
This is a repository copy of Cider: a Rapid Docker Container Deployment System through
Sharing Network Storage.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/166907/

Version: Accepted Version

Proceedings Paper:
Du, L, Wo, T, Yang, R et al. (1 more author) (2018) Cider: a Rapid Docker Container
Deployment System through Sharing Network Storage. In: Proceedings of the 2017 IEEE
19th International Conference on High Performance Computing and Communications;
IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on
Data Science and Systems (HPCC/SmartCity/DSS). 2017 IEEE 19th International
Conference on High Performance Computing and Communications; IEEE 15th
International Conference on Smart City; IEEE 3rd International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), 18-20 Dec 2017, Bangkok, Thailand.
IEEE , pp. 332-339. ISBN 978-1-5386-2589-7

https://doi.org/10.1109/hpcc-smartcity-dss.2017.44

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Cider: a Rapid Docker Container Deployment System
Through Sharing Network Storage

Lian Du, Tianyu Wo, Renyu Yang*, Chunming Hu
State Key Laboratory of Software Development Environment

BDBC, Beihang University, Beijing, China
Email: {dulian, woty, hucm}@act.buaa.edu.cn; renyu.yang@buaa.edu.cn*

Abstract — Container technology has been prevalent and

widely-adopted in production environment considering the huge
benefits to application packing, deploying and management.
However, the deployment process is relatively slow by using
conventional approaches. In large-scale concurrent deployments,
resource contentions on the central image repository would
aggravate such situation. In fact, it is observable that the image
pulling operation is mainly responsible for the degraded
performance. To this end, we propose Cider - a novel deployment
system to enable rapid container deployment in a high
concurrent and scalable manner at scale. Firstly, on-demand
image data loading is proposed by altering the local Docker
storage of worker nodes into all-nodes-sharing network storage.
Also, the local copy-on-write layer for containers can ensure
Cider to achieve the scalability whilst improving the cost-
effectiveness during the holistic deployment. Experimental
results reveal that Cider can shorten the overall deployment time
by 85% and 62% on average when deploying one container and
100 concurrent containers respectively.

Keywords — container; network storage; copy-on-write;
application deployment

I. INTRODUCTION

Recent years have witnessed the prosperity of container
technique and Docker is undoubtedly the most representative
among them [1]. Compared with virtual machine, container can
provision performance and user-space isolation with extremely
low virtualization overheads [2]. The deployment of
applications (especially in large clusters) increasingly tends to
depend on containers, driven by recent advances in packing
and orchestration. Massive-scale container deployment is
becoming increasingly important for micro-service compos-
ition and execution. Unfortunately, the enlarged system latency
introduced by slow container deployment is becoming a non-
negligible problem, which is critical in scenarios such as
bursting traffic handling, fast system component failover etc.
According to our in-depth investigation of conventional
deployment approaches, we found that the mean deployment
time of the top 69 images in Docker Hub is up to 13.4 seconds
and 92% of the holistic time is consumed by transferring image
data through network. Even worse, in large-scale concurrent
deployments, resource contentions on the central image
repository would aggravate such situation.

To cope with slow container deployment and improve the
launch efficiency, cluster management systems (such as Borg
[12], Tupperware[13], Fuxi[25] etc.) adopt a P2P-based
method to accelerate the package distribution. VMware open-

sourced project Harbor [19] is an enterprise-class container
registry server and it also integrates the decentralized image
distribution mechanism. However, application’s images still
need to be fully downloaded to worker nodes, resulting in an
extended latency derived from transferring large amounts of
data through local network. Harter et al. [18] propose a lazy
fetching strategy for container data on single node and the
method can effectively reduce the container provision time.
Nevertheless, large-scale and concurrent deployment
experiments have not yet been conducted, leading to
difficulties in validating their effectiveness and understanding
their operational intricacies at scale. In reality, these scenarios
are commonly-used and scalability bottleneck might manifest
very frequently. Therefore, it is particularly desirable for a
container deployment system to rapidly provision container
especially at large scale.

In this paper, we present Cider - an innovative deployment
system for Docker containers, which can enable rapid container
deployment in a high concurrent and scalable manner.
Specifically, we alter the local Docker storage of worker nodes
into all-nodes-sharing network storage, allowing for on-
demand image data loading when deploying containers. This
approach can dramatically reduce the transferred data, thereby
considerably accelerating the single container deployment.
Additionally, to achieve higher scalability and efficiency of
memory usage, we design and implement a local copy-on-write
(COW) layer for setting-up containers. The approach assigns
concurrent COW request flooding in network storage into local
worker nodes. Experimental results show that compared with
conventional approach, Cider is able to shorten the average
deployment time by 85% in single container case. A 62%
reduction can still be achieved when concurrently deploying
100 containers, with no conspicuous runtime overheads. In
particular, the major contributions in this paper can be summa-
rized as follows:

 Introducing a rapid and cost-effective container
deployment system based on sharing network storage,
which can reduce the amount of transferred data during
the deployment.

 Combining network storage with the local file-level
COW layer to guarantee the system scalability and
memory efficiency in face of jobs of high concurrent
deployment.

The remaining sections are structured as follows: Section II
introduces the background and our motivation; Section III

presents the core idea of design and implementation in Cider;
Section IV shows the experimental results and Section V
discusses the related work; Finally, Section VI presents the
conclusion followed by the discussion of future work.

II. BACKGROUND AND MOTIVATION

Container technique has been widely adopted in the
production environment over a decade[12][13] as it provides
several critical capabilities for large-scale cluster management
such as resource constraint, process isolation etc. It did not
become so prevalent until the release of Docker in 2013. As
reported in a recent survey [1], 76% of the polled organizations
leverage container technologies in production environments
and Docker is the dominant container engine technology with a
share of 94%. Hence we mainly discuss Docker container in
this paper.

 The primary reason for the success of container technology
is due to the convenience when packing and deploying
applications. All binaries and libraries that an application
depends on can be effectively encapsulated within an image
along with the application. This ensures the consistency of
application runtime environment and greatly simplifies the
procedure of deployment. Nevertheless, the downside cannot
be neglected. With the image size drastically growing, the
efficiency of container deployment will be negatively impacted.

A. Conventional Container Deployment Approach

Figure 1 shows the centralized architecture adopted by
conventional container deployment approaches. The registry
module plays a central role in image distribution within the
cluster. Typically, a Docker image is made up of multiple
layers, representing different file sets of software or libraries.
All image layers are stored in the form of gzip-compressed
files in registry. The image metadata is also stored in the
registry and actually indicates the mapping relationship
between images and layers. To deploy containers across the
compute cluster, worker nodes (i.e., node 1 to node N) have to
initially pull the complete image and then store it into the local
copy-on-write (abbreviated as COW) storage. The local storage

in the worker node is managed by the storage driver such as
Aufs [3], Devicemapper [4], Overlay or Overlay2 [5]. After
the image is pulled, the driver will setup another COW layer on
top of the image for the container.

In effect, current deployment approaches [8] are far from
enough, especially in cases that highly require rapid
deployments. To illustrate this phenomenon, we evaluate the
deploy time of the top 69 images from Docker Hub [6] in
sequence (Images are ordered by pull times and the selected
images are pulled by more than 10 million times; the image
size is 347 MB on average). The evaluation is actually
conducted through setting up a private registry and deploying
containers on another node which resides in the same LAN of
the registry. The result demonstrates that the mean deploy time
can be up to 13.4 seconds. Furthermore, there are a number of
scenarios that require low deploy latency. For instance,
services should scale-out instantly to tackle bursting traffic
whilst applications should recover as soon as possible upon the
arrival of failover event to retain the system availability [26].
Developers might intend to acquire the high efficiency and
productivity in Continuous Integration/Continuous
Deployment work flow. All these requirements motivate us to
boost the performance of container deployment.

B. Deep Dive into Container Deployment Process

In order to investigate the root cause of slow deployment,
we conduct a fine-grained analysis into the deployment
procedure. In general, the process can be divided into two main
operations - pull and run.

1) Pull: Image layers are stored in the registry in the form
of gzip-compressed files. A single image consists of several
layers and worker nodes can download these layers
concurrently. Once a layer was downloaded, it can be
decompressed into local storage immediately. Despite this, the
decompression procedure cannot be parallelized due to the
existing order of dependencies. E.g., local storage structure
depends on the storage driver. Devicemapper driver stores
images in thin-provisioned dm-devices, and Overlay driver
stores images in a hierarchical structure in local file system.

2) Run: Once the image is successfully imported into the
local storage, containers can derive from the same image. To
run a container, storage driver will firstly create an Init layer on
top of the image, initializing some container-specific files such
as hostname, DNS address etc. Afterwards, a second layer will
be created on top of the Init layer to serve as container’s root
file system. All these layers in local storage are generated by
leveraging the copy-on-write technique for improving space
utilization and startup performance. Additionally, different
drivers implement the COW mechanism in different
granularities: Aufs and Overlay is at the file level while
Devicemapper is at the block level. Eventually, container’s
root directory will be changed to the top layer and application
is ready to be started.

We evaluate the deploy time of top images on Docker Hub.
Figure 2 depicts the time spent on pull and run operations
during the deployment. Each point represents an iteration of an

Fig. 1. Conventional container deployment architecture.

image layers

registry

1. pull

node1

loca l COW storage

debian
nginx postgres

containers

2. COW

image
metadata

image
metadata

node2

nodeN

͙

deploy

image deployment. It can be obviously observed that the run
time remains steadily (roughly 1.1 seconds on average) when
image size grows. By contrast, there is a significant positive
relationship between the pull time and the image size. The
average pull time is 12.3 seconds, taking up 92% of the
average deploy time (13.4 seconds). This indicates that the
slow pulling operator tends to be the core performance
bottleneck and the scalability issues should be carefully
considered.

Although many efforts such as concurrent download and
data compression are made by Docker Registry [7] to
accelerate the pulling process, pulling an entire huge image is
still the dominating cause of the poor deploy performance. In
particular, in the scenario of large-scale deployment,
contentions on the registry would further slowdown the pulling
procedure. To address this problem, we should find a way to
minimize the data amount transferred during deployment.

III. DESIGN AND IMPLEMENTATION

In this paper, we present Cider (Ceph image deployer) - a
network storage based container deploy system for Docker. It
can dramatically reduce the data transferred during the
deployment thereby improving the holistic system performance.

A. Using Ceph As the Underlying Storage

Ceph is a scalable, high-performance distributed storage
system [14] and is widely-used in cloud computing. It can
provision several storage services, such as block storage, object
storage and POSIX file system etc. In our architecture design,
any network storage that has snapshot and clone features can
be adopted to satisfy system fundamental functionalities. The
reasons why we choose Ceph are as follows: 1) Ceph is open
source and can be well-integrated with Linux kernel. 2) The
Ceph community is very active and Ceph is promising as a
cloud storage backend. 3) The performance, scalability and
fault tolerance of the Ceph system are fairly suitable.

B. Cider Architecture

Figure 3 demonstrates the architecture overview of Cider
system. Rather than storing images in the registry and
dispersing image copies across worker nodes, Cider stores all
data including both images and containers of the cluster in

Ceph RADOS Block Device (RBD) pool. RBD is the block
storage service of Ceph. In RBD pool, Docker images are
stored in a hierarchical structure and each image corresponds to
one RBD. By means of the Copy-on-Write mechanism, data is
de-duplicated between parent and child images. For example, it
is unnecessary for the Nginx image to actually copy all data
from Debian. The image only needs to be built on top of the
parent image Debian and it is sufficient to merely augment a
COW layer onto the Debian image and write incremental data.
Creating a child RBD includes two main procedures: taking a
snapshot over the parent RBD and cloning the snapshot. The
clone operation will generate an identical RBD of the parent at
the snapshot moment. COW in Ceph is in the granularity of
objects. An Object is the basic storage unit used by Ceph.
Registry in Cider serves as a metadata server. It only stores
image list, layer information of an image and the mapping
relationship between layers and RBDs. Likewise, worker nodes
in Cider do not have a local storage either. In particular, the
process has three steps (see Figure 3):

1) Image Metadata Loading
When a worker node receives the container deploy

command, it will load the related image metadata from the
registry and then parse the metadata to figure out the required
RBD. Compared with the whole image size, the metadata size
is marginal enough to be negligible - it is roughly several
hundred KBytes. Accordingly, the time to load and parse the
metadata is quite short, approximately 0.2~0.3 seconds. In
addition, the heavy workload on the registry caused by
concurrent download requests can be significantly mitigated.

2) Image Snapshot Clone
The clone operation is executed on the snapshot of the

currently deployed image. Since images will not change unless
being updated, snapshots could be reused in multiple clones.
Clone generates a COW copy of the image, which is served as
the read/write layer for container.

3) Mapping Container RBD to Worker Nodes
The container RBD generated by clone can be utilized as a

normal RBD. To use them on worker nodes, we should map

Ceph

debian centos
postgres nginx python

nginx nginx nginx

2. clone

node1 image
metadata

container

3. map

node2 nodeN

͙

͙

registry

image
metadata

1. load

Fig. 3. Cider architecture completely based on network storage.

0

5

10

15

20

25

30

0 150 300 450 600 750 900

T
im

e
 (

s)

Image Size (MB)

pull

run

Fig. 2. Time consumed on pull and run during the deployment.

them as local block devices. The map operation herein signifies
registering a network RBD in local kernel (RBD will show up
as /dev/rbd*). Mounting this local RBD to a specific directory
is the final step to setup a root file system for containers. To
run the container, the worker node needs to read data such as
program binaries and configurations from the container RBD.
Data blocks will only be fetched from Ceph on demand.

Moreover, the aforementioned lightweight operations load,
clone, map will replace the heave pull operation adopted in the
conventional approach. Most operations are performed on
metadata: image metadata in load, RBD metadata in clone,
kernel metadata in map. The only data required to startup
container are lazily read. All these approaches are beneficial to
minimize the data transferred during the deployment process,
thereby substantially improving the deployment effectiveness.

C. Implementation

We have implemented a prototype system of Cider. Cider is
modular-designed and has very few modifications on the
original Docker program to maintain the compatibility.

1) Image Metadata Loading
In our preliminary implementation, we use rsync to retrieve

image metadata from Registry. Once the metadata is
downloaded, we send a signal to Docker daemon to reload the
metadata from local disk. Since there is no metadata reload
method in Docker daemon, we implement one and invoke it
when getting the reload signal.

Although the current metadata loading process is simple
and efficient, we plan to firstly refine it in a more automatic
way where the Docker daemon is able to pull and load image
metadata automatically. We also intend to transform the data
request protocol to http protocol to generalize the applicability.

2) Ceph Storage Driver Plugin
Docker project allows developers to develop storage driver

in the form of plugin, which could be easily installed and
removed from Docker daemon. We adopt this way to develop
the Ceph storage driver. It is similar to the bond between
Docker daemon and Ceph, because it receives commands from

Docker, translates them into Ceph operations, and returns the
result to Docker. All the clone and map operations in Section
III. B are performed by the Ceph storage driver. Every Docker
daemon in worker node is equipped with this Ceph plugin.
Essentially, the storage driver plugin is a process running
inside a Docker container. It communicates with Docker
daemon through UNIX Domain Socket. In addition, we use the
APIs of librbd to manipulate RBDs in Ceph.

The interfaces that a developer should implement to build a
Docker storage driver are descripted below. Due to the space
limitations, some trivial interfaces and parameters are omitted.

Create (id, parent) - Create a new layer with the specified
id from the parent layer. In Cider, we take a snapshot of the
parent RBD and clone the snapshot, generating a new RBD
named id. All RBDs in Cider are generated by this way except
for the bottom base RBD.

Remove (id) - Remove the specified layer with this id. In
Cider, we delete the RBD named id. The corresponding
snapshot is reserved to speed up the next iteration of clone.

Get (id) - Return the mount point referred to by this id.
Cider maps the RBD named id as a block device on worker
node, mounts it to a local directory and returns the mount point.

Put (id) - Releases the system resources for the specified id.
Cider will unmount the block device by this id and unmap the
corresponding RBD from the worker node.

Diff (id, parent) & ApplyDiff (id, diff) - Diff produces an
archive of the changes between the specified layer id and
parent. Correspondingly, ApplyDiff extracts the change set
from the given diff into the layer with the specified id. In Cider,
we make use of the NaiveDiffDriver, provided by Docker
project, to implement these two interfaces. We will further
optimize the implementation and customize the Diff Driver in
the future to achieve a better performance.

D. Scalability and Memory Usage Considerations

Although Cider works well in deploying one single
container, we find it urgently necessary to tackle the scalability
issue when deploying more containers concurrently. In a
preliminary experiment, it is observable that the RBD clone
operation gives rise to the scalability problems. Figure 6
depicts the scalability of all key operations in deploying

Fig. 5. Detailed description of the overlay.

RBD device

lower dir

image

file1 file2 file3

file2upper dir

mount

file1 file2 file3merged dir

merge

copy up

container

R/W

Fig. 4. Cider architecture with local container layer.

Ceph

debian centos
postgres nginx python

registry

image
metadata

1. load

2. mount

node1 image
metadata

container1

/dir/to/image

c2 cN
3. overlay

͙

containers. In addition, page cache cannot be effectively reused
when reading the same file copy in different containers that
derived from the same image. This is because Cider
implements the COW of the container layer under local file
system (inside Ceph). It could lead to excessive memory
consumption.

Scalability. To address the scalability bottleneck, we made
some modifications on the container layer. Figure 4 shows the
revised architecture of Cider to achieve such objectives. The
main optimizations are fulfilled by leveraging the local
container layers. As shown in Figure 4, the different portion is
marked in red. For clarification, we omit other worker nodes in
the figure. Similarly, the deploy process can be divided into
three main steps:

1) Load Image Metadata
This step remains the same with that in section III. B. 1).

2) Mount Image RBD
Instead of performing a clone operation on the image, we

maps the image RBD directly from the pool to a local block
device and mounts it on a local directory. The directory will
contain a full file system tree called rootfs.

3) Do Overlays on Rootfs
We leverage overlayfs to implement the file-level COW

and finally generate the top layer for container. In fact, it is also
the underlying technique of the Overlay driver adopted by
Docker. Through this new architecture design of Cider, we can
eliminate the clone operations during deployment and assign
COW jobs to each worker node. Therefore, the contentions
introduced by concurrent clones on global metadata of Ceph
will be diminished. Also, we can observe that the local COW
implemented by overlayfs is far more efficient than the RBD
clone. Thus we can use it as another optimization to better the
performance and scalability for concurrent deployment,
especially in the multi-nodes scenario.

Memory Optimization. The COW mechanism
implemented by Ceph internally is in Ceph Object granularity.
This mechanism is under local file system. Thus, the OS
cannot recognize the same file data block in different
containers generated by the same image as one data block. In
this context, caching will perform repeatedly when reading the

same data block. Running N containers on the same node will
consume N times more page cache than running one container.

Using overlayfs as the COW mechanism for container layer
can facilitate the problem-solving. Figure 5 describes the
details of overlay operations in Figure 4. The image RBD is
directly mounted to a local directory, which is the “lower
directory” of the overlayfs stack. All files in “merged directory”
are actually hard links that point to the “lower directory”.
Read/write operations of the container will be performed on the
“merged directory”. If a file needs to be changed, it will be
copied up to the “upper directory” first, covering the original
file. The introduction above is a brief explanation of how file-
level COW works. By means of this method, page cache can
be reused when booting many containers from the same image
on one node.

Discussion. The page cache reuse problem also exists in
other storage drivers that implement COW under file level,
such as Devicemapper and Btrfs. Wu et al. [17] solve the
problem by endowing the driver with the ability to recognize
reads on the same blocks. Harter et al. [18] modify the Linux
Kernel to enable the caching on block level. The file-level
COW approach we adopted might have overheads to some
extent on the copy-up operation in terms of big files. However,
the file size in the container rootfs is very small (dozens of KB
on average) and the file-modify operation is atypical and occur
much less frequently in rootfs (it usually manifests in Docker
volumes). Therefore, the reliability of file-level COW brought
by its simple design is more valuable in the Docker container
case.

IV. EVALUATION

In this section, we evaluate the performance and scalability
of Cider against the conventional approach represented by
Registry-Overlay2.

A. Experiment Setup

Environment - A group of experiments were conducted in
a cluster with 12 identical physical machines to evaluate the
effectiveness of the proposed deployment approach. Each
machine has two Intel Xeon E5-2650v4 (12 cores) processors
and 256 GB memory. The machines interconnect with each
other in 10 Gbps network. The software stack we use is listed
in Table I. We deploy Ceph on the cluster with 3 Monitor
nodes and 12 OSD nodes. Namely, each OSD occupies one
machine. The disk for OSD storage is a 4 TB SATA HDD. We
turn on the Bluestore feature of Ceph, which enables Ceph to
manage block device directly (not via local file system). The

TABLE I. SOFTWARE STACK

Name Version

Linux Distribution Ubuntu 16.04.2 LTS

Kernel 4.4.0-71

Docker 17.05-ce

Ceph 12.0.3

0

0.5

1

1.5

2

2.5

3

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

A
v

g
 T

im
e

 (
s)

of concurrent operations

clone

map

mount

read

Fig. 6. Operation scalability.

Docker code we modified is based on the version 17.05-ce,
with Ceph storage driver installed.

Methodology and Metrics - In the experiments, we adopt
Overlay2 as the local storage driver for the baseline because
Overlay driver is widely acceptable as the future option of
storage driver and has excellent performance [15][16]. Also,
Overlay2 is able to resolve the inode exhaustion problem and a
few other bugs that were inherent to the old design of Overlay.
Furthermore, we use the official Registry application to
distribute images. We suppose that the Registry together with
Overlay2 is the representative combination of conventional
architecture. As for Cider, we abbreviate Cider running
completely on network storage as Cider-network and that with
a local container layer as Cider-local.

To demonstrate the system efficiency, we firstly measure
the consumed time when deploying a single container and
verify the deployment performance of several applications in a
single node and multiple nodes respectively. To assess the
container execution performance and efficacy, we measure the
page cache amount to reflect the cache reuse rate. Finally, we
evaluate the impact on running applications by using several
benchmarks with diverse parameters. For example, Nginx and
Postgres are representative for web servers and database
respectively. Python is utilized for programming language. In
this context, the throughput statistics are recorded and
compared between our approach and the baseline.

B. Experimental Results

1) Single Container Deployment
 The top 69 images (see Section II.A) are deployed using

Cider. Figure 7 shows the time elapsed for deploying one
single container. It is observable that by using Cider-network
the deploy time remains stable when image size grows. The
average deploy time is merely 2.5 seconds which reduced by
82% compared to that in Registry-Overlay2 (13.4 seconds).
These improvements benefits from the loaded-on-demand
mechanism. Cider-local has a further performance
improvement. More specifically, the deploy time decreases by
18% and 85% compared with Cider-network and Registry-
Overlay2 respectively, because of the faster local COW. We
can also observe that the consumed time of our method will
keep steady even with the increment of the image size.

2) Single Node Deployment
In this experiment, we adopt three representative Docker

images of different categories - Nginx (109 MB), Postgres (269
MB) and Python (684 MB). We deploy three applications on
one single node, using different mechanism: Registry-Overlay2,
Cider-network, and Cider-local. The number of containers
deployed varies from 1 to 10. All containers in the same round
are deployed concurrently.

Figure 8 demonstrates the average time for a container to
finish startup under different concurrency conditions.
Apparently, Cider outperforms Registry-Overlay2 and there is
a substantial decrement of deployment time in all cases from 1
to 10 containers. Additionally, Cider-local can achieve an
improved scalability compared with Cider-network because of
the highly scalable local COW. For instance, in the scenario of
10 concurrent deploying containers, the consumed time can be
reduced by 52% on average with Cider-network, while the
mean reduction can reach 63% with Cider-local.

3) Multi-nodes Deployment
We repeat the experiment and vary the number of nodes to

verify the system scalability. In each round, the same number
of containers will be dispersed onto each node. We also vary
the container number (from 1 to 10) on each node to
demonstrate the performance impact derived from different
configurations. In this context, at most 100 containers will be

(a) Nginx (b) Postgres (c) Python

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

D
e

p
lo

y
m

e
n

t
T

im
e

 (
s)

of Containers

registry-overlay2

cider-network

cider-local

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10
of Containers

registry-overlay2

cider-network

cider-local

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10
of Containers

registry-overlay2

cider-network

cider-local

Fig. 8. Average deployment time on a single node.

0

5

10

15

20

25

30

35

0 150 300 450 600 750 900

D
e

p
lo

y
m

e
n

t
 T

im
e

 (
s)

Image Size (MB)

registry-overlay2
cider-network
cider-local

Fig. 7. Time consumed for deploying one container.

deployed each time.

As shown in Figure 9, the required time for deployment
with Cider-network will dramatically soar with the increment
of total container number. More precisely, the deployment time
of Cider-network is approximately twice as much as that of
Cider-local. By contrast, the proposed Cider-local can still
achieve a relatively steady performance gain no matter how
many containers are launched from 10 to 100 containers. The
results can be regarded as a good demonstration of the
scalability enhancement brought by container layer localization.
Even when 100 concurrent containers are simultaneously
deployed, the time is no more than 5 seconds, with an
approximately 62% reduction compared with the baseline.

4) Page Cache Consumption
We count the page cache consumed by Overlay2, Cider-

network and Cider-local respectively when deploying 1
container and 20 containers from the Python image in the same
node. The page cache consumption value is obtained by the
buff/cache column shown by free command. The experiment is
conducted in a virtual machine outside the cluster to eliminate
the cache interference brought by Ceph. Page cache will be
cleaned each time before conducting the experiment.

Figure 10 depicts the page cache statistics. The page cache
consumptions are close when deploying one container.
However, the pattern is quite different when 20 containers are
deployed. In fact, values of Overlay2 and Cider-local are
similarly close to each other, but the consumption of Cider-
network grows rapidly. The consumed value is actually

proportional to the number of containers. This observation
conforms to our analysis in section IV. B. The reason is both
Overlay2 and Cider-local implement COW on file level hence
they are able to reuse page cache when access the same file,
while Cider-network’s COW mechanism is under file system,
results in excessive cache allocation for same data.

5) Application Running Performance
Apart from the direct deployment effects, the running

performance of applications on Cider is another big concern
due to the fact that data blocks are lazily fetched from network.
To quantitatively measure the runtime effects, we utilize
several benchmarks with different workloads - For Nginx, web
page requesting is conducted using wrk [9]; For Postgres, TPC-
B transactions are submitted by using pgbench [10]; For
Python, sudoku puzzles solving program [11] is utilized. All
workloads are executed for 5 minutes.

Figure 11 describes the normalized throughput for each
application. Due to no obvious differences between Cider-
network and Cider-local, we do not distinguish them and
merge the results in this experiment. As shown in the figure,
throughputs of Overlay2 and Cider are very close, only Python
has very slight performance loss (which is less than 0.3%).

V. RELATED WORK

Container deployment is a relatively new topic arising
from container management in clusters or clouds. P2P
technique is widely adopted to balance the load on central
repository and accelerate package distribution, which has been

0

0.2

0.4

0.6

0.8

1

1.2

nginx postgres python

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

overlay2

cider

Fig. 11. Application-level running performance.

10.35

26.61

7.3

143.09

7.6

33.43

0

20

40

60

80

100

120

140

160

1 20

C
o

n
su

m
e

d
 P

a
g

e
 C

a
ch

e

(M

B
)

of Containers

overlay2

cider-network

cider-local

Fig. 10. Consumed page cache.

0

1

2

3

4

5

6

7

8

9

10

10 20 30 40 50 60 70 80 90 100

D
e

p
lo

y
m

e
n

t
T

im
e

 (
s)

of Containers

registry-overlay2

cider-network

cider-local

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90 100
of Containers

registry-overlay2

cider-network

cider-local

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100
of Containers

registry-overlay2

cider-network

cider-local

(a) Nginx (b) Postgres (c) Python

Fig. 9. Average deployment time on multiple nodes.

integrated in cluster management system such as Google’s
Borg [12], Facebook’s Tupperware [13], Alibaba Fuxi[25].
However, they are not dedicated for Docker images. VMware’s
Harbor [19] optimizes the P2P distribution technique for
Docker by setting up multiple replicated registries and
transferring data in the granularity of layers. Nathan et al. [22]
also introduce a co-operative registry mechanism that enables
distributed pull of an image to lower the application
provisioning time. Harter et al. [18] speed up container
deployment on single node by lazily fetching container data
from centralized storage. However, verifications of concurrent
deployment at scale have not been conducted in their work.

Virtual machine provisioning is a similar subject with
container deployment but has been studied intensively in the
cloud environment. Solis et al. [27][28] propose a VM
deployment approach by a heuristic strategy considering the
performance interference of co-located containers and its
impact onto the overall energy efficiency of virtual cluster
systems. However, the scalability issue derived from the
increasing system and workload scale has not yet been
investigated. Wartel et al. [20] use a binary tree and a
BitTorrent algorithm to distribute VM images. Nicolae et al.
[23] propose an optimized virtual file system for VM image
storage based on a lazy transfer scheme. Zhang et al. [24]
address the fast provision challenge through downloading data
blocks on demand during the VM booting process and
speeding up image streaming with P2P streaming techniques.
Lagar-Cavilla et al. [21] achieve rapid VM cloning by lazy
state replication and state propagation in parallel via multicast.
All these findings and innovations inspire the design of Cider.

VI. CONCLUSION AND FUTURE WORK

Massive-scale container deployment is becoming
increasingly important for micro-service composition and
orchestration. In this paper, some preliminary observations
reveal that the heave pull operation is the main source of
performance bottleneck during the container deployment. We
therefore present Cider to tackle the corresponding
performance and scalability issues. By means of loading-on-
demand network storage for images and local copy-on-write
layer for containers, Cider can lower the overall deployment
time by 85% and 62% on average respectively in one container
and 100 concurrent containers deployment scenarios.
Regarding the future work, we plan to further enhance the
scalability of Cider to eliminate contentions on local disk
existing in concurrent deployment. Mechanisms such as lazy
merge of overlayfs layers would mitigate these contentions,
thereby shortening the local provision latency.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Program (2016YFB1000103), the National 863
Project (2015AA01A202). This work is also supported by
Beijing S&T Committee as part of Beijing Brain Inspired
Computing Program in BCBD innovation center. For any
correspondences, please refer to Dr. Renyu Yang.

REFERENCES
[1] Container Market Adoption Survey, 2016.

https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2016.pdf

[2] Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2015, March). An
updated performance comparison of virtual machines and linux
containers. In Performance Analysis of Systems and Software (ISPASS),
2015 IEEE International Symposium On (pp. 171-172). IEEE.

[3] Aufs. http://aufs.sourceforge.net/aufs.html

[4] Device-mapper. https://www.kernel.org/doc/Documentation/device-mapper/

[5] Overlay Filesystem. https://www.kernel.org/doc/Documentation/
filesystems/overlayfs.txt

[6] Docker Hub. https://hub.docker.com/

[7] Docker Registry. https://docs.docker.com/registry/

[8] Merkel, D. (2014). Docker: lightweight linux containers for consistent
development and deployment. Linux Journal, 2014(239), 2.

[9] wrk - a HTTP benchmarking tool. https://github.com/wg/wrk

[10] pgbench. https://www.postgresql.org/docs/9.6/static/pgbench.html

[11] Solving Every Sudoku Puzzle. http://norvig.com/sudoku.html

[12] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., &
Wilkes, J. Large-scale cluster management at Google with Borg. In
ACM Eurosys 2015.

[13] Narayanan, A. (2014). Tupperware: containerized deployment at
Facebook.

[14] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D., & Maltzahn, C.
Ceph: A scalable, high-performance distributed file system. In USENIX
OSDI 2006.

[15] Jeremy Eder. Comprehensive Overview of Storage Scalability in Docker.
https://developers.redhat.com/blog/2014/09/30/overview-storage-
scalability-docker/

[16] docker-storage-benchmark. https://github.com/chriskuehl/docker-storage-
benchmark

[17] Wu, X., Wang, W., & Jiang, S. Totalcow: Unleash the power of copy-
on-write for thin-provisioned containers. In ACM APSys 2015.

[18] Harter, T., Salmon, B., Liu, R., Arpaci-Dusseau, A. C., & Arpaci-
Dusseau, R. H. Slacker: Fast Distribution with Lazy Docker Containers.
In USENIX FAST 2016.

[19] Harbor. https://github.com/vmware/harbor

[20] Wartel, R., Cass, T., Moreira, B., Roche, E., Guijarro, M., Goasguen, S.,
& Schwickerath, U. Image distribution mechanisms in large scale cloud
providers. In IEEE Cloudcom 2010.

[21] Lagar-Cavilla, H. A., Whitney, J. A., Scannell, A. M., Patchin, P.,
Rumble, S. M., De Lara, E., ... & Satyanarayanan, M. SnowFlock: rapid
virtual machine cloning for cloud computing. In ACM EuroSys 2009.

[22] Nathan, S., Ghosh, R., Mukherjee, T., & Narayanan, K. CoMICon: A
Co-Operative Management System for Docker Container Images. In
IEEE IC2E 2017.

[23] Nicolae, B., Bresnahan, J., Keahey, K., & Antoniu, G. Going back and
forth: Efficient multideployment and multisnapshotting on clouds. In
ACM HPDC 2011.

[24] Zhang, Z., Li, Z., Wu, K., Li, D., Li, H., Peng, Y., & Lu, X. (2014).
VMThunder: fast provisioning of large-scale virtual machine clusters. In
IEEE TPDS, 2014.

[25] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu. Fuxi: a fault
tolerant resource management and job scheduling system at internet
scale. In VLDB 2014.

[26] Yang R, Xu J. Computing at massive scale: Scalability and
dependability challenges. IEEE SOSE 2016.

[27] Solis I, Yang R, Xu J & Wo T. Improved Energy-Efficiency in Cloud
Datacenters with Interference-Aware Virtual Machine Placement. IEEE
ISADS 2013.

[28] Yang R, Solis I, Xu J & Wo T. An Analysis of Performance Interference
Effects on Energy-Efficiency of Virtualized Cloud Environments. IEEE
Cloudcom 2013.

