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ABSTRACT 

In the near future, IoT based application services are anticipated to collect massive amounts of data on which 

complex and diverse tasks are expected to be performed. Machine learning algorithms such as Artificial Neural 

Networks (ANN) are increasingly used in smart environments to predict the output for a given problem based on 

a set of tuning parameters as the input. To this end, we present an energy efficient neural network (EE-NN) service 

embedding framework for IoT based smart homes. The developed framework considers the idea of Service 

Oriented Architecture (SOA) to provide service abstraction for multiple complex modules of a NN which can be 

used by a higher application layer. We utilize Mixed Integer Linear Programming (MILP) to formulate the 

embedding problem to minimize the total power consumption of networking and processing simultaneously. The 

results of the MILP model show that our optimized NN can save up to 86% by embedding processing modules in 

IoT devices and up to 72% in fog nodes due to the limited capacity of IoT devices.  

Keywords: MILP, Energy Efficiency, IoT, Artificial Neural Network, Smart Homes. PON. 
 

1. INTRODUCTION 
The uptake of the Internet of Things (IoT) is increasing at unprecedented levels across a wide variety of domains 

in our daily lives, primarily due to the manufacturing advancement with respect to a reduction in cost, size, and 

power consumption of next-generation low-power radio transceivers and microcontrollers [1].  The number of  IoT 

devices is estimated to be between 26 billion to 50 billion devices [2]. The sheer number of IoT devices leads to 

the generation of massive amounts of data which is usually transported over multiple domains of the network 

towards the centralized cloud data center for processing to extract knowledge from the data [3] – [6]. The costly 

overhead of the transport network created a need for processing the collected data closer to the IoT end-devices, 

hence fog computing can fill this void by complementing the cloud and extending its services to the edge of the 

network and even further into the IoT devices [7] – [9]. Researchers have developed a chip that increases 
processing speed of computations in neural networks with impact on reducing the energy consumed between 94% 

to 95% which supports their use in smartphones and also in home appliances [10]. In the past, most of the IoT 

applications aimed at passive data collection and monitoring, however, recently, actuation has received lots of 

attention. Through the coupling of sensors and actuators that are capable of interacting with the physical world, it 

becomes possible for next-generation IoT based systems to perform sophisticated tasks in an automated and 

dynamic manner [11]. One of the applications as an example is an IoT based smart home in which sensors and 

actuators are coordinated intelligently to control given parameters such as energy usage based on the time of the 

day [12].  The topology of a neural network is based on three layers: 1) input, 2) hidden, and 3) output. As shown 

in Figure 1, the input nodes are all connected to each hidden node via communication links, and the data generated 

by the hidden nodes are fed into the output node(s) for actuation based on the weight of edges and bias values of 

hidden nodes [13]. The nodes within a NN are called neurons, which require processing to transform the input 

measurements into a desired output for the actuating nodes. Usually the edges between the neurons are needed to 
establish communication and synchronization for NN requests [14]. Conventionally, the data processing is mostly 

offloaded to a centralized cloud data center in which the input nodes’ data is routed through the local gateway 
towards remote servers located deeper into the network and once knowledge is extracted from the processed data, 

the required output signal is returned back to the IoT local gateway and then this signal is used by the actuator 

devices. Recently, researchers have paid much attention to ANN embedding in IoT based networks such as WSNs. 

The authors of [15] considered the use of the processing capabilities of low-power, cheap IoT nodes and their 

linkages, where the  

 

 

 

 
 

 

 

 

 

 

                                                           Figure 1. Neural Network Topology  



 

IoT nodes maybe in a mesh topology, to implement an ANN. This approach realizes the fact that IoT nodes may 

be constrained by computational capacity and therefore may not be able to implement a full (deep) neural network 

at each IoT node. The work was extended in [12] by enriching their optimization framework to consider low-

power routing protocols, accounting for the energy consumption of the communication in the ANN in order to 

optimize the allocation of hidded neurons and consequenctly improving the network lifetime. Their solution was 

also simulated on an IoT testbed to validate the feasibility of their concept together with measuring its performace 

against the centralized gateway in terms of latency. In this work, we build on the concepts in [12], [15] and extend 

the work by i) considering multiple IoT fields, hence data processing on aggregation nodes such as gateway fog 

and access fog tackles the embedding problem from another angle; (ii) introducing a practical network architecture 
that links the IoT fields, composed of PON elements, gateways and relays; (iii) introducing a focus on energy 

efficiency captured as the objective of our MILP formulation; (iv) casting the problem into a service oriented 

architecture, hence allowing these ANN embeddings to be included in a framework that can enable the embedding 

of other services such as security services (where the nodes may be interlinked motion sensors, processors and 

actuators such as alarms), energy saving services (where the nodes may include interlinked motion sensors, 

processors and actuators such as networked switches and displays.  

The work in this paper benefits from our previous proposals for improving energy efficiency in service 

embedding in IoT and core networks [16] – [22], server disaggregation in  data centers [23], content distribution 

and big data processing [23] - [28], and core, edge and fog processing in networks [29] – [34]. The remainder of 

this paper is organized as follows: In Section 2, we present the EE-NN embedding framework over the PON access 

network, Section 3 discusses the performance evaluation and the results. Finally, Section 4 provides the 
conclusions for the paper. 

 

2. ENERGY EFFICIENT NN EMBEDDING FRAMEWORK OVER PON ACCESS NETWORK  
In IoT based smart homes, different IoT devices are needed to monitor several variables inside a home such as 

door lights, fire and smoke detectors, and temperature sensors [35]. To enhance the smart home applications, the 

control system should make decisions and proactively execute different tasks through the predictive features of 

neural networks (NNs). This paper aims to propose a framework for intelligent IoT based smart homes by i) 

embedding NN service requests into the physical infrastructure of an end-to-end IoT infrastructure supported by 

the concept of the fog, ii) evaluating several variations of processing platforms within the IoT, Fog, and cloud in 

terms of the total power consumption, iii) imposing processing placement to take place in predefined locations and 

lifting this limitation by allowing the MILP model to choose the optimal solution for the given scenarios. The NN 

service requests follow the idea of the Service Oriented Architecture (SOA) and such requests are made of a virtual 
topology that consists of virtual nodes and links [36], [37]. The virtual links represent the required communication 

between the virtual nodes of a NN request within the IoT network(s) and each virtual node requires processing. 

We consider that a NN request involves virtual nodes spanning over two different IoT networks hence the set of 

links to be optimized is only feasible in the IoT architecture due to its mesh topology. The evaluated framework 

as shown in Figure 2 is composed of three main layers; 1) Physical layer, 2) Network layer, and 3) the Application 

layer. The physical layer is composed of generic low-power IoT nodes that are connected via the Zigbee protocol 

[38]. Multiple IoT networks are connected through their relay devices to their respective access points (APs) 

mounted onto the ONU devices. The application layer in our model is considered as a set of virtual nodes within 

a NN service request while the network layer consists of the actual transport network which includes the PON 

access network elements (ONU and OLT) and a single metro network ethernet switch. There is also networking 

infrastructure inside processing nodes such as the Access Fog and the Cloud due to the location and size of these 
facilities. 

 

 

 

 

 

     

 

 

 

 

 
 

 

 
Figure 2.  The evaluated architecture for the NN service embedding over the Passive Optical Network (PON). 



 

Moreover, the framework considers the following assumptions: 

 Virtual nodes within a NN request span multiple IoT networks, hence the PON access network is always 

required to be active in order to achieve the communication between connected virtual nodes. A virtual 

node’s service request is represented by typical capacities of an IoT node for both processing and 

networking and this ranged from low to high workloads. Although the processing workload is varied, we 

have assumed the traffic data rate to remain constant as the same task may require different processing 

intensities. 

 The framework considers multiple functions such as sensing functions, which are smart thermostats, and 

motion sensors. In addition, it has one control function and actuation functions which include alarms, 

actuated blinds. 

 Each IoT node is mapped with one function of each type and each virtual node requests one function 
only. 

 We have assumed that our framework accounts for a portion of the total idle power of those networking 

devices that have the potential to be shared by many users and applications such as ONUs, OLTs, Metro 

switches, Cloud LANs, etc. 

The results were obtained using AMPL/CPLEX software running on a high-performance computer with 16 

cores processor and 256 GB of RAM. All of the parameters used in the MILP model, both networking and 

processing, are summarized in Table 1 and Table 2. 
 

Device Type Idle Power  (W) 𝜹 (%) Max Power  (W) Location 

IoT (RPi Zero) [39] 0.5 [39] - 3.96 [39] IoT 

IoT  (CC3100MOD) [40] 0.001 [16] - 0.11 [16] IoT 

Wi-Fi Access Point 0.34 [39] - 0.56 [39] Network 

ONU 9 [39] 1, 5 or 10 15 [39] Gateway Fog 

OLT 60 [39] 1, 5 or 10 1940 [39] Network 

Fog Router 11.7 [39] 1, 5 or 10 30 [39] Access Fog 

Metro Switch 128 [39] 1, 5 or 10 247 [39] Network 

Cloud Router 27 [39] 1, 5 or 10 30 [39] Cloud 

Cloud Switch 128 [39] 1, 5 or 10 423 [39] Cloud 

Table1: Network devices capacity and power consumption parameters used for the MILP. 

 
Device Type Capacity 

(MIPS) 
      W/MIPS Idle Power (W) Max Power 

(W) 
Location 

IoT (RPi Zero)[15] 1000 [39] 3460𝜇 [39]  0.5 [39] 3.96  [39] IoT 

IoT (CC3100MOD)[26]  856 [16] 0.856 [16] 0.001 [16] 0.11 [16] IoT 

Gateway Fog 2400 [39] 4375𝜇 [39] 2 [39] 12.5 [39] Gateway 

Fog 

Access Fog Server 34200 [39] 1111𝜇 [39] 57 [39] 95 [39] Access Fog 

Cloud Server 108000 [39] 481𝜇 [39] 78 [39] 130 [39] Cloud 

Table 2: Processing devices capacity and power consumption parameters used for the MILP 

 

3. RESULTS AND EVALUATIONS 
In our topology we considered two separated IoT networks that are connected to the cloud via a PON access 

network. Each IoT network consisted of 30 IoT devices and 2 relays. In addition, the IoT networks are each 

connected to a single ONU and a single OLT aggregates traffic from both ONUs. The distribution of the IoT 

devices in both networks is random and uniform. All devices in the IoT network communicate via the Zigbee 

protocol (IEEE 802.15) while the relay devices are connected to the ONUs via the Wi-Fi protocol. On the other 

hand, the ONUs are connected to the OLT device through an optical fiber link. Our model accounts for the total 

power consumption which consists of two parts: 1) network power consumption and 2) processing power 

consumption. We consider both uplink and downlink traffic as both types of communication are needed to achieve 

a neural network spanning multiple IoT networks. Consequently, we allow traffic to pass from one network to 

another through the OLT device. It has been shown from our previous work [16], [39], [41] that the fog approach 

which allows for hosting processing services closer to the IoT-end devices saves a considerable amount of power 

compared to the traditional centralized cloud approach. To this end, our fog approach considered 3 layers of 
processing namely the IoT, Gateway Fog, Access Fog layers as well as the cloud. We assumed that each NN is 

composed of five virtual nodes that are connected through three layers that involve input nodes, hidden nodes, and 

the output node(s). Each node within a NN request has a task requirement consisting of processing in MIPS and 

traffic in kbps. All requests are assumed to have 100% SLA since task blocking is not considered, however, nodes’ 
processing and networking capacity must be respected at all times. We have considered a linear power profile to 

calculate both networking and processing power consumptions and it consists of two parts: a) idle power and b) 



load proportional power. In order to undertake fair evaluations, we have assumed that the IoT application in this 

work is only responsible for a portion of the idle power (𝛿) of the high-capacity networking devices since such 

devices can be shared between many users and applications [39]. Thus, we considered three scenarios in which 

the value of 𝛿 was changed to 1% in scenario #1, 5% in scenario #2, and 10% in scenario #3. In each scenario, a 

range of homogenous processing demands between 20% - 100% of the IoT device’s processing capacity (MIPS) 

is considered. We evaluated different variations of processing in the proposed framework; 1) processing to take 

place only in the IoT layers, 2) processing to take place in the IoT and PON, 3) processing to take place only in 

PON, 4) allowing MILP model to choose processing location (optimal solution) and finally 5) all processing to 

take place in the centralized cloud (baseline). It is worth noting that variation 1-3, processing tasks are forced to 
be distributed among the relevant layers to account for circumstances where not all fog nodes have the right 

software package to process all the tasks. Also, evaluating different values of 𝛿 is valid as this can represent the 

growth of the current application. Figure 3 shows the total power consumption of scenario #1 – to scenario #3 

while Figure 4 shows the total power savings (in %) of all the processing placement variations compared to the 

cloud. The IoT approach produces the highest savings of up to 86% across all scenarios due to the negligible power 

consumption of the low-power microcontroller type devices in the IoT layer. The IoT + PON approach achieved 

savings of up to 68% in scenario #1 due to the low value of 𝛿 = 1% whilst this increased up to 80% in scenario 

#3 due to the expensive network overhead to get to the cloud, hence 𝛿 = 10%. On the other hand, the PON 

approach produced better savings than the IoT + PON due to better utilization of the PON fog servers and these 
savings were up to 72% and 84% for scenario #1 and scenario #2, respectively. In the last approach (MILP), we 

allowed the model to choose the optimal location for processing in all scenarios and as can be seen in Figure 4, 

the optimal allocation is the IoT approach. 

 
(a)                                                        (b)                                                        (c) 

Figure 3. Total power consumption of the fog approach at different values of 𝛿 which represents the proportion of the idle 

power consumption attributed to the IoT application for high-capacity networking devices: a) when the IoT  𝛿 = 1%, b) 

when 𝛿 = 5%, and c) when 𝛿 = 10%. 

 

 
                       

(a)                                                       (b)                                                   (c)   

Figure 4.  Total savings of the fog approach at different values of 𝛿: a) 𝛿 = 1%, b)  𝛿 = 5%, and c)  𝛿 = 10%. 

4. CONCLUSIONS 

This paper focused on developing a framework for energy efficient neural network (NN) embedding in IoT based 

smart home applications. The results use a MILP model which evaluates several processing placement solutions 

based on the concept of fog. A virtual topology of nodes and links represents the services to be embedded inline 

with the neural network process workflow and the service abstraction paradigm of SOA. The results show that the 

fog approach can produce power savings of up to 86% in all scenarios, given that the processing tasks are placed 

in IoT layer only. Generally, the fog approach despite the variation in the placement of tasks in different layers, 

produced substantial power savings compared to the centralized cloud solution.  
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