
This is a repository copy of Brain-computer interface technology for speech recognition: A 
review.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/167273/

Version: Accepted Version

Proceedings Paper:
AlSaleh, M.M., Arvaneh, M. orcid.org/0000-0002-5124-3497, Christensen, H. 
orcid.org/0000-0003-3028-5062 et al. (1 more author) (2016) Brain-computer interface 
technology for speech recognition: A review. In: Proceedings of 2016 Asia-Pacific Signal 
and Information Processing Association Annual Summit and Conference (APSIPA). 2016 
Asia-Pacific Signal and Information Processing Association Annual Summit and 
Conference (APSIPA), 13-16 Dec 2016, Jeju, South Korea. IEEE , pp. 1-5. ISBN 
9781509024018 

https://doi.org/10.1109/apsipa.2016.7820826

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Brain-Computer Interface Technology for Speech

Recognition: A Review

Mashael M. AlSaleh∗ Mahnaz Arvaneh∗ Heidi Christensen∗ and Roger K. Moore∗

∗ University of Sheffield, Sheffield, United Kingdom

E-mail: mmalsaleh1,m.arvaneh,heidi.christensen,r.k.moore@sheffield.ac.uk

Abstract—This paper presents an overview of the studies that
have been conducted with the purpose of understanding the use
of brain signals as input to a speech recogniser. The studies
have been categorised based on the type of the technology used
with a summary of the methodologies used and achieved results.
In addition, the paper gives an insight into some studies that
examined the effect of the chosen stimuli on brain activities as
an important factor in the recognition process. The remaining
part of this paper lists the limitations of the available studies and
the challenges for future work in this area.

I. INTRODUCTION

Brain Computer Interface (BCI) is one of the promising

technologies that has been examined as an alternative commu-

nication technology [1], [2], [3]. Neuromuscular impairments

prevent users from using most of the available communication

aids, since they require some degree of muscle movement. This

makes them unsuitable for people with severe disabilities who

have limited movement in their muscles, such as people with

locked-in syndrome [4], [5]. In more general circumstances it

would be desirable to communicate only using brain activities,

e.g., due to security issues.

In the literature, brain activity has been used for com-

munication in two different ways: controlling spellers [6],

[7] and capturing speech information [8], [3]. This review

paper focuses on BCI studies related to speech. These studies

mainly focus on the following objectives: a) understanding the

mechanism of spoken (i.e. overt) and unspoken (i.e. covert)

speech production in the brain, b) recognising speech from

covert speech using brain signals.

Both invasive and non-invasive BCI have been used

for speech studies. For invasive BCI, Electrocorticography

(ECoG) has been used in several studies in order to have

better insights into the brain areas related to speech [9],

[10], [11]. ECoG can retrieve accurate information in terms

of time and spatial resolution, which is promising for the

direct translation of brain activities into text or speech without

the need for averaging brain signals. For non-invasive BCI,

the Electroencephalogram (EEG) was utilized in preliminary

studies to recognise a limited number of words, syllables,

or vowels [12], [13], [14]. Moreover, functional Magnetic

Resonance (fMRI) was used to determine changes in the

activation of brain areas during speech tasks [15], [16]. During

the speech imagination task, the subjects are asked to imagine

the pronunciation of speech stimuli. In some studies, subjects

are asked to imagine the movement of articulators as in [13]

while in other studies the subjects are asked not to imagine

any movement as in [17].

This paper sheds light on studies that used BCI technologies

for speech recognition and understanding. The methodology

followed to conduct these studies are explained, and the

achieved results in this area are reported. The studies are

categorised based on the sensors used to measure brain

activities as well as different types of performed imagined

speech. The limitations of the current studies are discussed in

detail. Furthermore, we discuss the possible effects of a word’s

meaning on brain signals and whether it can help achieve better

speech detection.

II. STUDYING SPEECH USING

ELECTROCORTICOGRAPHY(ECOG)

ECoG electrodes are directly placed on the brain surface.

The use of ECoG began in the 1950s when it was used to

localise epileptic seizures accurately before surgery [9]. The

resulting signals are high quality in terms of their spatial

and temporal details. In [9], the researchers tried to address

whether or not it is possible to determine the vowels and

consonants of spoken and imagined words following visual

and audio stimuli using ECoG signals. In order to answer this

question, four experimental conditions (visual stimuli/actual

spoken, audio/actual, visual/imagined, and audio/imagined)

were examined, with four possible vowels sounds (/ë/, /æ/, /i:/,

or /u:/) and consonant pairs (/b,t/, /c,n/, /h,d/, /l,d/, /m,n/, /p p/,

/r,d/, /s,t/, or /t,n/) in thirty-six words. The findings showed that

the brain areas activated during actual speech are the primary

motor cortex, Broca's area, and posterior superior temporal

gyrus. In contrast, in the imagined speech, two small foci in

the temporal and frontal regions were activated. The results

were promising, with classification accuracy in some cases of

55% between the four above mentioned classes.

A recent study conducted by [10] explored the brain regions

that are involved in all the phases of speech production:

preparation, execution and monitoring by using ECoG BCI

technology. They described the uniqueness of this study as

it examined the neural representations of speech features in

cases of continuous speech, rather than taking each sound

separately. In the experiment, subjects were asked to speak

loudly while their speech was recorded using a microphone.

The texts were between 109 and 411 words long taken from



political speeches or nursery rhymes. In the analysis part,

the comparison between vowels and consonants was used

as the main phonological discrimination dimension. Other

dimensions included place (labial, coronal and dorsal) and

manner of articulation (obstruent and sonorant), and voicing

status (voiced and voiceless). Based on the results obtained, the

authors identified the brain network areas that were involved

in the speech production process.

Unlike many EEG-based brain-to-text systems that require

averaging brain signals from multiple trials in order to have

an accurate silent speech translation, the ECoG-based systems

work using single-trial classification. The high signal to noise

ratio of ECoG signals helps better understand the mechanism

of the speech production in brain. It is noted that most of

the participants in ECoG studies were patients with seizure

who used ECoG electrodes mainly for localising their epileptic

seizures. Typically, the use of ECoG for unspoken speech

recognition is limited due to its invasiveness.

III. STUDYING SPEECH USING FUNCTIONAL MAGNETIC

RESONANCE IMAGING (FMRI)

fRMI was discovered by [15]. It measures the changes in the

local blood oxygenation level during neural activation. fMRI

has been used in communication and speech studies. In [16],

researchers investigated whether fMRI can be used to decode

binary answers (”Yes”/”No”). An experiment was conducted

on 15 participants with no neurological disorders. They were

asked, ”Do you have sisters or brothers?”, and 90 percent

of the answers were decoded correctly within three minutes

of scanning. This demonstrated that fMRI is an accurate and

reasonably timely communication tool.

A recent study has been conducted by [18] to create a map

of words in the brain based on their semantics. Seven English

native subjects have been asked to listen to hours of narrative

stories consisting of 10,470 words while fMRI scanning took

place. The words have been clustered into twelve groups

using K-means clustering where each category was inspected

and labelled manually. The results showed consistency in the

organization of words among users.

In general, due to bulkiness, immobility and the slow time

response, the use of fMRI as a communication system may

not be feasible in the daily life. However, its good spatial

resolution helps understand the brain activities associated with

covert and overt speech production.

IV. STUDYING SPEECH USING ELECTROENCEPHALOGRAM

(EEG)

Several studies used EEG to explore the possibility of

reading what people are thinking about. Experiments with

speech imagination can be divided into three types based on

the imagined part (i.e. word imagination, syllable imagination,

and vowel imagination.)

In their use of imagined speech as a user authentication tech-

nique, [19] has argued that speech imagery is more convenient

and intuitive for users than motor imagery or any other types

of mental activity. However, more research and practice on

speech imagery are required to establish the most appropriate

methods of use to generate discriminative EEG signals without

any overt actions.

Due to portability and inexpensiveness, EEG has the highest

potential among other modalities in order to be used as a

communication system for daily life. In particular, advances

in sensor technology are likely to lead to wireless, dry and

less expensive EEG sensors. However, the low signal-to-noise

ratio and the inherent non-stationarity in EEG signals make

speech recognition a challenge. Thus, advances are needed in

signal processing algorithms to have more robust and accurate

communication systems working based on EEG.

Table I summarises the important studies that used EEG for

speech recognition. These studies are further discussed in the

following subsection.

A. Word imagination

In [20], researchers have built a speaker-dependent silent

speech recognition system using both EMG to help in deter-

mining the onset of these signals and EEG to identify the

intended speech. The system was built in two phases: the

learning phase and the decoding phase. The two phases have

been applied in two experiments, where subjects spoke loudly

in the first phase and silently in the second phase. The first ex-

periment was to record janken (that is, the Japanese equivalent

of the “Rock, Paper,Scissors” game), and the second was to

record the four different words for seasons in Japanese. In the

learning phase, the brain areas related to speech were identified

by applying Independent Component Analysis (ICA) to map

them to the related equivalent current dipole source localisa-

tion (ECDL). The researchers compared the results of ICA

with previous studies exploring neuroimaging during speech

production. In addition, this mapping was compared with

the Directions into Velocities of Articulators model (DIVA).

DIVA indicated that the intended speech sounds are shown

by neurons in the left ventral premotor cortex as formant

frequency trajectories that will be sent to the primary motor

cortex, where they are then transformed into motor commands

to speech articulators. The last stage in this learning phase was

to create a relationship between ICAs and speech spectrograms

using a Kalman filter. In the decoding phase, a Kalman filter

was used to estimate the silent speech spectrograms based on

the learning phase results. The first experiment showed that

speech recognition was based on vowels transitions, which

are not applicable in some Japanese words. This resulted in

the use of HMM and Gaussian mixture densities to decipher

the differences between vowels and consonants in the learning

phase of the second experiment. Then in the decoding phase

HMM takes the spectrogram estimated by Kalman filter to

distinguish between consonant and vowel transitions in the

second experiment.

In [17], the author and her colleagues attempted to prove

that imagination of speech can be recognised effectively if the

spoken words are in blocks (i.e. a sequence of words). This

work showed that there is a relationship between word order

and the recognition rate. More specifically, recording unspoken



TABLE I
BCI RESEARCH STUDIES THAT USED EEG FOR SPEECH RECOGNITION

Article Task Specification Types of signals Brain area targeted Recognition technique Performance

[20]

To discriminate between:
1) rock, paper or scissors,

2) spring, summer,

autumn, winter

EMG to determine the
onset of speech production

and EEG to identify the

intended speech .

Premotor cortex,

supplementary motor area

and/or Brocas area.

Hidden Markov Model
and Gaussian Mixture Model

29%-100%
different
between words.

[13]
To discriminate between:
open(/a/,/o/), mid (/e/),

closed (/i/, /u/) vowels

EEG
Left hemisphere over

Wernicke and Broca
Support Vector Machine 84%- 94%

[17]
To discriminate between:
alpha, bravo, charlie,

delta, echo

EEG & EOG (i.e. for
word separation)

The area around oral
and facial motor cortex

Linear Discriminant Analysis 45.50%

[19]
To discriminate between:
syllables /ba/ & /ku/

in different rhythms

EEG Not mentioned

Linear Support Vector Machine
compared with k-Neighbours
classifier.

61%

[21]
To discriminate between:
syllables /ba/ and /ku/

and three rhythms

EEG all areas (128 channels) Matched filter classification Not mentioned

[22]
To discriminate between:
two vowels /a/, /u/ and a

no imagery state as control

EEG and fMRI
Bradman areas 1, 2, 3, 4, 6, 9,

22, 39, 40, 41, 42, 44 and 45

Sparse Logistic Regression
method with Variational
Approximation (SLR-VAR)

61.2%

[23] To discriminate between:
/a/, /i/, /u/, /e/, & /o/

EEG The whole brain Relevance Vector Machine
and Support Vector Machine

SVM :77%
RVM: 79%

[24]
To discriminate between:
5 Spanish words to be used

in controlling computer

EEG and mouse marker
to show the start and end
of word imagination.

F7, FC5, T7 and P7

(i.e. the nearest to Geschwind

-Wernickes mode areas

Naive Bayesian,
Random Forests(RF),
Support Vector Machine ,
and Bagging-RF.

Above chance
level

[14]

Different vocabularies groups,

different modalities:
i.e. whispering, silent speech,

silent mumbling and unspoken

speech

EEG
Primary motor cortex together,

the Brocas and Wernickes area
Linear Discriminant Analysis

4 to 5 times
higher than

chance with up

to 10 words

speech could in blocks allow the users to concentrate more

(as they reported this) and give signals with less noise and

consequently better recognition rate.

In [24], the researchers aimed to create an application that

allows users to control a computer screen cursor through

unspoken speech. The system was designed to recognise five

Spanish words to control the cursor. They examined five

different types of classifiers in order to get highly accurate

results in comparison with other works in the literature, and

they found the results consistent with similar works in terms

of classification accuracy.

B. Syllable imagination

In [12], the main aim of this work was to use imagined

speech for subject identification to be used in authentication. In

addition to testing their signal analysis method on EGG signals

related to the imagined speech, the researchers examined a

database of EEG signals related to Visual Evoked Potential

for use in subject identification. During the imagined speech

part, the subjects were asked to imagine the speech of two

syllables /ba/ and /ku/ at different rhythms. Moreover, the

researchers claimed that the use of syllables in imagination

instead of full words avoids the effect of semantic on brain

signals. Their signal processing method showed a high level of

subject identification accuracy. However, they noted that this

accuracy decreased when further sessions were recorded that

might be due to participants fatigue.

In [21], the researchers investigated whether the linguistic

content could be distinguished from brainwaves by finding the

brain signature for different linguistic content. The signatures

are shown as the difference between alpha, beta, and theta

brain rhythms. During the experiment, the subjects were asked

to imagine the speech of two syllables /bu/ and /ka/ in three

different rhythms without any effort or muscle movement.

However, the researchers did not mention any classification

accuracy or model training.

A recent study has been conducted by [25] combining EEG

signals with audio and facial features in order to use them

in the classification for phonological categories during the

imagination and pronunciation of phonemic and single words.

This multi-modal study provided an accuracy over 90%.

C. Vowel imagination

The study presented in [23] focused on vowels /a/, /i/, /u/,

/e/ and /o/ because it was targeting the Japanese language

where the structure of the syllables consists of one vowel

and one consonant. They examined the differences between

two classification algorithms, namely the Relevance Vector

Machine with the Gaussian Kernel (RVM-G), and compared

the results with those generated by Support Vector Machine

with Gaussian Kernel (SVM-G) from [26]. The purpose was to

reduce the calculation cost while using 19 channels, Common



Spatial Patterns (CSPs) filtering, and Adaptive Collection

(AC). However, the findings showed that there are no dif-

ferences between RVM and SVM in terms of classification

accuracy (i.e. 77% to 79%). Moreover, the calculation cost of

RVM is higher and it requires more training data to provide

strong results.

In [13], the authors focused on distinguishing between

mental state imaginary of open, mid and closed vowels without

the imagination of the articulator movements. Twenty-one

electrodes were placed over the area Wernicke and Broca's,

as they are the areas that are related to speech. In the pre-

processing stage, the differences between articulation mode

were based on time domain analysis and applying the peri-

odogram by using two fixed factors: the stimulus applied to the

subject and the position of the 21 electrodes. Power Spectral

Analysis was applied to detect signals that are immersed in

noise by considering only the signals between the ranges of 2

to 16 Hz. Finally, the classification process was done with a

non-linear Support Vector Machine resulting in the recognition

rate between 84% and 94%.

V. EFFECT OF WORD MEANING ON BRAIN ACTIVITY

In the literature there are several studies that tried to exam-

ine the effect of emotional content on the cognitive process.

In [27] a study was conducted to understand the influence

of emotional stimuli on source memory. In total 64 words

in two sets were presented. One set contains neutral words

(e.g.: ”chair”) and the other one contains emotional words

(e.g: ”emergency”). During the study, the participants were

asked to read each word silently and remember the colour

in which it was presented. Generally the results suggested an

enhancement in the source memory for the emotional words

because the participants better remembered the colours in

which the emotional words were typed.

Another study by [28] used fMRI scanning to determine

the neural regions involved in the emotional valence of the

stimulus. Thirteen lists of ten personality-trait adjectives were

constructed from Andersons list of personality-trait words

[29]. This list included 555 personality-trait words rated by

100 subjects based on likeableness as a personality character-

istic. The scanning process was conducted three times. First, in

the self-referential processing condition, subjects determined

whether they thought each trait described them. Second, in

the other referential processing condition, subjects evaluated

whether the stimulus represented a generally desirable trait.

The third task was letter recognition as control task. In general

the results showed that a widely distributed network of brain

areas contributes to emotional processing. Moreover, among

these regions the right dorsomedial prefrontal cortex is one

main area in the self-referential task where its more subjective,

perspective- taking aspects involved in emotional evaluation.

In [30], the objective was to measure to what extent emo-

tional connotation influences cortical potentials during read-

ing. In order to achieve this, event-related potentials (ERPs)

were recorded during the reading of high-arousal pleasant

and unpleasant and low arousal neutral adjectives that were

presented at rates of 1 Hz and 3 Hz. The words were selected

according to previous independent ratings of 45 subjects on a

total of about 500 adjectives. In sum, the study demonstrated

effects of emotional word content on a sequence of relatively

early (EPN) and late (N400, LPP) cortical indices during

uninstructed reading of words: initially, the brain responds to

the emotional significant of a word, regardless of its valence.

Similar approach was followed by [31] to understand the effect

of emotional words on ERP brain activities.

Considering these studies, we can hypothesise that including

words with emotional and semantic meanings in the BCI

system may improve the speech recognition system, since

different emotions influence the brain patterns differently. To

the best of our knowledge, such a study has not yet been done.

VI. LIMITATIONS OF AVAILABLE STUDIES

From the literature, it can be clearly understood that the

studies done so far for speech recognition using BCI were

only conducted on a small number of speech stimuli and a

limited number of subjects. Consequently, it is difficult to

draw solid conclusions about obtaining the same results in

wide range stimuli and subjects. Therefore, these studies have

been presented as a proof of concept for speech recognition

only. Even to date the results of these studies have not

been utilized in a complete communication application. Only

limited usage of these results were applied. For example, in

[32] the recognition of unspoken speech was used to control a

computer mouse. Also, in [19] the results were examined for

the use in system authentication.

In addition to the limitations in the number of subjects,

there is a lack of experimental work concerning of the target

population. While the target population of BCI systems in the

purpose of communication is locked-in patients, the studies

presented in this review were tested on healthy subjects.

One of the general concerns in new research areas is the

lack of having general methodology that can guarantee a

consistent accuracy in the results. The available studies differ

in stimuli presentation (visual or audio), target brain areas,

the instructions to subjects (how to conducted the speech

imagination task) and analysis technique for the results.

VII. SUMMARY AND CONCLUSION

This review covers two main parts. First, research studies

which have been presented how BCI technologies have been

used in understanding speech production and speech recog-

nition processes. The stimuli selection in these studies were

based on language aspects. For example, the use of syllables

because they don’t have any semantic meaning in [19] and

[33]. Another example is to use different vowels such as

in [22] because they are acoustically different and can be

easily distinguished. The second part included a sample of

studies that tried to examine the effect of emotional words

on the cognitive process. This was done using either doing

memory tests as in [27], fMRI scanning to determine the

regions activated in response to emotional valance of different



stimulus, or measuring the differences in ERP activities for

different emotional words as in [30].
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