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Absolute and convective instabilities of parallel propagating circularly
polarized Alfvén waves: Beat instability

D. Simpson and M. S. Ruderman
Department of Applied Mathematics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield,
S3 7RH, United Kingdom

sReceived 25 January 2005; accepted 30 March 2005; published online 26 May 2005d

Ruderman and SimpsonfPhys. Plasmas11, 4178s2004dg studied the absolute and convective decay
instabilities of parallel propagating circularly polarized Alfvén waves in plasmas where the sound
speedcS is smaller than the Alfvén speedyA. We extend their analysis for the beat instability which
occurs in plasmas withcS.yA. We assume that the dimensionless amplitude of the circularly
polarized Alfvén wavespump waved, a, is small. Applying Briggs’ method we study the problem
analytically using expansions in power series with respect toa. It is shown that the pump wave is
absolutely unstable in a reference frame moving with the velocityU with respect to the rest plasma
if Ul,U,Ur, whereUl=−yA+Osad andUr=yA+Osad. WhenU,Ul or U.Ur, the instability is
convective. The signaling problem is studied in a reference frame where the pump wave is
convectively unstable. It is shown that the spatially amplifying waves exist only when the signaling
frequency is in two narrow symmetric frequency bands with the widths of the order ofa3. These
results enable us to extend for the case whencS.yA the conclusions, previously made for the case
whencS,yA, that circularly polarized Alfvén waves propagating in the solar wind are convectively
unstable in a reference frame of any spacecraft moving with the velocity not exceeding a few tens
of km/s in the solar reference frame. The characteristic scale of spatial amplification for these waves
exceeds 1 a.u. ©2005 American Institute of Physics. fDOI: 10.1063/1.1919407g

I. INTRODUCTION

A finite amplitude circularly polarized, parallel propagat-
ing Alfvén wave is an exact solution of the nonlinear mag-
netohydrodynamicsMHDd equations. Since the 1960s this
solution has been known to be unstable with respect to har-
monic perturbations in the density and magnetic field.1,2 Cir-
cularly polarized Alfvén waves are commonly observed in
the solar wind and are thought to exist in other astrophysical
plasmas. Their stability has attracted ample attention of
plasma physicists in an attempt to explain observed phenom-
ena. Galeev and Oraevskii1 were the first to study this prob-
lem. Their analysis was based on the ideal MHD equations
and they assumed that the pump Alfvén wave amplitude and
the plasmab were small parameters. They obtained the re-
sult that the pump wave can decay into a forward propagat-
ing sound wave and a backward propagating Alfvén wave.
Derby3 and Goldstein4 extended the work of Galeev and
Oraevskii for arbitrary pump-wave amplitude and plasmab.
They discovered that the decay products were no longer nor-
mal modes of the plasma and that a forward propagating
transverse wave is also involved in the process. In the fol-
lowing studies the dispersive and kinetic effects as well as
the effects related to the oblique propagation of perturbations
were investigatedsfor references see, e.g., Ruderman and
Simpson5d.

Although the stability of circularly polarized Alfvén
waves has been studied for more than four decades, it still
remains among the hot topics in plasma physics, which is
confirmed by recent publications. The nonlinear evolution of
linearly unstable circularly polarized Alfvén waves is inten-
sively studied numerically. Turkman and Torkelsson studied

the nonlinear evolution of circularly polarized Alfvén waves
both in homogeneous6 and stratified7 plasmas using a one-
dimensional numerical code, and applied their results to the
acceleration of the solar wind. Del Zannaet al.8,9 and Del
Zanna and Velli10 developed a three-dimensional MHD code
to study the stability and nonlinear evolution of Alfvén
waves. They applied their numerical results to the evolution
of Alfvén wave spectra in the solar wind, and to plasma
heating in coronal holes. Shevchenkoet al.11 used the deriva-
tive nonlinear SchrödingersDNLSd equation to study the
parametric decay instability of Alfvén packets propagating in
the opposide directions. Hertzberget al.12–14 and Crameret
al.15 extended the linear theory of parametric instabilities of
Alfvén waves to multicomponent and dusty plasmas. Mat-
sukiyo and Hada16 studied the parametric instabilities of cir-
cularly polarized Alfvén waves in a relativistic electron-
positron plasma.

Ruderman and Simpson17 have recently addressed the
problem of whether an unstable Alfvén wave appears to give
rise to growing modes in a fixed reference frame. This is an
important problem from the point of view of observations, as
a system with unstable modes will only appear unstable to an
observer if the instability grows in time in the observer’s
reference frame. This occurs only when the instability is ab-
solute. Normal-mode analysis is not enough to study this
problem. Ruderman and Simpson17 used the method formu-
lated by Briggs18 and Bers19 to study the absolute and con-
vective natures of the instability. They restricted their analy-
sis to the decay instability which occurs when the sound
speedcS in the unperturbed plasma is smaller than the Alfvén
speedyA. WhencS.yA, the instability becomes a beat insta-
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bility and the analysis needs to be modified. The aim of the
present paper is to study the absolute and convective beat
instabilities of circularly polarized Alfvén waves. Our analy-
sis closely follows the analysis of Ruderman and Simpson,17

so that we refer the reader to this papershereafter referred to
as “Paper 1”d for a detailed method description.

In Sec. II we formulate the problem and briefly describe
the application of Briggs’ method. In Sec. III we study the
absolute and convective beat instabilities of small-amplitude
circularly polarized Alfvén waves. In Sec. IV we consider
the signaling problem for convectively unstable Alfvén
waves and find the criterion for the existence of spatially
amplifying waves. Section V contains the summary of our
result and the discussion of their possible implication for
interpretation of observation obtained in space missions.

II. FORMULATION AND METHOD DESCRIPTION

We are studying the linear stability of a circularly polar-
ized Alfvén wave propagating along the mean magnetic field
in the approximation of ideal MHD. The finite-amplitude
Alfvén wave spump waved is an exact solution of the non-
linear ideal MHD equations. This solution is unstable with
respect to small perturbations. Using the linearized MHD
equations the following dispersion equation describing the
stability of the pump wave can be derived:3–5

Dsv,kd ; sv2 − b2k2dsv − kdfsv + kd2 − 4g

− a2k2sv3 + v2k − 3v + kd = 0. s1d

Here v=V /v0 and k=K /k0, where V and K are the fre-
quency and wave number of the density perturbation, andv0

and k0 are the frequency and wave number of the pump
wave; b=cs /yA, wherecs is the sound speed andyA is the
Alfvén speed calculated using the mean magnetic field;a is
the dimensionless amplitude of the pump wave given bya
=B' /B0, whereB' is the amplitude of the magnetic field in
the pump wave andB0 is the magnitude of the ambient mag-
netic field.

The aim of our work is to study the absolute and con-
vective instabilities of the pump wave whencs.yA. The de-
tailed description of the method for studying absolute and
convective instabilities is given by Briggs18 ssee also Paper
1d. For a particular problem studied in this paper the analysis
is reduced to the investigation of the asymptotic behavior of
the integral17

drsx,td =E
it−`

it+`

e−ivtdvE
−`

` Tsv,kd

D̃sv,kd
eikxdk, s2d

as t→`, wheredr is the density perturbation. The function
Tsv ,kd is determined by initial conditions so that it is not

important for studying the asymptotic response;D̃sv ,kd
=Dsṽ ,kd, whereṽ=v+kU is the Doppler-shifted frequency,

U=Ū /yA and Ū is the velocity of the observer’s reference
frame in the direction of the ambient magnetic field. The
Bromwich integration contourIsvd=t swhereI denotes the
imaginary part of a quantityd is taken to be above all zeros of

D̃sv ,kd considered as a function ofv.

Similar to Paper 1 we carry out the analysis of the
asymptotic behavior ofdr in five steps:

sid First, we calculate the maximum growth rate of the
instability gM.

sii d Then we calculate all doublek roots of Eq.s1d by
solving the system of equations

D̃sv,kd = 0,
]D̃

]k
= 0. s3d

siii d Now we consider all pairs of solutions to Eq.s3d,
sv ,kd, and choose only those withv satisfying the
inequality

0 , vi ø gM , s4d

wherev=vr+ ivi. Pinching roots causing the absolute
instability can only arise for pairssv ,kd satisfying Eq.
s4d.

sivd From all pairssv ,kd satisfying Eq.s4d we choose only
those withk being a pinching root. To do this, we fix
Rsvd swhereR indicates the real part of a quantityd
and increaseIsvd from vi to gM +e, wheree is an
arbitrary positive quantity. As a result we map the
trajectories of the two roots in the complexk plane
which merge to form the double rootk. If these tra-
jectories end on different sides of the real axis in the
complexk plane, then the double rootk is pinching.
Otherwise it is nonpinchingssee Fig. 1d.

svd Finally, among all the solutionssv ,kd to Eq. s3d such
that v satisfies Eq.s4d and k is pinching we choose
one with the largestvi. Using the notationvm for v in
this solution, we find that the asymptotic behavior of
the density perturbation is given by

dr ~ t−1/2 expftsvim − ivrmdg, s5d

which implies that the instability is absolute. If there are no
solutions of Eq.s3d with k pinching andv satisfying Eq.s4d,
then the instability is convective.

FIG. 1. The trajectories of thek roots of the dispersion equation that start at
a doublek root. The doublek roots are shown by the circles. The arrows
show the direction of motion along a trajectory whenRsvd is fixed while
Isvd increases fromvi to gM +e. The double root 1 is pinching, while the
double roots 2 and 3 are nonpinching.
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III. ABSOLUTE AND CONVECTIVE BEAT
INSTABILITIES OF SMALL-AMPLITUDE ALFVÉN
WAVES

For the beat instability, Jayanti and Hollweg20 have cal-
culated the maximum growth rate of the instability for small
pump-wave amplitude:

gM =
a3

4Î2sb2 − 1d3/2
. s6d

This expression is valid forb not close to unity and we
assume this in what follows. It is worth noting thatgM ~a3

while gm~a in the case of the decay instabilitysb,1d.
To find the doublek roots of the dispersion equation we

solve the system of equationss3d. The explicit form of these
equations is given in Paper 1fsee Eqs.s8d and s9d in that
paperg. Our analysis here is identical to that of Paper 1 so we
may omit some details. It is shown in Paper 1 that the system
of equationss3d can be rewritten in terms ofc=ṽ /k andk as

4s1 + Udsc + 1dsc − 1d2sc2 − b2d2

− a2hfc6 + 4c5 − 3c4 − 2s1 + 3b2dc3 + 3b2c2 + 4b2c − b2g

+ Uf6c5 − 2c4 − s5 + 7b2dc3 + 4b2c2 + s1 + 5b2dc − 2b2gj

+ a4f2c3 + Us3c3 − cdg = 0, s7d

k2 =
4sc − 1dsc2 − b2d − a2s3c − 1d

sc + 1dfc4 − s1 + a2 + b2dc2 + b2g
. s8d

When a=0, Eq. s7d has one simple root,c1=−1 and three
double roots:c2,3=1, c4,5=b, andc6,7=−b. The approximate
solution of Eq.s7d close to −1 is given by

c1 = − 1 −
a2

4sb2 − 1d
+ Osa3d, s9d

and it is straightforward to see thatc1 remains real in any
order approximation with respect toa. The approximate so-
lutions of Eq.s7d close to 1 are given by

c2,3= 1 −
a2

2sb2 − 1d
±

a3

8
F 2sU − 1d

s1 + Udsb2 − 1d3G1/2

+ Osa4d,

s10d

where the “1” and “2” signs correspond toc2 and c3, re-
spectively. Let us now find the solutions of Eq.s7d close tob.
We are looking for these solutions in the form of an expan-
sion in power seriesc=b+on=1

` unan. Substituting this expres-
sion in Eq.s7d we obtain

sc − bd2 = a2F sb − 1dsb − Ud

16bs1 + Ud
+ o

n=1

`

vnanG . s11d

The coefficientsyn are expressed in terms ofun. We do not
give these expressions because they are not used in what
follows. It follows from Eq.s11d that the solutions close tob
are given by

c4,5= b ±
a

4
F sb − 1dsb − Ud

bs1 + Ud
G1/2

+ Osa2d, s12d

where the1 and 2 signs correspond toc4 and c5, respec-
tively. In addition, Eq.s11d implies thatc4 andc5 are real in
any order approximation with respect toa if the first term in
square brackets in Eq.s11d is positive and much larger than
a. In the same way we obtain that the solutions of Eq.s7d
close to −b are given by

c6,7= − b ±
a

4
F− s1 + bdsU + bd

bs1 + Ud
G1/2

+ Osa2d. s13d

The quantitiesc6 andc7 are real in any order approximation
with respect toa if the expression in square brackets is posi-
tive and much larger thana. Note also that the expansions
s10d, s12d, and s13d are only valid whenu1+Uu@a. We as-
sume that this inequality is satisfied in what follows.

Now we use Eq.s8d to calculate the double roots of the
dispersion equation considered as an equation fork:

k1± = ±
8isb2 − 1d

a2 + Os1d, s14d

k2,3± = ± H1 +
a2

4sb2 − 1d
7

a3U

4sb2 − 1d3/2f2sU2 − 1dg1/2J
+ Osa4d, s15d

k4,5± = ± H 2

1 + b
7

asb − 1d1/2s1 − b + 2Ud

2s1 + bd2fbsU + 1dsb − Udg1/2J
+ Osa2d, s16d

k6,7± = ± H 2

b − 1
±

as1 + bd1/2s1 + b + 2Ud

2sb − 1d2f− bsU + 1dsU + bdg1/2J
+ Osa2d. s17d

The corresponding values ofv are given by

v1± = ±
8isb2 − 1ds1 + Ud

a2 + Os1d, s18d

v2,3± = ± H1 − U −
a2s1 + Ud

4sb2 − 1d
±

a3

8
F2sU2 − 1d

sb2 − 1d3 G1/2J
+ Osa4d, s19d

v4,5± = ± H2sb − Ud

1 + b
±

afsb − 1dsU + 1dsb − Udg1/2

b1/2s1 + bd2 J
+ Osa2d, s20d

v6,7± = ± H−
2sb + Ud

b − 1
±

af− s1 + bdsU + 1dsU + bdg1/2

b1/2sb − 1d2 J
+ Osa2d. s21d

In these expressions the number subscripts correspond to the
upper and lower signs inside the curly brackets. For example,
we choose the upper sign in the curly brackets to calculate
k2± and the lower sign to calculatek3±. The 6 subscripts
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correspond to the6 signs outside of the curly brackets. The
results obtained forc4 and c5 imply that k4,5± and v4,5± are
real in any order approximation with respect toa if the sec-
ond terms in the curly brackets in Eqs.s16d ands20d are real
andub−Uu@a. Similarly, k6,7± andv6,7± are real in any order
approximation with respect toa if the second terms in the
curly brackets in Eqs.s17d and s21d are real anduU+bu@a.

We must now select values of omega which satisfy the
inequality 0,viøgM. It is here that our analysis starts to
differ from the decay instability case due to the much smaller
maximum growth rate of the beat instability. In what follows
we assume thatU is not very close either to ±1 or to ±b, and
take uU2−1u@a, uU2−b2u@a. We consider the case where
uU2−b2u&a separately. Now we can immediately rejectv1±

as it is obvious thatIsv1±d is either greater thangM or nega-
tive.

Isv2,3±dÞ0 when −1,U,1 but in this caseIsv2−d
=Isv3+d,0 so we can rejectk2− andk3+. For k2+ andk3− the
inequality 0,vi,gM reduces toU2ù0 which is always
true so we retain these roots.

When −1,U,b, the second term in the curly brackets
in Eq. s20d is real. Since we assume thatu1+Uu@a and
uU−bu@a, it follows that in this casev4,5± are real in any
order approximation with respect toa. When eitherU,−1
or U.b, it follows from the assumptionsu1+Uu@a and
uU−bu@a that uIsv4,5±du@gM ,a3. Hence, we rejectk4,5±.

Similarly, eitherv6,7± is real in any order approximation
with respect toa, or uIsv6,7±du@gM, so we rejectk6,7±.

Now we must determine whether the roots which we
have retained are pinching. We can simplify our analysis by
noting thatk3−=−k2+

* and v3−=−v2+
* . This implies that the

trajectories of the roots that collide to form the double root
k2+ and the trajectories of the roots that collide to form the
double rootk3− are symmetric to each other with respect to
the imaginary axis in the complexk plane. Hence, the roots
k2+ and k3− are either both pinching or both nonpinching.
This observation enables us to restrict the analysis to the root
k2+. We takev=v2++ ia3s, wheres varies from 0 tos2+e

with s2=fgM −Isv2+dg /a3 and e.0. We now letk=1+ak̄

and substitute this expression into the equationD̃sk ,vd=0.
Collecting terms of the lowest order with respect toa we
obtain

k̄2sU2 − 1dsb2 − 1d = Osa2d, s22d

so we letk̄=ak̂. Once again collecting terms of the lowest
order with respect toa yields

4k̂2sb2 − 1d − 2k̂ +
1

4sb2 − 1d
= Osad. s23d

This equation has a double rootk̂=f4sb2−1dg−1 so we letk

=1+a2f4sb2−1dg−1+a3k̄ and substitute this into the equation

D̃sk ,vd=0 again. This gives us the equation

4s1 − U2dsb2 − 1dk̃2 − sb2 − 1dU

3 HF2s1 − U2d

sb2 − 1d3 G1/2

i + 8isJk̃ −
U2

8sb2 − 1d2

+ ssb2 − 1dHF2s1 − U2d

sb2 − 1d3 G1/2

+ 4sJ = Osad. s24d

Solving this quadratic equation we obtain the expressions
determining the trajectories of the two rootsk+ and k−, that
collide asv=v2+,

k± = k2+ +
ia3

1 − U2S− sU ± Hs2 +
s

4
F2s1 − U2d

sb2 − 1d3 G1/2J1/2D .

s25d

Whens=0 we obtaink+=k−=k2+ as expected. We find that
Isk−d is a monotonically decreasing function ofs for all U
andIsk+d is a monotonically increasing function ofs for all
U srecall thatuUu,1d. WhenU,0, Isk2+d.0 so the whole
trajectory ofk+ is above the real axis. If we lets=s2 then we
see thatIsk−d=Osa4d. This means that ife is taken to be
large enough, then the trajectory ofk− will cross the real axis
and we have a pinching root. IfU.0 thenIsk2+d,0, so the
whole trajectory ofk− is below the real axis. Whens=s2 we
obtainIsk+d=Osa4d, so that ife is taken to be large enough,
the trajectory ofk+ will cross the real axis. Hence, once again
k2+ is a pinching root.

This analysis shows that we have pinching roots corre-
sponding tov satisfying Eq. s4d when −1,U,1. This
means that the instability is absolute in a reference frame
moving with the dimensionless velocityU with respect to the
rest plasma ifuUu,1. It is worth recalling, however, that this
result is only valid up to a certain accuracy. We have per-
formed our analysis assuming thatuU2−1u@a and uU2−b2u
@a so, to be precise, we only can claim that the instability is
absolute whenUl,U,Ur, whereUl=−1+Osad and Ur=1
+Osad.

Our analysis has to be modified whenU is close to ±1 or
±b. However, we will ignore the case whenU is close to ±1
since this analysis would provide only small corrections to
the boundaries of the absolute instability. We must consider
the case whenU is close to ±b, however, as these values are
outside of the found boundaries of the absolute instability.
Hence, if pinching roots would exist forU close to ±b, it
would have a serious physical implication.

When U=b+Osad the expressions forc4,5, k4,5±, and
v4,5± are invalid and we need to modify the analysis for these
roots. This modified analysis is presented in Appendix. It
shows that the instability is convective whenU=b+Osad.

WhenU=−b+Osad, we have to modify the analysis for
c6,7, k6,7±, and v6,7±. The modified analysis in this case is
almost identical to that in the case whenU=b+Osad, so that
we do not present it in this paper. The result of this analysis
is the same: the instability is convective whenU=−b
+Osad.

Summarizing the results obtained in this section and in
the Appendix we conclude that the instability is absolute
when Ul,U,Ur and convective otherwise. The instability
increment is given by
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g = Isv2+d = Isv3−d =
a3

8
F2s1 − U2d

sb2 − 1d3 G1/2

+ Osa4d. s26d

It takes its maximum value,g=gM, when U=0, which is
equal to the group velocity of the unstable wave mode.20

IV. SPATIALLY AMPLIFYING WAVES

A. Theory

When we have a convective instability, i.e., whenU
,Ul or U.Ur, we can obtain spatially amplifying solutions
which can be excited by imposing perturbations periodic in
time.18 We now determine the frequencies for which spatially
amplifying waves can exist. We again refer readers to Paper
1 and Briggs18 for a detailed description of the method. Here
we briefly describe how we will apply this theory to our
particular problem.

The problem reduces to evaluating the asymptotic re-
sponse of the density perturbation given by

drsx,td =E
it−`

it+` e−ivdt

v − vd
dvE

−`

` Ssv,kd

D̃sv,kd
eikxdk, s27d

ast→` andx→` or x→−`. Ssv ,kd is an analytic function
of k and v which depends on the initial conditions and the
amplitude of the external perturbation, and it is not important

for our analysis;vd is real andD̃sv ,kd=Dsṽ ,kd where ṽ

=v+kU is the Doppler-shifted frequency. Now we outline
the step-by-step method by which we look for spatially am-
plifying waves.

sid Spatially amplifying waves can only occur when there

is a root ofD̃sv ,kd=0 considered as an equation fork
with IskdÞ0 for realv. Hence, the first step is to find
all values ofv, which we denote asvd, for which this
condition is satisfied.

sii d When we have found a pairsvd ,kd which satisfies the
previous condition, we substitutev=vd+ ia3s in the

equation D̃sv ,kd=0 and solve fork. Then we de-
creases from t.gM /a3 to zero. If the trajectory ofk
crosses the realk axis then that solution can give rise
to spatially amplifying waves.

siii d As x→−` the asymptotic response is determined by
the root starting in the lower complexk plane with the
largest imaginary part at the end of its trajectory. We
denote this root askl. As x→` the asymptotic re-
sponse is determined by the root starting in the upper
complexk plane with the smallest imaginary part at
the end of its trajectory. We denote this root askr.
Then the asymptotic response is given byFsxd,eiklx

asx→−` andFsxd,eikrx asx→`. The correspond-
ing spatial amplification rates aregl

s=Iskld and
gr

s=−Iskrd, respectively.

B. Calculations

To begin, we assume that we have a convective instabil-
ity, so thatU.Ur=1+Osad or U,Ul=−1+Osad. In what
follows we impose a slightly stronger restriction that
uU2−1u@a. We first need to find all real values ofv such

that, when we solve the equationD̃sv ,kd=0, we obtain so-
lutions for k with IskdÞ0. Similarly to Paper 1, it is easy to
see that roots of this equation will remain real in any order
approximation with respect toa if the differences between
them in the zero-order approximation are of the order of
unity. Hence we can only obtain complex roots fork if the
difference between at least two roots is of the order ofa or
smaller. This can happen only whenvd=v̄dj+al, wherel is
real andv̄dj sj=1, . . . ,6d are given by

v̄d1,2= ± s1 − Ud, v̄d3,4= ±
2sb − Ud

b + 1
,

s28d

v̄d5,6= ±
2sU + bd

b − 1
.

The upper sign on the right-hand side of the first equation
refers tov̄d1 and the lower sign refers tov̄d2. A similar rule
applies to the other two equations. Whenvd=v̄dj the equa-

tion D̃sv ,kd=0 has a double rootk̄ j in the zero-order ap-
proximation with respect toa, where

k̄d1,2= ± 1, k̄d3,4= ±
2

b + 1
, k̄d5,6= 7

2

b − 1
. s29d

When uv̄dj−v̄dlu,1 for any jÞ l, the is exactly one double
root and three simple roots in the zero-order approximation
with respect toa. Then it is straightforward to show that the
simple roots remain real in any order approximation with
respect toa when s=0. Hence, only the two roots close to
the double roots of the zero-order approximation can have
nonzero imaginary parts. There are particular values ofU
when two out of six quantitiesv̄dj coincide. For these values
of U there are two double roots in the zero-order approxima-
tion with respect toa. However, there is no need to modify
the analysis in this case because we always look for roots
close to the double roots of the zero-order approximation, no
matter if there is one such a root or there are two such roots.

Now we substitutev=v̄dj+al+ ia3s sj=1, . . . ,6d in the

equationD̃sv ,kd=0 considered as an equation fork, and

look for the solutions in the formk= k̄ j+ak̄. We start withj

=1 and substitutev=1−U+av̄ andk=1+ak̄ in the equation

D̃sv ,kd=0, wherev̄=l+ ia2s. Terms of the order ofa can-
cel each other. Collecting terms of the order ofa2 we obtain

a quadratic equation with respect tok̄ with the solutionsk̄1
+

=−v̄ / sU−1d and k̄1
−=−v̄ / sU+1d, which are real whens=0.

It is straightforward to show thatk̄1
+ andk̄1

− remain real in any
order approximation with respect toa when s=0 if l,1.

Hence, we takel=al1, k̄=ak̂, and repeat the procedure to

obtain a quadratic equation fork̂. This equation has two

roots, k̂1
+ and k̂1

−, which are real whens=0. In addition,

uk̂1
+− k̂1

−u,1 unlessl1 is close to −14sU+1d / sb2−1d. Then

once again it can be shown thatk̂1
+ and k̂1

− and, consequently,
k1

+ and k1
−, remain real in any order approximation with

respect to a when s=0. So, to obtain k roots with
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nonzero imaginary parts whens=0 we have to take
l1=−1

4sU+1d / sb2−1d+aj, giving the following expression
for vd:

vd = 1 −U −
a2sU + 1d

4sb2 − 1d
+ a3j. s30d

In this casek̂1
+= k̂1

−=f4sb2−1dg−1 in the lowest-order approxi-
mation with respect toa. Substitutingv=vd+ ia3s and k

=1+a2f4sb2−1dg−1+a3k̃ in the equationD̃sv ,kd=0 we ob-

tain a quadratic equation fork̃. Solving this equation we
obtain the expressions for the two roots close to unity,k1

+ and
k1

−, with the accuracy up to terms of the order ofa3,

k1
± = 1 +

a2

4sb2 − 1d
−

a3Usj + isd

U2 − 1

±
a3

U2 − 1
Fsj + isd2 −

U2 − 1

32sb2 − 1d3G1/2

. s31d

We see thatIsk1
±dÞ0 whens=0 if j satisfies the inequality

j2 ,
U2 − 1

32sb2 − 1d3 . s32d

The imaginary parts ofk1
± are given by

Isk1
±d

a3 =
− Us

U2 − 1
±

1

U2 − 1
S1

2
Fj2 − s2 −

sU2 − 1d

32sb2 − 1d3G
+

1

2
HFj2 − s2 −

U2 − 1

32sb2 − 1d3G2

+ 4j2s2J1/2D1/2

.

s33d

Let us considerU.1. In this caseIsk1
+d.0 andIsk1

−d,0
whens=0. It is straightforward to show thatIsk1

−d,0 for all
s.0, so thatk1

− does not give rise to spatially amplifying
waves. By calculating the productIsk1

−dIsk1
+d we can show

that Isk1
+d.0 when

s2 , maxH sgM/a3d2 − j2

U2 ,
sU2 − 1dsgM/a3d2 − j2

2U2 − 1
J ,

s34d

and Isk1
+d,0 otherwise. This result implies thatIsk1

+d,0
whens=gM /a3. SinceIsk1

+d.0 whens=0, the trajectory of
k1

+ starts in the lower half of the complexk plane and ends in
the upper half of the complexk plane, so that it gives rise to
spatially amplifying waves asx→−`.

WhenU,−1 it immediately follows from Eq.s33d that
Isk1

+d.0 for all s.0. Now Eq.s34d gives the condition that
Isk1

−d,0. It is easy to see that the trajectory ofk1
− starts in

the upper half of the complexk plane and ends in the lower
half of the complexk plane. Hence it gives rise to spatially
amplifying waves asx→`.

Now that we have studied the case wherej=1, we do not
need to do the analysis forj=2. Instead we notice that if

sv ,kd is a solution of the equationsD̃sv ,kd=0, then so is
s−v* ,−k*d. This implies that the trajectories ofk2

± are sym-
metric to those ofk1

± with respect to the imaginary axis.

Hence k2
+ gives rise to spatially amplifying waves as

x→−` whenU.1, andk2
− gives rise to spatially amplifying

waves asx→` whenU,−1.
Let us proceed toj=3. Now we substitutev=2sb

−Ud / sb+1d+av̄ and k=2/sb+1d+ak̄ in the equation

D̃sv ,kd=0. Terms of the order ofa cancel each other. Col-
lecting terms of the order ofa2 we obtain the quadratic equa-

tion for k̄

k̄2sU − bdsU + 1d + k̄ls2U + 1 −bd + l2 −
b − 1

4bsb + 1d2 = 0.

s35d

We obtain from this equation thatIskdÞ0 whens=0 if the
following inequality is satisfied:

l2 ,
sb − 1dsb − UdsU + 1d

bs1 + bd4 ; l0
2, s36d

wherel0 can be either positive or negative. The inequality
s36d can be satisfied only for −1,U,b as l0

2 is negative
otherwise. Ifl−l0=Os1d then the imaginary part ofk is of
ordera and its sign is determined byl only. The variation of
s affects only terms of higher-order approximation in the
expansion ofk in power series with respect toa. This implies
that the whole trajectory of thek root that we obtain by
varying s from zero togM /a3 is either below or above the
real k axis. Hence such a root cannot give rise to spatially
amplifying waves.

It follows from this analysis that we can obtain ak root
with the trajectory crossing the realk axis only if we take

l=l0+a1/2l̃1. Then, in the lowest-order approximation with
respect toa, Eq. s35d has the repeated root

k̄0 =
l0s2U + 1 −bd

2sb − UdsU + 1d
. s37d

Now we look for the solution in the formk̄= k̄0+a1/2k̃1. Sub-

stituting this expression in the equationD̃sv ,kd=0 we obtain
in the lowest-order approximation with respect toa the equa-

tion for k̄1,

k̃1
2 =

l0sl̃1 − l1ds1 + bd2

2sb − Ud2sU + 1d2 , s38d

where

l1 =
s20b3 − 11b2 + 6b + 1dU − b2s3b2 − 26b + 7d

16s1 + bd3sb − 1db2 . s39d

In order to haveIskdÞ0, the following inequalityl̃1,l1

must be satisfied. Ifl̃1−l1=Os1d then the imaginary part of

k is of ordera3/2 and its sign is determined byl̃1 only. Once
again the variation ofs affects only terms of higher-order
approximation in the expansion ofk in power series with
respect toa. And once again this implies that the whole
trajectory of thek root that we obtain by varyings from zero
to gM /a3 is either below or above the realk axis, so that such
a root cannot give rise to spatially amplifying waves.
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On the basis of this analysis we conclude that, in order to
have ak root with the trajectory crossing the realk axis, we

have to takel̃1=l1+al̃2. Then it follows from Eq.s38d that

k̃1=a1/2k̃2, so thatk=2/sb+1d+ak̄0+a2k̃2. Now we substitute
this expression fork and v=2sb−Ud / sb+1d+al0+a2l1

+a3sl̃2+ isd in the equationD̃sv ,kd=0 to obtain, in the
lowest-order approximation with respect toa, a quadratic

equation fork̃2. The roots of this equation are given by

k̃2
± =

1 + 6b − 11b2 − 20b3

16b2s1 + bd3sb − 1d
±

fH + 128ib4s1 + bd6l0sg1/2

16b2s1 + bd4sb − UdsU + 1d
,

s40d

whereH is a real quantity expressed in terms ofb, U, l0, and

l̃2. We do not give this expression because it is not used in

what follows. Isk̃2
±dÞ0 when s=0 if H,0. Then it is

straightforward to see that

sgnfIsk̃2
+dg = sgnfl0sb − UdsU + 1dg,

sgnfIsk̃2
−dg = − sgnfl0sb − UdsU + 1dg,

for anysù0. This means that the two trajectories of the two
k roots close to 2/sb+1d do not cross the realk axis whens

varies from zero togM /a3. Hence, these roots cannot give
rise to spatially amplifying waves.

Once again there is no need to do the analysis forj=4

because the trajectories of the rootsk4
± close tok̄4 are sym-

metric to the trajectories of the rootsk3
± close to k̄3 with

respect to the imaginaryk axis. Hence that the rootsk4
± also

do not give rise to spatially amplifying waves.
Finally, we considerj=5,6. Theanalysis for these cases

is very similar to that forj=3,4, so weomit it and only

present the final result: the rootsk5
± close tok̄5 andk6

± close to

k̄6 do not give rise to spatially amplifying waves.

When j=3, the expressions fork̄0, k̃1, and k̃2 containb
−U in the denominator. It can be shown that the same is true
when j=4, and similar expressions containb+U in the de-
nominator whenj=5,6. This means that the analysis forj
=3, . . . ,6 is only valid when uU2−b2u@Osad. When
uU2−b2u=Osad we need to modify it. We repeated the analy-
sis takingU= ±b+Osad and arrived at the same results: none
of the rootsk3

±, k4
±, k5

±, andk6
± gives rise to spatially amplify-

ing waves.
To summarize, we have shown that spatially amplifying

waves only exist ifv= ±vd wherevd is given by Eq.s30d
with j satisfying the inequalitys32d. The corresponding
wave numbers are given by

k = ± H1 +
a2

4sb2 − 1d
J + Osa3d. s41d

When U,−1+Osad there is a spatially amplifying wave
traveling in the positivex direction, and whenU.1+Osad
there is a spatially amplifying wave traveling in the negative
x direction. The spatial amplification rate is given by

uIfk1
±ss = 0dgu =

a3

U2 − 1
H U2 − 1

32sb2 − 1d3 − j2J1/2

. s42d

V. SUMMARY AND CONCLUSIONS

In this paper we have considered the beat instability of a
circularly polarized Alfvén wavespump waved which occurs
when the sound speed is bigger than the Alfvén speedsb
=cS /yA.1d. We have studied the absolute and convective
nature of this instability. The nature of the instability is de-
termined by the dimensionless parameterU, which is the
ratio of the speed of the reference frame with respect to the
rest plasma to the Alfvén speed. We restricted our analysis to
pump waves with the small amplitudea. Our main result is
that the instability if absolute whenUl,U,Ur and convec-
tive otherwise, whereUl=−1+Osad and Ur=1+Osad.
Hence, the instability is absolute in a reference frame mov-
ing with a velocity bigger than −yA+Osad and smaller than
yA+Osad with respect to the rest plasma. We can give a
simple physical interpretation of this result. Jayanti and
Hollweg20 have shown that the beat instability primarily in-
volves forward and backward propagating Alfvén waves
with the dispersion equationsv=v fAskd and v=vbAskd, re-
spectively. For smalla we haveRsv fAd<yAk and RsvbAd
<yAs2−kd, so that dRsv fAd /dk<yA and dRsvbAd /dk
<−yA. This implies that the wave energy is transported with
velocity −yA by the backwards propagating Alfvén wave and
with velocity yA by the forwards propagating Alfvén wave.
Using the method outlined in Paper 1 we obtain that, ifx8 is
the spatial coordinate in the reference frame moving with

velocity Ũ=yAU parallel to the direction of Alfvén wave
propagation, then the perturbed portion of the spatial domain

after time t is given by the inequality −tsyA+Ũd,x8, syA

−Ũdt. This shows that ifŨ,−yA then the left boundary is

moving forward, and ifŨ.yA then the right boundary is
moving backwards. In these two situations the perturbations
are swept away and we have a convective instability. This
leaves us with the result that we have absolute instability if

−yA, Ũ,yA.
We have also studied the signaling problem when either

U,Ul or U.Ur, so that the instability is convective. We
have found that signaling drives spatially amplifying waves
only if the signaling frequency is equal to ±vd, wherevd is
given by Eq.s30d with j satisfying the inequalitys32d. The
spatial amplification rate is given by Eq.s42d

Similar to Paper 1 we apply our results to circularly
polarized Alfvén waves propagating in the solar wind. Both
the Alfvén and sound speed are of order 50 km/s at the Earth
orbit. The solar wind speed,ysol, is of order 500 km/s. In the
solar reference frame the speed of any realistic space station
is much smaller thanysol. This imply that the space station
reference frame moves relative to the rest plasma with the

speed approximately equal toysol, i.e., uŨu<ysol. Hence, we
obtain uUu,10, uUu.Ul, Ur, and the instability of any pump
wave is convective in the space station reference frame.

Let us assume that a wave packet is created in the solar
wind at the initial moment of time. We estimate the distance
that this convectively unstable wave packet will travel in the
space station reference frame before its amplitude increases
by e-times. Since, in accordance with the results obtained in
Sec. III, the wave packet has the maximum increment when
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U=0, which corresponds to the rest plasma reference frame,
we conclude that this reference frame travels with the un-
stable wave packet. Takinga=0.1 and assuming thatb−1
,1 we obtain from Eq.s26d g<2310−4. Let us consider a
pump wave with the periodT0 in the solar reference frame.
The period of this wave in the solar wind reference frame is
approximately T0ysol/yA and its frequency is v0

=2pyAsT0ysold
−1<0.6/T0. Then the dimensional increment is

g̃=0.6g /T0<1.2310−4/T0, and thee-folding time is g̃−1

<104T0 s. This implies that the unstable wave packet will
travel the distanceysolg̃

−1<53106T0 km before its ampli-
tude increases bye-times. TakingT0 equal to 1 h, which is
the typical period of Alfvén waves observed in the solar
wind, we obtain that this distance is approximately equal to
231010 km<130 a.u. Hence, if a wave packet is excited by
a small perturbation near the Sun, it is unlikely that this
packet will have large enough amplitude at the Earth orbit to
be observable.

Now we consider the signaling problem. Once again we
takeyA<50 km/s andysol<500 km/s, so thatU<10. Then
it follows from Eq. s42d that, for b−1,1, the maximum
amplification rate is approximately equal to 0.02a3, so that
the spatial amplification scale isL*50k0

−1a−3. Let us once
again take a pump wave with the periodT0 in the solar ref-
erence frame. Then once again the period of this wave is
approximately equal toT0ysol/yA in the solar wind reference
frame, and its frequency isv0=2pyAsT0ysold

−1<0.6/T0. Us-
ing the relationv0=yAk0, we obtainL*80yAT0a−3. Once
again takinga=0.1 andT0=1 h, we eventually arrive atL
*1.531010 km=100 a.u. This result implies that it is highly
improbable to observe spatially amplifying waves at the
Earth orbit in the solar wind with the sound speed bigger
than the Alfvén speedsb.1d.
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APPENDIX: STUDY OF ABSOLUTE AND CONVECTIVE
INSTABILITIES WHEN U IS CLOSE TO b

In this appendix we study the absolute and convective
instabilities of the pump wave in the case whenU is close to
b. Let us takeU=b+aU1. In this case the expressions for
c4,5, k4,5±, andv4,5± are invalid and we need to modify our
analysis for these roots. We carry out the same procedure as
before to calculatec, k, andv with the only difference that
U=b+aU1 in Eq. s7d. It is easy to show that whenU1 is of
the order of unity then eitherIsvd,0 or Isvd.gM. There-
fore we letU1=aU2 and repeat the procedure. In this case we
obtain

c4,5= b + a2H s5b − 1ds3b + 1d

32bsb2 − 1d
± xJ + Osa4d, sA1d

where

x =
f33b2 − 2b + 1 − 64bsb2 − 1dU2g1/2

32bsb + 1d
. sA2d

The corresponding values ofk andv are given by

k4,5± =
±2

b + 1
H±32bsb + 1dx + 3sb − 1d

±32bsb + 1dx − sb − 1d
J1/2

+ Osa2d,

sA3d

v4,5± =
a2k4,5±f±32bsb + 1dx + 3sb − 1dg

64bsb2 − 1d

3 f±32bsb + 1dx − sb − 1dg + Osa4d, sA4d

where the6 signs inside the curly brackets correspond to the
subscripts 4 and 5, respectively, and the6 signs outside the
brackets correspond to the “1” and “2” subscripts. Equa-
tions sA3d andsA4d are only valid if the denominator in the
curly brackets in Eq.sA3d is not close to zero. It is straight-
forward to show that eitherIsv4,5±d,0 or Isv4,5±d.gM if x
is purely imaginary. Hence, in what follows, we assume that
U2 satisfies

U2 ,
33b2 − 2b + 1

64bsb2 − 1d
. sA5d

Then it follows from Eq.sA4d that we can only obtainv with
0,Isvd,gM ,a3 if we let

x =
3sb − 1d

32bsb + 1d
+ Osa2/3d

or

x =
b − 1

32bsb + 1d
+ Osa2d. sA6d

In the first case we take the2 sign in the curly brackets in
Eqs. sA3d and sA4d, and in the second case we take the1

sign. Note that in the second case the condition that the de-
nominator in Eq.sA3d is not close to zero is not satisfied.
This implies that in this case we cannot use Eqs.sA3d and
sA4d and, as we will see, in this case we also need to calcu-
late c with better accuracy. Hence, in the case whenx is
given by the second formula in Eq.sA6d we will calculatec,
k, and v directly from Eqs.s7d and s8d and the relationṽ
=ck.

Using Eq.sA2d we find the corresponding values ofU2,

U2 = U21 ;
3b − 1

8bsb − 1d
+ a2/3x, sA7d

U2 = U22 ;
b

2sb2 − 1d
+ a2x, sA8d

wherex is a free parameter that has to be positive in order to
haveIsvdÞ0. It is easy to see that these values ofU2 satisfy
Eq. sA5d. WhenU2=U21,

c5 = b +
a2s3b − 1d

8bsb − 1d
+

a8/3x

3
, sA9d
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k5± = ± 4ia1/3F 2xb

3sb2 − 1d
G1/2

, sA10d

v5± = 7
8ia3

3
F 2bx3

3sb2 − 1d
G1/2

. sA11d

We do not give the expressions forc4, k4±, andv4± because
either Isv4±d,0 or Isv4±d.gM. We obtain 0,Isv5−d
,gM if x satisfies

0 , x ,
3

16b1/3sb2 − 1d2/3 . sA12d

Now we substitutev=v5−+ ia3s andk=a1/3k̄ in the equation

D̃sv ,kd=0 and solve it fork̄ in the lowest-order approxima-
tion with respect toa, so that we can map the trajectories of
the k roots as we increases from 0 to fgM −Isv5−dg /a3. We
obtain the cubic equation

Hy − 8F 2xb

3sb2 − 1d
G1/2JHy + 4F 2xb

3sb2 − 1d
G1/2J2

=
32bs

b2 − 1
,

sA13d

wherey=−ik̄. Whens=0 we obtain thaty=−ik5− is a double
root as expected. A graphical investigation of Eq.sA13d
shows that for anys.0 there is only one real root,y1, which
is always greater than 0. The other two roots that collide to
form the double rooty=−ik5− whens=0 are complex con-
jugate and given byy2,3=yr± iyi. Consequently, the twok

roots that collide whens=0 are given byk̄±= iyr± yi, so that

Isk̄+d=Isk̄−d. We see thatk̄+ and k̄− are always at the same
side of the real axis, so thatk5− is not a pinching root. Hence,
the instability is convective whenU=b+a2U21.

Now we takeU2=U22. As we have already pointed out,
in this case the expression forc given by Eq.sA1d has an
insufficient accuracy, so that we have to calculatec using Eq.
s7d. Also Eqs.sA3d andsA4d are not valid and we have to use
Eq. s8d and the relationṽ=ck to calculatek andv. Omiting
all calculations we write down the final result:

c4 = b +
a2b

2sb2 − 1d
− a4Hx +

bsb2 + 3d

4sb2 − 1d3J , sA14d

k4± = ±
2isb − 1d2

amb1/2 , sA15d

v4± = 7
ia3m

2b1/2sb − 1dsb + 1d3 , sA16d

wherem=f8xsb2−1d3+bsb2+3dg1/2. We do not give the ex-
pressions forc5, k5±, and v5± because eitherIsv5±d,0 or
Isv5±d.gM. To haveIsvd.0 we choose the pairsv4−,k4−d.
The conditionv4−,gM reduces to

x ,
25 − 21b + 11b2 − b3

64sb − 1dsb2 − 1d3 . sA17d

Sincex.0, this inequality can be satisfied only if its right-
hand side is positive. The right-hand side of Eq.sA17d is
positive whenb,bc<1.33, and it is negative otherwise. In
what follows we assume thatb,bc and Eq.sA17d is satis-
fied.

Now we takev=v4−+ ia3s and k= k̄ /a and substitute

these expressions into the equationD̃sv ,kd=0 to verify
whether k4− is a pinching root. This gives us a quadratic

equation fork̄,

bm2k̄2 + 4isb − 1d2fmb1/2 + 2bsb − 1dsb + 1d3sgk̄

− 4sb − 1d4 = 0. sA18d

Whens.0 this equation has two purely imaginary roots,k̄+

and k̄−. If we multiply the imaginary parts of the roots, we
obtain

Isk̄+dIsk̄−d =
4sb − 1d4

m2b
. sA19d

We see that the imaginary parts ofk̄+ andk̄− always have the

same signs, so thatk̄+ andk̄− are on the same side of the real
axis. This implies thatk4− is not pinching. Thus the instabil-
ity is always convective whenU=b+U21.

Summarizing the results obtained in this appendix we
conclude that the instability is convective whenU=b
+Osad.
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