the left part of each

sub-figure, scatters with similar colour are gathering whilst

those with different colours are highly distinguishable. On

the contrary, scatters in the right one are overlapped heavily,

even among the yellow ones and the blue ones. Compared

with P1 (F-E), the clustering of scatters becomes worse for

hand-crafted features in P4 (F-E). This deterioration becomes

more evident in P4 (P-S), where distributions among scatters

from CNN features become also ambiguous. A possible reason

for the deterioration is that the crosstalk of sEMG can be

quite serious in multi-DoFs tasks due to our forearm anatomy

[46]. Since muscle fibres of extensors and flexors are much

thicker and also located in a more superficial layer of the

forearm, information of other DoFs are easier to be buried in

compounded sEMG.

B. Intra-session Estimations in Single-DoF Tasks

Fig. 6 shows wrist angles captured by AHRS system in P1-

P3 of Subject 5 together with estimations of CNN and CNN-
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Fig. 5: Distribution of CNN features and hand-crafted features in testing sets of
Subject 5 after dimension reduction. Scatters in (a)-(c) correspond to features
from P1(F-E), P4(F-E) and P4(P-S), respectively.

LSTM. As illustrated in the figure, trajectories reconstructed

by CNN-LSTM (in red) are smoother and much closer to the

ground-truth (in blue) than CNN trajectories (in yellow) in all

tasks. This is because the history information of successive

deep feature vectors in a sequence is further exploited by

CNN-LSTM, which improves estimation accuracies signifi-

cantly. Another interesting result is that the estimated trajec-

tories of both CNN and CNN-LSTM in P1 are better than

their corresponding results in P2 and P3. As shown in visual

exploration, feature scatters in the F-E DoF are much more

distinguishable than those in the other two DoFs.

In this section two representative ML models, i.e. SVR

and random forest (RF), are implemented to compare with

DL techniques. SVR can project sEMG features into a higher

dimensional space via kernel functions, whilst RF is currently

the most popular ensemble learning technique. The outperfor-

mance of SVR and RF over other shallow models such as LR

and ANN have been verified in pilot studies [5, 7]. To evaluate

the effectiveness of CNN features for sequential learning, the

conventional LSTM with hand-crafted features is also applied

for comparison. Same to visual exploration, MAV, RMS, VAR

and 4th AR are working as hand-crafted features for ML

models. To be consistent with CNN-LSTM, we have reduced

the dimension of hand-crafted features to 20 using Principle

Fig. 6: Wrist motions and intra-session estimations of CNN and CNN-LSTM
for P1-P3 in Subject 5. The mean absolute error (MAE) of two models are
(a) 13.14 for CNN and 12.42 for CNN-LSTM; (b) 23.88 for CNN and 20.03
for CNN-LSTM; (c) 9.16 for CNN and 3.39 for CNN-LSTM. It is noted that
MAE of different DoFs are not comparable due to different scales.

TABLE II: R2 of SVR, RF, CNN, LSTM and the proposed hybrid model in
Single-DoF Tasks (P1-P3) of Intra-session Evaluations.

Subjects Protocols SVR RF CNN LSTM Proposed

1

P1(F-E) 0.56 0.71 0.56 0.84 0.92

P2(P-S) 0.26 0.28 0.32 0.53 0.65

P3(R-U) 0.56 0.59 0.66 0.67 0.87

2

P1(F-E) 0.60 0.69 0.66 0.81 0.85

P2(P-S) 0.37 0.48 0.45 0.53 0.56

P3(R-U) 0.22 0.25 0.31 0.46 0.64

3

P1(F-E) 0.35 0.38 0.42 0.7 0.80

P2(P-S) 0.46 0.63 0.58 0.75 0.83

P3(R-U) 0.18 0.19 0.22 0.52 0.56

4

P1(F-E) 0.35 0.40 0.41 0.67 0.75

P2(P-S) 0.17 0.16 0.21 0.34 0.46

P3(R-U) 0.40 0.48 0.43 0.66 0.88

5

P1(F-E) 0.84 0.86 0.84 0.82 0.91

P2(P-S) 0.51 0.52 0.62 0.65 0.71

P3(R-U) 0.59 0.71 0.67 0.80 0.90

6

P1(F-E) 0.71 0.76 0.74 0.81 0.91

P2(P-S) 0.21 0.30 0.36 0.42 0.64

P3(R-U) 0.36 0.32 0.40 0.51 0.69

Average

P1(F-E) 0.57 0.63 0.61 0.78 0.86

P2(P-S) 0.33 0.40 0.42 0.54 0.64

P3(R-U) 0.39 0.42 0.45 0.60 0.76

Component Analysis (PCA). Following previous studies [5], a

radial basis function (RBF) is adopted for SVR. Besides, the

hyper-parameters of SVR and RF are optimized via the 5-fold

inner cross-validation.

Table II summarizes intra-session performances of SVR, RF,

CNN, LSTM and CNN-LSTM in P1-P3 of Subject 1-6. As we

can see, the presented hybrid model outperforms other models

in all trials of all protocols. The outperformance can be more

evident in some datasets, such as P2 and P3 in nearly all

participants. In addition, by exploiting the correlations among

adjacent sEMG samples, performances of conventional LSTM
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Fig. 7: Wrist motions and intra-session estimations of CNN and CNN-LSTM
in P4 of Subject 5. MAE of two models are (a) 21.08 for CNN and 12.85 for
CNN-LSTM; (b) 9.52 for CNN and 7.61 for CNN-LSTM; (c) 9.89 for CNN
and 6.75 for CNN-LSTM.

are also better than SVR/RF/CNN in most cases. In protocol

P1, the average R2 values of LSTM and CNN-LSTM are

closer, whereas in other protocols LSTM is evidently inferior

to CNN-LSTM. A possible reason is the deterioration of hand-

crafted features can be more serious then CNN features in

these two DoFs (P-S and R-U). A more detailed verification

can be found in the visual exploration (Section IV.A). Besides,

the conventional single-stream CNN is in general comparable

to SVR and RF in sEMG-based wrist kinematics estimation.

This result is similar to pilot studies in pilot studies [15].

C. Intra-session Estimations in Multi-DoF Tasks

Different from single-DoF tasks (P1-P3), the multi-DoF task

(P4) requires co-activations of 3 DoFs. Fig. 7 demonstrates

the intra-session estimations of CNN and CNN-LSTM in

P4 of Subject 5. In accordance with single-DoF tasks, the

reconstructed trajectories of CNN-LSTM are much closer to

the ground-truth in all DoFs. As for R2 values, CNN-LSTM

reaches higher scores than other four models, indicating an

evident improvement in model accuracy. R2 values of each

DoF in six subjects are listed in Table III. Same to P1-P3,

performances of CNN, RF and SVR are in general close

to each other, whilst LSTM outperforms these non-recurrent

regression techniques in most cases. Consistent with results

in visual exploration, deteriorations in estimation accuracies

can be found in each DoF of P4 compared with those in P1-

P3, indicating that the features of samples become harder to

recognize in the multi-DoF tasks.

D. Inter-session Estimations in Single/Multiple DoFs Tasks

Fig. 8 illustrates the inter-session performance of CNN and

CNN-LSTM in P1-P3 of Subject 5. Performances of both

CNN and CNN-LSTM become a little bit worse compared to

TABLE III: R2 of SVR, RF, CNN, LSTM and the proposed hybrid model in
Multi-DoF Tasks (P4) of Intra-session Evaluations.

Subjects Protocols SVR RF CNN LSTM Proposed

1

F-E 0.44 0.52 0.55 0.78 0.87

P-S 0.30 0.31 0.30 0.51 0.58

R-U 0.40 0.38 0.39 0.61 0.69

2

F-E 0.63 0.63 0.62 0.73 0.82

P-S 0.19 0.27 0.28 0.39 0.47

R-U 0.37 0.36 0.40 0.48 0.61

3

F-E 0.35 0.44 0.46 0.67 0.70

P-S 0.37 0.39 0.50 0.49 0.70

R-U 0.15 0.30 0.27 0.36 0.42

4

F-E 0.51 0.43 0.44 0.62 0.67

P-S 0.21 0.23 0.25 0.40 0.40

R-U 0.53 0.52 0.55 0.65 0.73

5

F-E 0.49 0.54 0.50 0.81 0.86

P-S 0.31 0.37 0.40 0.59 0.65

R-U 0.44 0.49 0.54 0.70 0.83

6

F-E 0.63 0.69 0.73 0.78 0.89

P-S 0.25 0.29 0.34 0.43 0.53

R-U 0.66 0.65 0.55 0.68 0.74

Average

F-E 0.51 0.54 0.55 0.73 0.80

P-S 0.27 0.31 0.35 0.47 0.56

R-U 0.43 0.45 0.45 0.58 0.67

intra-session evaluations in Fig. 6 due to domain shifts among

different sessions, but the curves reconstructed by CNN-LSTM

still manage to match the ground-truth. Fig. 9 illustrates

comparisons among all regression techniques following P1-

P4, in which the outperformance of CNN-LSTM are still

evident. As for wrist motions in flexion and extension, R2

values of CNN-LSTM can be as high as 0.93 and 0.74

in new testing sessions of P1 and P4 (F-E), respectively,

indicating a reliable proportional myoelectric control in this

DoF. Besides, promising accuracies can be achieved by ML

models in P1 (SVR and RF reach 0.73 and 0.79, respectively).

As is discussed in visual exploration, the higher accuracies in

F-E are mainly caused by the upper limb anatomy, which on

the other hand leads to non-negligible cross-talks for sEMG

of other two DoFs.

E. Comparison of Time-steps in CNN-LSTM

The time-step k in feature sequence [f1, f2 · · · fk] determines

the number of sEMG samples to be included in sequence

regression. A larger k denotes a longer term of time depen-

dencies which may contribute to a higher accuracy but also

results in a heavier computational load. In this subsection four

different time-steps are evaluated for CNN-LSTM, i.e. 8, 18,

58, 98 for the value of k which correspond to 0.5s, 1s, 3s and

5s in time duration, respectively. Estimation results in inter-

session evaluations are illustrated in Fig. 10. In general, the R2

of CNN-LSTM improves gradually along with the increase of

time-steps, indicating that the exploitation of long-term time

dependencies contributes to a higher estimation accuracy in

most scenarios. Empirically, a sequence in 1s duration can

reach a compromise in model effectiveness and efficiency.

Besides, a too large sequence is inapplicable for real-time

myoelectric control since the intention prediction is expected

to be implemented without evident time delays.
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Fig. 8: Inter-session estimations of CNN and CNN-LSTM following P1-P3 of
Subject 5. MAE of two models are (a) 14.93 for CNN and 10.22 for CNN-
LSTM; (b) 31.70 for CNN and 28.0 for CNN-LSTM; (c) 9.56 for CNN and
8.11 for CNN-LSTM.

Fig. 9: Inter-session evaluations of SVR, RF, CNN, LSTM and the proposed
CNN-LSTM in P1-P4.

F. Comparison of sEMG Matrices

Besides the architecture and hyper-parameters, sEMG input

matrices also have a non-negligible impact on CNN-based fea-

ture extraction and can then influence the estimation accuracy

of CNN-LSTM. In Section II, we obtain the spectrum-based

sEMG matrices by applying FFT on each sliding window.

A more intuitive method is to construct matrices in the

time domain directly. The comparison of CNN and CNN-

LSTM with temporal and spectral sEMG matrices in intra-

session evaluations can be found in Fig. 11. For simplicity,

CNN/CNN-LSTM with temporal or spectral inputs are shorted

as CNNt, CNNs, CNN-LSTMt and CNN-LSTMs, respectively.

It can be observed that CNNs outperforms CNNt in all proto-

cols, which contributes to the outperformance of CNN-LSTMs

over CNN-LSTMt accordingly. This superiority becomes more

significant in multi-DoF tasks. A possible reason is that the

Fig. 10: Comparison between time-steps/sequence lengths of CNN-LSTM in
inter-session evaluations.

Fig. 11: Intra-session evaluations of CNN and CNN-LSTM with two types
of sEMG matrices. CNN/CNN-LSTM with temporal or spectral inputs are
shorted as CNNt, CNNs, CNN-LSTMt and CNN-LSTMs, respectively.

sEMG collected by sparse electrodes can be regarded as the

superimposition of signals from multiple muscles. During

voluntary contractions, the firing rates of motoneuron in these

muscles are different [49], thus the spectrum information can

be more representative and distinguishable.

G. Comparison of Deep Feature Dimensions

As shown in Fig. 2, the sEMG matrix is imported into

a pre-trained CNN and the vector extracted from the 2nd

FC Block works as the CNN feature for sequential learning

in each time-step. Since there are 20 hidden units in this

layer, the dimension of deep features is 20. Compared with

CNN architectures in many previous studies [15, 16, 21],

the dimension of our last FC Block is smaller since we

empirically found that a too large dimension might not be

able to benefit the performances of CNN and CNN-LSTM

significantly. TABLE IV illustrates the R2 values of CNN and

CNN-LSTM when using different number of hidden units in

the 2nd FC layer, which indicates that in our experiments 20

dimensions can be a good choice for both two models.
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TABLE IV: R
2 of CNN and CNN-LSTM when using different number of

hidden units in the 2nd FC layer of CNN.

Protocols Models
Number of hidden units in the 2nd FC layer

2 5 10 20 50 100

P1 (F-E)
CNN 0.40 0.66 0.78 0.82 0.83 0.81

CNN-LSTM 0.79 0.85 0.88 0.93 0.91 0.91

P2 (P-S)
CNN 0.33 0.41 0.45 0.48 0.49 0.51

CNN-LSTM 0.60 0.65 0.68 0.69 0.70 0.69

P3 (R-U)
CNN 0.42 0.48 0.51 0.57 0.60 0.61

CNN-LSTM 0.77 0.80 0.80 0.82 0.83 0.84

P4 (F-E)
CNN 0.32 0.38 0.40 0.44 0.43 0.44

CNN-LSTM 0.70 0.73 0.74 0.76 0.75 0.77

P4 (P-S)
CNN 0.15 0.22 0.24 0.25 0.23 0.26

CNN-LSTM 0.40 0.42 0.46 0.45 0.44 0.48

P4 (R-U)
CNN 0.25 0.31 0.34 0.37 0.37 0.39

CNN-LSTM 0.63 0.65 0.67 0.68 0.67 0.68

V. DISCUSSION

To further improve regression accuracies and robustness,

both CNN and LSTM are now becoming prevalent in sEMG-

based motion estimation. In this paper, we presented a hybrid

model to combine these two techniques, i.e. CNN for auto-

matic feature extraction and LSTM for sequential regression,

such that the temporal-spatial correlations in sEMG signals

can be extracted more efficiently. Conventional ML techniques

rely deeply on manual feature extraction and selection. This

process requires good domain knowledge or experience, and

useful information may be easily buried in hand-crafted fea-

tures. On the contrary, CNN extracts features from raw sEMG

directly and automatically by learning the signal characteristics

via layer-by-layer processing. The convolution operations also

enables CNN to extract spatial correlations of sEMG signals

from multi-channels. As mentioned in many previous works,

CNN features can be useful to represent patterns of muscle

activations, and the automatic feature extraction can help to

reduce the information loss. Visual explorations of two types

of features (details can be found in Section IV.A) indicate that

distributions of CNN features can be better correlated with

wrist motions than many hand-crafted features. Therefore, the

CNN-LSTM can outperform conventional LSTM which only

uses hand-crafted features.

Secondly, SVR, RF and CNN are all non-recurrent models,

which inherently ignore the temporal dependencies of succes-

sive sEMG samples. In fact, during continuous muscle contrac-

tions there are supposed to be strong temporal-dependencies

in sEMG signals. Thus it is reasonable to consider sEMG as

time-series data in regression tasks. In this study the feature

sequences [f1, f2 · · · fk] are reconstructed for LSTM to further

exploit the history information of successive deep feature

vectors. From previous literatures [23] it can inferred that

the recurrent networks such as LSTM have shown superi-

ority to many non-recurrent models. Our experiment results

also demonstrate the outperformance of recurrent architec-

tures. Therefore, by efficiently extracting the temporal-spatial

correlations in sEMG signals, CNN-LSTM further improves

regression accuracies in both single and multiple DoF tasks.

A main limitation of our current method is the model

generalization in multi-days and multi-subjects. Due to the

non-stationary characteristics of sEMG signals, it is reported

that classification/regression performances could decrease sub-

stantially over time [50]. Besides, sEMG signals have a user-

dependent nature, causing recordings to differ even when

signals are measured from the same location with the same

motion. Therefore, a pre-trained model may not be able

to perform accurately in a new subject. These issues can

be summarized as the domain shift problems in machine

learning applications, since data-driven methods rely on the

assumption that training and testing data should stem from

same underlying distributions. To this end we will further

investigate domain/rule adaptation approaches to improve the

generalization of CNN-LSTM. Besides, more volunteers are

going to be recruited for a better verification of our method.

VI. CONCLUSION

In this paper, we presented a hybrid model to combine

CNN-based feature extraction and LSTM-based sequence re-

gression in wrist kinematics estimation, which could extract

temporal-spatial correlations in sEMG efficiently. Through

visual exploration, we verified that deep features extracted by

CNN were more representative than traditional hand-crafted

features. By exploiting contextual information in deep features,

the presented CNN-LSTM outperformed conventional CNN,

LSTM as well as representative ML approaches in both intra-

session and inter-session evaluations.
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