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Abstract —Co-allocated workloads in a virtualized computing 

environment often have to compete for resources, thereby 

suffering from performance interference. While this phenomenon 

has a direct impact on the Quality of Service provided to 

customers, it also changes the patterns of resource utilization and 

reduces the amount of work per Watt consumed.  Unfortunately, 

there has been only limited research into how performance 

interference affects energy-efficiency of servers in such 

environments. In reality, there is a highly dynamic and 

complicated correlation among resource utilization, performance 

interference and energy-efficiency. This paper presents a 

comprehensive analysis that quantifies the negative impact of 

performance interference on the energy-efficiency of virtualized 

servers. Our analysis methodology takes into account the 

heterogeneous workload characteristics identified from a real 

Cloud environment. In particular, we investigate the impact due 

to different workload type combinations and develop a method 

for approximating the levels of performance interference and 

energy-efficiency degradation. The proposed method is based on 

profiles of pair combinations of existing workload types and the 

patterns derived from the analysis. Our experimental results 

reveal a non-linear relationship between the increase in 

interference and the reduction in energy-efficiency as well as an 

average precision within +/-5% of error margin for the 

estimation of both parameters. These findings provide vital 

information for research into dynamic trade-offs between 

resource utilization, performance, and energy-efficiency of a 

datacenter. 

Keywords — Cloud computing, energy-efficiency, performance 

interference, performance estimation, workload analysis   

I. INTRODUCTION 

Cloud computing is experiencing rapid growth as it 

promises to reduce maintenance and management costs in 

comparison with in-house infrastructure [1,2]. Despite its 

commercial advantage of reduced energy consumption on the 

client side, Cloud providers still need to address a number of 

key challenges, such as striking a balance between optimal 

energy-efficiency and satisfying the increasing demand and 

high performance expectations of users. By using 

virtualization, the first generation of energy-efficient Cloud 

computing approaches have introduced mechanisms to 

dynamically resize the pool of servers based on actual demand 

[3, 4].  Additionally, others such as [5, 6]  have proposed to 

extend these mechanisms with enhanced live-migration and 

server activation policies to reduce Service Level Agreement 

(SLA) violations. However, potential inefficiencies at a fine-

grained level such as the overhead produced by the high 

competition for resources in virtualized environments [7] are 

usually ignored by these approaches. Consequently, their 

claimed energy-efficiency and performance improvements 

may be significantly diminished under real conditions.  

Defined by [16], workload is “the amount of work 

assigned to, or done by, a client, workgroup, server, or system 

in a given time period”. In the context of Cloud computing, 

workloads are the different tasks submitted by all the 

customers and executed at the Cloud providers’ datacenters. 
Workloads by themselves have properties or attributes that 

describe their behavior. These attributes are normally 

expressed by the type and amount of resources consumed, 

geographical location requirement, or specific hardware 

constraints such as those described in [17]. As discussed in 

[18], as more and more customers adopt Cloud platforms to 

fulfill their IT requirements, Cloud providers need to be 

prepared for handling highly heterogeneous workloads to 

maximize the datacenter utilization. Hence, analyzing the 

impact that specific workload types have on others is critical 

to improve the Cloud datacenter’s management.  
In multi-tenant Cloud environments, workloads are 

generally encapsulated into Virtual Machines (VMs) and co-

allocated into the same servers sharing the underlying physical 

infrastructure. Despite the environmental and fault isolation 

offered by virtualization, the high-competition for resources 

among running workloads will lead to a negative impact on 

the expected performance specified in SLAs. This 

phenomenon is known as Performance Interference and its 

effect on the Quality of Service (QoS) of workloads has been 

previously analyzed in [8-12]. However, current approaches 

have not yet considered the impact of such interference on a 

datacenter´s energy-efficiency. Understanding the relationship 

between performance interference and its impact on the 

energy-efficiency is critical if we are to design energy-

efficient mechanisms that maintain performance under 

realistic environmental conditions.  

Additionally, the levels of performance interference tend 

to vary significantly depending on the number and types of co-

allocated workloads. In particular, for m different types of n 

workloads hosted in the same server there are  ାିଵ  

combinations. In production environments where the workload 

density per physical server tends to be high, a large n will lead 

to a considerable variety of combinations. Because Cloud 

datacenters are highly dynamic and transient environments, it 

is impractical for providers to characterize the levels of 



interference and the impact to the energy-efficiency produced 

by each possible mixture of workloads. Therefore, it is very 

important to rely on models to estimate both parameters in an 

effective way.  

In this paper, we present an analysis of the performance 

interference impact on energy-efficiency by conducting 

experiments from three different perspectives: the decrement 

of work computed in a fixed period of time, the impact 

produced on different server configurations and the increment 

of elapsed time on a fixed amount of work. Furthermore, we 

propose an approach to quantify the levels of performance 

interference and energy-efficiency reduction when multiple 

workloads are deployed in the same virtualized node. The core 

idea is to exploit the real measurements taken from profiling 

pair-combinations of the existing workload types and the 

growth correlation patterns derived from the performed 

analysis. Then regression analysis is applied to determine the 

estimation models. In order to conduct this study, we emulate 

different workload types derived from the Google Cloud 

tracelog[14], and execute them on the iVIC Virtual Computing 

Infrastructure [15] to measure their interference and energy 

consumption. In addition, we evaluate the performance and 

energy-efficiency for different combinations of 3 to 9 

workloads in order to analyze the phenomenon when the 

number of aggregated workloads grows. Our experimentation 

shows that while performance interference increases linearly, 

the impact on the energy-efficiency stop growing with the 

increment of co-allocated workloads, creating an exponential 

relationship. Moreover, the obtained results demonstrate that 

using these patterns and the profiled pair-combinations, it is 

possible to accurately estimate the levels of performance 

interference and energy-efficiency decrement when multiple 

workloads are co-allocated. The contributions of the work in 

this paper are: 

 A comprehensive analysis conducted to determine the 
impact of performance interference on energy-
efficiency in virtualized Cloud environments.  

 An approach to estimate the interference levels and 
energy-efficiency decrement in virtualized nodes by 
conducting pair-combination profiling and exploiting 
the growth patterns outlined from the analysis.  

The remaining sections are structured as follows: Section 2 
introduces the problem of energy-efficiency decrement when 
virtualization interference occurs; Section 3 describes the 
performed analysis methodology and the proposed approach; 
Section 4 describes the experimental results; Section 5 presents 
the estimation for the interference level and the energy-
efficiency degradation; Section 6 discusses related work; 
Section 7 presents the conclusions and discusses future work.  

II. DECREMENT OF ENERGY-EFFICIENCY DUE TO 

PERFORMANCE INTERFENCE  

 The impact of performance interference in virtualized 

environments has been typically measured in terms of QoS 

such as throughput, latency or response time. However, 

performance interference induced by workload combinations 

also affects other critical factors that include the energy-

efficiency of the overall datacenter. Specifically, when 

performance interference occurs, co-allocated workloads 

essentially fight for common resources while creating 

overhead that increases the energy consumption of individual 

servers.  

This can be demonstrated with the example in which we 

have co-allocated 3 KVM-based VMs repeatedly running 

CPU-bounded workloads for 10 hours in the same virtualized 

server. The utilized server has the following characteristics: 

Intel Core i7 860@2.80GHz CPU (8-cores) and 16G RAM 

with Linux Debian 2.6.32. Each workload computes the 50th 

Fibonacci number using naive recursion. While the 

performance is measured in terms of execution time which is 

recorded when a workload is completed, the power is 

measured in 5 second intervals using a Voltech PM1000+ 

power analyzer. 

Each workload requires on average 91.5 seconds to be 

completed when running in isolation, but when running all 

together the performance for some of the workloads is reduced 

in some periods of time during which the interference occurs. 

In this preliminary experiment, we observe that one workload 

primarily keeps the control of the resources considerably 

affecting the performance of the other two. This increases their 

execution time to around 178 seconds. We also observe that 

during the period of time when one single VM dominates the 

physical resources, the power consumption steadily remains 

about 115 Watts on average. On the other hand, during the 

periods of time when the three VMs have a fair access to the 

physical resources, the average execution time of each 

workload turns to 94 seconds indicating the reduction of the 

mutual interference. The corresponding power consumption in 

this case increases up to 135 Watts on average. Despite that 

the increase in power is close to 16%, it is still small in 

comparison to the performance improvement close to 50% for 

each affected workload. The experiment suggests that when 

the interference decreases, the energy-efficiency is improved 

due to the increase of operations computed per Watt consumed.    

Therefore, it is important for providers to understand the 

characteristics of the co-existing workloads and the levels of 

interference that they produce. Moreover, approximating the 

interference and consequential decrement of energy-efficiency 

can facilitate mechanisms for efficient workload allocation 

and mitigate the negative effects of performance interference 

within Cloud environments.      

III.    METHODOLOGY OF ANALYSIS 

A. Workload Characterization 

The first step in order to analyze the impact of 

performance interference on energy-efficiency is to determine 

the characteristics of workloads from a realistic scenario.  To 

this end, we analyze a tracelog made available by Google in  

[14] and derived a task clusterization based on their resource 

utilization patterns. The tracelog contains information about 

930 different users submitting 25 million running-tasks on a 

Cloud Computing cluster composed of 12,000 servers for a 

period of a month. Furthermore, the tracelog offers 

information about the utilization ratios of the principal 



resources: CPU, memory and disk for each running tasks. To 

determine the dimensions of our clusterization schema, we 

analyze the distributions of these three resources as well as the 

length of tasks from a representative sample. From this 

analysis we observe that while CPU and memory utilization 

vary significantly among all the analyzed tasks, the utilization 

of disk is almost uniform with 98% of the tasks consuming 

very similar proportions as observed in Fig. 1. Therefore disk 

usage is discarded and task’s length, CPU and memory 
consumption are selected as the cluster dimensions. 

Three different types of workloads can be outlined from 

the cluster centroid analysis which is obtained by applying k-

means method [19] and the k-selection algorithm presented in 

[20]. These have been labeled as “Small”, “Medium”, and 
“Large” due to the proportions P of their 3 dimensions as 

presented in Table I. For example, Medium tasks are on 

average 5 times larger, using 5 times more CPU and 6 times 

more memory respectively than Small tasks. During the 

clusterization, the values for task’s length, CPU, and memory 

are normalized based on the maximum and minimum values 

from the tracelog to avoid skewed results due to the use of 

different metric units.  

B. Impact Analysis Based on Workloads Emulation  

In order to analyze the impact of performance interference 

on energy-efficiency in a real environment, we emulate the 3 

task types derived from the analyzed tracelog. Sysbench [21] 

“memory-test” is used to stress CPU and memory based on the 

task cluster centroids and their proportions P shown in Table I. 

Sysbench is a modular, cross-platform and multi-threaded 

benchmark tool for evaluating system parameters under 

intensive loads. In our emulation, each workload is 

synthesized by one or more Sysbench commands which 

execute a number of write operations on pre-established 

memory blocks creating required CPU and memory usage 

patterns. The CPU utilization of each type can be indicated by 

the number of Sysbench commands while the length of 

emulated type is determined by the total number of operations 

to be executed by the set of commands running on individual 

VMs. The emulation configuration for each workload type is 

presented in Table II. 

In order to assess the impact of interference on energy-

efficiency, we setup a virtualized environment as illustrated in 

Fig. 2. We implement a workload generator that continuously 

submits and co-allocates instances of the emulated workload 

types in a virtualized cluster of 32 physical nodes managed by 

iVIC system [15, 22]. iVIC is a KVM-based Virtual 

Computing Infrastructure which provides flexible on-demand 

access to virtual computing environment on top of shared 

resources. It allows users to dynamically create, customize, 

migrate and scale VMs over clustered physical servers. The 

characteristics of the utilized servers are listed in Table III. 

The resource utilization of each workload is recorded using 

the libvirt API whilst the performance is calculated based on 

the number of operations completed per workload type and 

corresponding completion time. The transient power and total 

energy consumption is monitored through a Voltech PM1000+ 

power analyzer unit. In this environment, we conduct the 

experimentation and analysis in 3 different scenarios: 

i) Over a fixed period of 12 hours we continuously submit 

different combinations from 2 to 9 workloads on 

servers T1500. The objective is to evaluate the impact 

of different workload combinations on the produced 

amount of interference and the reduction of energy-

efficiency. Additionally, we analyze the performance 

and energy patterns when the number of co-allocated 

workloads increases by randomly selecting 

combinations from 3 to 9 workloads. 

ii) Over a fixed period of 12 hours we continuously submit 

different pair-combinations of workloads on servers 

T3400. The objective is to compare the levels of 

 
Figure 1. CDFs of the three analyzed resources. 

TABLE I.       CLUSTER CENTROIDS AND PROPORTIONS.  

 Length P CPU P Memory P 

S 0.0007 1 0.0149 1 0.0089 1 

M 0.0038 5 0.0810 5 0.0585 6 

L 0.0107 15 0.2206 14 0.2556 28 

 

TABLE II.       WORKLOAD TYPES CONFIGURATION. 

Type Length 

(Number of 

Operations) 

Sysbench 

Commands 

Memory 

Allocation 

(MB) 

Small 1707 1 60 

Medium 8535 5 360 

Large 23898 15 1680 

 

Sysbench

Java Workload 

Generator
iVIC

System

Libvirt API

Performance ʹ Energy Profile

 
Figure 2. Overview of the assessment environment. 

TABLE III.        USED SERVER CONFIGURATIONS. 

Server Family Description 

Dell Precision 

T1500 

Intel Core i7 860, 2.80GHz 

CPU(8cores),16G RAM, Linux Debian 
2.6.32 

Dell Precision 

T3400 

Intel Core 2 Duo, 2.33Ghz, 8GB RAM, 

Linux Debian 2.6.32 

 



interference introduced by different server 

configurations processing the same workload types.  

iii) We continuously submit pair-combinations of 

workloads until a fixed amount of operations are 

completed. The objective is to analyze changes on 

workloads’ completion time which can significantly 

increase the overall energy consumption. 

C. Interference and Energy-Efficiency Decrement Metrics 

The effects of performance interference in each workload 

combination are measured by extending the Combined Score 

(CS) proposed in [11] to calculate the “Combined Interference 

Score” (CIS) as described in (1). 
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Where n is the total number of co-allocated workloads in 
the server s, Pi is the performance of the i-workload when 
combined with others, and Bi is the performance of the i-
workload when running in isolation. Regarding to the 
decrement of energy-efficiency, it is calculated as described in 
(2) where E is the expected energy-efficiency and A is the 
actual energy-efficiency obtained for each combination. In both 
cases energy-efficiency is defined as the ratio of work 
(performed or expected) by the total amount of energy 
consumed. While the expected work is the aggregated 
operations computed by individual workloads when running in 
isolation, the completed work is the total operations achieved 
by all combined workloads. 

E

AE
sEE
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In order to determine the expected amount of work, we 

initially benchmark the performance of each workload type 

when running in isolation for 12 hours on servers from the 

described families. Considering the number of completed 

executions during the fixed period of time and the amount of 

operations per execution as described in Table II, we obtain 

the total completed operations for each type as presented in 

Table IV. 

IV. EXPERIMENTAL RESULTS 

A. Impact on Energy-Efficiency Considering Fixed Time 

When workloads are combined and performance 

interference is produced, there is a significant impact on the 

amount of completed operations in comparison to the expected 

number. Therefore, the energy-efficiency is negatively 

impacted since the number of operations per Watt consumed is 

drastically reduced. As observed in Table V, the ǻEE 
increases along with the CIS for each evaluated combination.  

However, while the performance affectation linearly grows, 

the impact on energy-efficiency decreases in relation to the 

number of co-allocated workloads. For example, the average 

increment from combining 2 to 3 workloads is 1.045 and 

0.2635 whilst from 3 to 4 workloads is 0.97 and 0.114 for CIS 

and ǻEE respectively. That is, while CIS increment remains 

close to 1.0, the ǻEE is proportionally reduced by 56%. These 

trends can be observed in Fig. 3 where all the evaluated 

combinations are plotted. 

Another important observation from the results in Table 

V is that apart from the number of co-allocated workloads, 

different combinations produce different impact on the 

performance and energy-efficiency of virtualized servers. For 

example, in the case of pair-combinations, LL produces less 

interference than MM but more than SS. This creates the 

opportunity for developing workload-aware scheduling 

mechanisms to reduce the performance degradation while the 

energy-efficiency is maintained at a high number of co-

(1) 

(2) 

TABLE IV.       BENCHMARK OF WORKLOADS IN ISOLATION 

Workload  

type 

Dell T1500 Dell T3400 

Executions Total 

Operations 

Executions Total 

Operations 

Small(S) 2046 3492522 1085 1852095 

Medium(M) 427 3644445 217 1852095 

Large(L) 149 3815145 78 1997190 
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Figure 3. Relationship between performance interference and energy-

efficiency degradation of the analyzed workloads combinations. 

 
(a)                                                                    (b)                                                                     (c) 

Figure 4. Impact on performance interference, energy consumption and energy-efficiency when combining (a) two, (b) three and (c)four workload types. 

 



allocated workloads.  The impact on performance, energy, and 

energy-efficiency decrement produced by different 

combinations is observed in Fig. 4 where co-allocations of 2, 3 

and 4 workloads are illustrated. An important observation 

from this graph is that although different workload 

combinations produce a different interference level, this 

difference is significantly reduced when the number of co-

allocated VMs grows. This suggests that at higher VM density 

the interference is mainly driven by the number of co-

allocated VMs and slightly influenced by the different 

combinations mixture. 

B. Impact Comparison Between Server Configurations 

Running the same workload types on servers with different 
characteristics produces diverse performance interference and 
energy-efficiency decrement patterns. Because of the capacity 
of T3400 servers is almost 50% lower, the level of performance 
interference is as expected higher in comparison to T1500 
servers. As observed in Fig. 5, the average CIS for pair-
combinations in T1500 and T3400 are 0.5107 and 0.7732 
respectively. This represents a nearly 51% increment compared 
with the CIS in T1500 that matches the proportions of the 
servers’ capacities. However, what is more important to 
observe is the different impact level that the analyzed 
combinations create on different server configurations. For 
example, the SM and MM combinations running on T1500 

have proportionally higher impact than those running on 
T3400. Therefore, in order to mitigate the performance 
interference while efficiently exploiting the resources in 
virtualized environments, it is important to understand not only 
the relationship between performance interference and energy-
efficiency but also the impact that workload combinations have 
on the different server configurations.        

C. Impact on Energy-Efficiency Considering Fixed Amount of 

Work 

Besides the impact on the amount of work computed per 

Watt consumed, the performance interference can also 

increase the completion time of co-allocated workloads as well 

as the energy consumption at the datacenter. Namely, 

workloads running for longer time require more resources for 

them to be completed. This can be especially the case of those 

long-term computing-intensive applications running on Cloud 

environments. To evaluate time delays and their consequent 

increase in energy consumption, we continuously submit pair-

combinations of workloads until the expected number of 

operations for 12 hrs are completed. For example, in the case 

of the combination SM, the expected amount of work for 12 

hrs running on servers T3400 is 3,704,190 operations 

according to the values in Table IV. However, when 

interference occurs the required time to complete the same 

amount of work is extended by 7.52 hrs. This produces an 

increase in the energy consumption close to 64% due to an 

average execution delay on each workload equivalent to 62.38 

seconds. Although the delay per execution is short, the 

aggregated time produces a high impact on the overall energy 

consumption in a long term. Table VI lists the time delays 

measured for all the pair-combinations as well as the 

increment on energy consumption introduced by performance 

interference for each case.   

V. ESTIMATING INTERFERENCE AND ENERGY-EFFICIENCY 

DECREMENT 

 In this section we describe a simple but effective 

approach to estimate the CIS and the ǻEE when multiple 

workloads are co-allocated. It is based on the exposed 

correlation patterns between CIS and ǻEE as illustrated in Fig. 

3 and on the profiling of workload pair-combinations as 

presented in Table V. 

In order to obtain an effective approximate estimation for 

CIS and ǻEE, we calculate the pair-based Combined 

Interference Score (pbCIS) of n-workloads by adding the 

resulting  ଶ  pair-combinations from server s.  

TABLE V.       PERFORMANCE AND ENERGY PROFILES OF WORKLOAD 

COMBINATIONS RUNNING IN SERVERS T1500. 

Combination Work (Operations) Energy 

(Whr) 

CIS ǻEE 

Completed Expected 

SS 5298528 6985044 1558.92 0.482 0.241 

SM 5283165 7136967 1555.80 0.519 0.259 

SL 5424846 7307667 1535.88 0.516 0.257 

MM 5385585 7288890 1563.60 0.522 0.261 

ML 5496540 7459590 1541.64 0.527 0.263 

LL 5735520 7630290 1538.40 0.496 0.248 

MMM 5317305 10933335 1717.80 1.540 0.513 

LMS 5448744 10952112 1718.94 1.507 0.502 

SMM 4958835 10781412 1669.60 1.619 0.540 

SSLM 5300235 14444634 1879.00 2.532 0.633 

SSMM 5175624 14273934 1871.10 2.549 0.637 

SSSS 5173917 13970088 1883.60 2.518 0.629 

SMMLL 5305356 18411702 2022.30 3.559 0.711 

MMMLL 5291700 18563625 2021.00 3.575 0.714 

SSSML 5214885 17937156 1998.40 3.546 0.709 

SMMMMM 5074911 21714747 2027.60 4.597 0.766 

SSSMMM 5069790 21410901 2033.70 4.578 0.763 

MLLLLL 5428260 22720170 2044.32 4.566 0.761 

 

 
Figure 5. Performance interference comparison of workload pair-

combinations with different server configurations. 

TABLE VI.       DELAYS INTRODUCED BY PERFORMANCE INTERFERENCE. 

Workload 

Combination 

Average Delay 

per Execution 

(Seconds) 

Total 

Workload 

Delay (Hrs) 

Energy 

Increment 

(Watts) 

SS 12.34 7.44 1297.50 

SM 62.38 7.52 1310.67 

SL 176.77 7.66 1324.00 

MM 20.71 7.49 1316.50 

ML 23.43 7.57 1314.00 

LL 92.87 7.61 1322.00 
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Where pi is an element of the set P = {SS, SM, SL, MM, ML, 

LL} and CIS(pi) is the measured CIS of each pair-combination. 

For example, to estimate the pbCIS of the combination LMS, 

the measured values of  LM, LS and MS are added together.  

If we estimate the CIS based only on the effect of pair 

combinations, it is possible to observe that while the actual 

CIS grows linearly, the estimation of pbCIS in Eq. (3) grows 

exponentially producing a substantial margin of error 

particularly when n increases as illustrated in Fig. 6. The 

reason for this is because although the actual CIS varies 

according to the workload combinations as illustrated in Fig. 4, 

the variation is also significantly influenced by the increments 

of n. Consequently, the estimation of CIS for a given n-

workload combination depends on two variables: the number 

of co-allocated workloads n and their resulting pbCIS. 

Therefore, the estimation model need to find a fitting f and g 

as in Eq. (4) and (5). 

EstimatedCIS(s)  =  f (pbCIS(s), n) 

Estimated ǻEE = g (EstimatedCIS(s)) 

The fitting function can be outlined and determined by 

using regression analysis based on the data and patterns 

derived from the mixing workloads experimental results in the 

previous section. Analyzing the relationship of these variables, 

it is observable from Fig. 7 that while CIS linearly grows 

along with n, the impact on CIS produced by pbCIS gets 

reduced when the latter increases. Therefore, we can formalize 

the observed relationships leveraging the linear and quadratic 

regression analysis based on the data obtained from combining 

2 to 6 workloads. These are described in Eq. (6) and Eq. (7) 

for CIS(n) and CIS(pbCIS) respectively. In addition, we 

combine these equations to approximate CIS based on n and 

pbCIS for servers T1500 as presented in Eq. (8).  The 

estimation of CIS using these equations is contrasted to the 

actual measurements described in Section IV. As observed in 

Fig. 8, this produces a better fitting in comparison to only 

using the pbCIS.  

492.1011.1)(  nnCIS  

9538.00084.05212.0)( 2  pbCISpbCISpbCISCIS  

269.0004.0260.0505.0),( 2  pbCISpbCISnpbCISnCIS   

In order to approximate the reduction in energy-

efficiency produced by CIS, we cluster the points in Fig. 3 

based on the number of workloads. Driven by the data 

distribution on the graph, we fit all the cluster centroids to 

quadratic and cubic models as illustrated in Fig. 9. Applying 

regression analysis, it is determined that quadratic and cubic 

models fit the centroids distribution in 98.10% and 99.7% 

respectively. Finally, substituting the values of estimated CIS 

in the generalized cubic model and the parameters derived 

from the regression analysis, we can approximate the ǻEE for 

T1500 servers as described in Eq. (9). The evalution results 

can be observed in Fig. 10 where the estimated ǻEE is 

compared against the actual ǻEE measured during the 

experimentation. 

(4) 

(5) 

Actual CIS

pbCIS

 
Figure 6. CIS estimation based on pair-combinations compared against 

the actual CIS. 

Figure 9. Regression fit of CIS and ǻEE centroids. 

 
Figure 7. Relationship of CIS with n and pbCIS. 

(7) 

(8) 

(6) 

Actual CIS

Estimated CIS

Figure 8. Estimated CIS compared against actual CIS. 
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The models are derived using the data obtained from 

combining 2 to 6 workloads. However, we also assess the 

accuracy against the data obtained from combining 7, 8 and 9 

workloads. The derived estimation models closely match the 

real measurements for both CIS and ǻEE. As observed in 

Table VII, the average error in both cases is contained within a 

margin of 5%. The largest discrepancies can be found at very 

low number of co-allocated VMs where the workload types 

have a stronger influence. However as n increases the 

percentage of error is noticeably reduced.  It is also important 

to remark that the coefficients of the models change for each 

different server configuration even considering the same 

workload types because as discussed previously the levels of 

CIS and ǻEE are affected by the capacity and characteristics 

of the physical server. Nevertheless, the proposed estimation 

approach can be generally applied to different architectures 

and workload types to determine the performance interference 

and energy-efficiency models of specific environment. In fact, 

characterizing few combinations to derive the parameters of 

the estimation model following the proposed approach is more 

feasible than evaluating every possible workload combination.    

VI. RELATED WORK 

The negative effect of performance interference in 
virtualized environments has been previously analyzed. This 
section describes and discusses the most relevant related work 
approaching the problem. Younggyun et al. [12],  present a 
study that evaluates the performance impact of co-allocating 
pairs of different applications in virtualized servers by 
analyzing system-level characteristics including CPU, memory, 
and disk utilization. In this paper the authors proposed a model 
to predict the performance of a new incoming application based 
on previous observations. Gupta et al. [13], discuss the sources 
of interference at Xen’s Virtual Machine Monitor (VMM) for 
I/O intensive workloads. They propose a set of primitives 
implemented at hypervisor-level to improve the resource 
sharing mechanisms and mitigate the performance impact 
caused by co-allocated VMs. Pu et al. [11], present a complete 
analysis of performance interference in Xen hypervisor. In this 
analysis they demonstrate that co-allocating different types of 
workloads reduces the performance interference in virtualized 
environments. Moreover, they present a set of performance 
metrics to outline points of conflict among the studied 

workloads.  Govindan et al. [10], also analyze the phenomenon 
of performance interference at Low-level Cache (LLC). They 
propose a technique to predict the performance interference due 
to shared processor cache using synthetic cache loader 
benchmarks to profile the performance of mixed applications. 

It is observable that the main related approaches have 
focused on QoS aspects but completely neglected the impact on 
energy-efficiency produced by this phenomenon. If this is not 
considered, it can drastically diminish the claimed energy-
efficiency improvements by energy-aware mechanisms when 
applied under real conditions. Furthermore, most of previous 
analyses with the exception of [10]  have been limited to the 
study of pair-combinations. However, in real virtualized multi-
tenant environments where multiple VMs can be allocated in 
the same server the combined workload is significantly more 
complex. Finally, previous studies are largely based on 
unrealistic workload characteristics that can lead to misleading 
results in real operational environments. This is mainly caused 
by the lack of tracelogs and their consequent workload analysis 
from real and large-scale Cloud computing environments.  

VII. CONCLUSIONS AND FUTURE WORK 

In this paper we have characterized workload heterogeneity 
derived from a real Cloud environment, and presented a 
comprehensive analysis to assess the impact of performance 
interference on a virtualized datacenter’s energy-efficiency. 
Moreover, we have presented an approach to estimate both 
performance interference and energy-efficiency decrement 
based on workload pair-combination profiles and the 
correlation patterns derived from the presented analysis. 
Experimental results demonstrate an exponential relationship 
between the increase in interference and the reduction in 
energy-efficiency. Additionally, they also demonstrate that 
using the outlined correlation patterns as well as the 
measurements taken from pair-combinations it is possible to 
accurately estimate both parameters when multiple workloads 
are co-allocated. From our presented study, the following 
conclusions can be drawn: 

TABLE VII. ESTIMATED CIS AND ǻEE RESULTS 

Workload 

Combination 

Est. 

CIS 

Real 

CIS 

% 

Error 

Est.  

ǻEE 

Real 

ǻEE 

% 

Error  

MMM 1.656 1.540 7.53 0.542 0.513 5.63 

LMS 1.656 1.507 9.89 0.542 0.502 7.97 

SMM 1.655 1.619 2.22 0.542 0.540 0.45 

SSLM 2.637 2.532 4.15 0.663 0.633 4.79 

SSMM 2.637 2.549 3.45 0.663 0.637 4.07 

SSSS 2.624 2.518 4.21 0.662 0.629 5.18 

SMMLL 3.662 3.559 2.89 0.721 0.711 1.42 

MMMLL 3.664 3.575 2.49 0.722 0.714 0.99 

SSSML 3.654 3.546 3.05 0.721 0.709 1.74 

SMMMMM 4.723 4.597 2.74 0.769 0.766 0.43 

SSSMMM 4.714 4.578 2.97 0.769 0.763 0.77 

MLLLLL 4.707 4.566 3.09 0.768 0.761 1.00 

LLMMMMS 5.620 5.600 0.36 0.803 0.800 0.38 

LLLMMSS 5.605 5.573 0.57 0.802 0.796 0.85 

LMSSSSS 5.548 5.575 0.48 0.802 0.796 0.70 

LLLMMSSS 6.654 6.621 0.50 0.815 0.827 1.39 

LLLLMMMS 6.669 6.608 0.92 0.815 0.826 1.23 

LMMSSSSS 6.625 6.615 0.15 0.815 0.826 1.38 

LLMMSSSSS 7.643 7.608 0.46 0.834 0.845 1.21 

LLLLLMMSS 7.661 7.600 0.80 0.835 0.871 4.18 

LLLMMMMSS 7.682 7.628 0.71 0.835 0.846 1.28 
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Figure 10. Estimated ǻEE compared against actual ǻEE 
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 Performance interference significantly affects the energy-
efficiency. However, the intensity of that impact is reduced 
according to the increment of co-allocated workloads. As 
indicated in our experimental results, the impact on 
energy-efficiency is reduced when the number of  
workloads increases despite the considerable rise of 
interference levels and its associated energy-efficiency 
decay. Therefore, the interference not only affects the QoS 
of individual workloads,  but can also produce a significant 
impact on the energy-efficiency of virtualized servers and 
the overall datacenter if not properly handled.  It makes 
critical the need for mechanisms to find a tradeoff between 
the QoS guarantees and the levels of the energy-efficiency. 

 Although creating a general interference estimation 
models is complex, it is still feasible to estimate the 
performance interference and its impact to the datacenter 
for concrete scenarios. Our results show that interference 
is affected not only by workload types but also by server 
characteristics. However, by exploiting the exposed 
patterns and profiles of pair-combination, it is possible to 
approximate the interference levels and energy-efficiency 
impact by deriving platform-specific models.    

 Understanding the levels of interference and the impact to 
the energy-efficiency produced by the combination of 
diverse workloads can lead to an improved resources 
allocation in virtualized environments. This allows the 
development of scheduling mechanisms to select the 
hosting servers based on the amount of interference 
produced by the current co-allocated workloads during 
specific instants of time.  

 Relying on real data is critical to understanding the real 
challenges in Cloud Computing and formulating 
assumptions under realistic operational circumstances. 
This is especially true in very dynamic environments such 
as Cloud datacenters, where precise behavioural modeling 
is required to improve environmental energy-efficiency. 

 As future work, we are planning to perform more 
experimentation to determine what other factors affect 
performance and energy-efficiency in Clouds, such as the 
effect of using different hypervisors. Furthermore, a deeper 
study about the exposed interference impact on energy-
efficiency needs to be conducted in order to formulate holistic 
models considering hardware, software, and workload patterns. 
It is also necessary to develop a framework of practical tools to 
effectively conduct the described analysis under different 
environmental characteristics. Finally, we are interested in 
evaluating the impact of performance interference on energy-
efficiency when resources in the Cloud datacenter are over-
allocated, in order to improve server availability whilst 
reducing interference effects. 
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