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ABSTRACT

Motivated by recent Transition Region and Coronal Explorer (TRACE) observations of damped oscilla-
tions in coronal loops, we consider analytically the motion of an inhomogeneous coronal magnetic tube of
radius a in a zero-� plasma. An initially perturbed tube may vibrate in its kink mode of oscillation, but those
vibrations are damped. The damping is due to resonant absorption, acting in the inhomogeneous regions of
the tube, which leads to a transfer of energy from the kink mode to Alfvén (azimuthal) oscillations within the
inhomogeneous layer.We determine explicitly the decrement � (decay time ��1) for a coronal flux tube whose
plasma density varies only in a thin layer of thickness ‘ on the tube boundary. The effect of viscosity is also
considered. We show that, in general, the problem involves two distinct timescales, ��1 and !�1

k R1=3, whereR
is the Reynolds number and !k is the frequency of the kink mode. Under coronal conditions (when
��15!�1

k R1=3), the characteristic damping time of global oscillations is ��1. During this time, most of the
energy in the initial perturbation is transferred into a resonant absorption layer of thickness of order ‘2=a,
with motions in this layer having an amplitude of order a=‘ times the initial amplitude. We apply our results
to the observations, suggesting that loop oscillations decay principally because of inhomogeneities in the
loop. Our theory suggests that only those loops with density inhomogeneities on a small scale (confined to
within a thin layer of order a�=!k in thickness) are able to support coherent oscillations for any length of time
and so be observable. Loops with a more gradual density variation, on the scale of the tube radius a, do not
exhibit pronounced oscillations.

Subject headings:MHD — plasmas — Sun: corona — waves

1. INTRODUCTION

This paper has been motivated by the recent observations
of standing oscillations of solar coronal loops (Aschwanden
et al. 1999, 2002; Nakariakov et al. 1999; Schrijver & Brown
2000; Schrijver, Aschwanden, & Title 2002), detected by the
Transition Region and Coronal Explorer (TRACE) space-
craft. An understanding of coronal oscillations is especially
important because such oscillations may shed light on the
puzzle of coronal heating, and, furthermore, they may pro-
vide seismic information about the coronal plasma (see,
e.g., Roberts 2000). Aschwanden et al. (1999) and Nakaria-
kov et al. (1999) interpreted the observed oscillations, which
followed on from an earlier flare in a nearby location, in
terms of the kink mode of oscillation of a coronal loop. The
theory of coronal loop oscillations has been developed in
some detail for the special case of a straight cylinder of mag-
netic field embedded in magnetized plasma surroundings
(see, e.g., Edwin & Roberts 1983). Nakariakov et al. (1999)
noted that the loop oscillations were strongly damped,
decaying in about 14.5 minutes (compared with an oscilla-
tion period of 256 s). If such a rapid decay is due to viscous
(or ohmic) damping, then the coefficient of the shear viscos-
ity must be several orders of magnitude larger than that
given by the classical Braginskii (1965) value (Nakariakov
et al. 1999). On the other hand, many other effects may also
bring about decay, and they require careful assessment
(Roberts 2000). An understanding of what brings about the
decay is an important step in understanding coronal oscilla-

tion phenomena in general, with coronal seismology a natu-
ral goal (Nakariakov &Ofman 2001).

Here we consider the manner in which energy in the
global mode of oscillation of a coronal loop is transferred
into motions (predominantly azimuthal) in a thin layer at
the boundary of the loop where the plasma density falls
from high values to match its surroundings. The process is
an example of resonant absorption. Resonant absorption
has been discussed for both driven systems (see, e.g., Davila
1987; Grossmann & Smith 1988; Hollweg 1990; Sakurai,
Goossens, & Hollweg 1991; Goossens, Hollweg, & Sakurai
1992; Poedts & Kerner 1992; Poedts, Beliën, & Goedbloed
1994; Ofman, Davila, & Steinolfson 1994, 1995; Ofman &
Davila 1995, 1996; Halberstaad & Goedbloed 1995; Poedts
& Goedbloed 1997) and for initial value problems (e.g., Sed-
lacek 1971; Ionson 1978; Rae & Roberts 1982; Lee & Rob-
erts 1986; Hollweg 1987; Hollweg & Yang 1988; Steinolfson
& Davila 1993). Indeed, it may be that the observed decay
of loop oscillations provides an explicit illustration of reso-
nant absorption. By solving an initial value problem, we are
able to determine the decay rate of this process. Our treat-
ment is similar in spirit to the discussion of an incompressi-
ble transitional layer by Rae & Roberts (1982) and Lee &
Roberts (1986), which in turn drew on the analysis by Sedla-
cek (1971) of electrostatic oscillations and by Ionson (1978)
of coronal oscillations. For a weakly dissipative plasma, the
decay rate that we determine is independent of dissipative
coefficients; instead, the decay rate provides a direct mea-
sure of how strongly inhomogeneous is a coronal loop.
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In accordance with Beaufumé, Coppi, & Golub (1992),
coronal loops may be divided into three types: small,
medium, and large. Typical number densities in these
three types of loop are 1016, 3� 1015, and 1015, respec-
tively, with corresponding typical magnetic field strengths
of perhaps 300, 150, and 50 G. For a coronal tempera-
ture of 2� 106 K, we then obtain a plasma beta
�d5� 10�4. In fact, the magnitudes of magnetic fields in
the corona are usually obtained by extrapolating from
photospheric magnetic sources (which are themselves
measured with the Zeeman effect in photospheric lines).
Recently, however, Nakariakov (2001) has reported esti-
mates of magnetic field strengths in coronal loops based
on observations of loop oscillations. The lower limit for
the magnetic field strength that follows from his analysis
is 4 G. Thus, even if we take the number density equal to
the largest value observed in coronal loops, at 1016 m�3

and a high coronal temperature of 3� 106 K, we obtain
� � 0:14. These estimates allow us to employ the cold
plasma approximation (� ¼ 0) in what follows. This
approximation corresponds to the sound speed tending to
zero. This is just opposite to the incompressible plasma
approximation, which corresponds to the sound speed
tending to infinity.

Finally, we note that propagating compressive waves have
also been detected in coronal loops (Berghmans & Clette
1999; De Moortel, Ireland, & Walsh 2000; Robbrecht et al.
2001; O’Shea et al. 2001) and in polar plumes (Ofman et al.
1997; Ofman, Nakariakov, & DeForest 1999; DeForest &
Gurman 1998). Furthermore, prominences are also
observed to oscillate and indeed may exhibit decaying oscil-
lations (Molowny-Hobas et al. 1999; Terradas, Oliver, &
Ballester 2001) that have some similarity to the decaying
coronal loop oscillations discussed here. It may be that an
interpretation of the decay in prominence oscillations can
be given along lines similar to those proposed here for
coronal loops.

The resonant absorption considered in this paper is
not the only mechanism that might explain the damping
of magnetic tube oscillations. Another possible damping
mechanism is radial wave leakage (e.g., Cally 1986;
Stenuit, Keppens, & Goossens 1998; Stenuit et al. 1999).
Such wave leakage occurs when the solution in the envi-
ronment of a tube has the form of a propagating wave.
However, this mechanism is not applicable to the particu-
lar case of kink oscillations of a coronal loop. This is
because the leakage can only happen if the phase speed
of the loop oscillation is larger than the Alfvén speed
outside the loop. However, as we will see in what follows,
if the plasma density in the magnetic tube is larger than
the density outside the tube, as in coronal loops, then
this inequality is not satisfied. Hence, kink oscillations of
a coronal loop are always nonleaky.

Our paper is organized as follows. In the next section we
formulate the problem and in x 3 derive the governing equa-
tion for the perturbation of the magnetic pressure, obtain-
ing the solution to this equation in the form of a Bromwich
integral. This solution is used in x 4 to study the fundamen-
tal global mode of oscillation of a magnetic tube. In x 5 the
asymptotic state of the oscillation in the magnetic tube
boundary is studied for times much larger than the period of
the global mode. In x 6 the wave motion in the dissipative
layer embracing the ideal resonant position is studied. In x 7
we compare our theoretical results with the observations of

damped oscillations of coronal loops, presenting our con-
clusions in x 8.

2. FORMULATION

We consider oscillations of a magnetic tube in a cold vis-
cous plasma. We aim to apply our results to the oscillations
of solar coronal loops. In accordance with the classical
Braginskii’s expression for the viscosity tensor in a magne-
tized plasma (Braginskii 1965), under typical coronal condi-
tions, the coefficient of the shear viscosity is at least 10
orders of magnitude smaller than that of the compressional
viscosity. However, in the problem of oscillations of coronal
loops, dissipation is only important in an Alfvénic dissipa-
tive layer embracing an ideal resonant magnetic surface.
Numerical studies by Ofman et al. (1994) and Erdélyi &
Goossens (1995) have shown that in Alfvénic dissipative
layers only the shear viscosity is significant, all other terms
in Braginskii’s tensorial expression being neglected. This
fact enables us to write the viscous force in the momentum
equation in a simplified form ��r2v, where v is the velocity,
� the plasma density, and � the kinematic viscosity.

Inside the flux tube the plasma density is �i, and outside it
is �e. The two regions are connected by a thin layer,
a� ‘ < r < a with ‘5 a, where the plasma density varies
monotonically from �i to �e, with �i > �e. The equilibrium
magnetic field B is everywhere uniform and in the z-
direction, B ¼ Bẑz (see Fig. 1). The nonuniformity in plasma
density �ðrÞ produces a nonuniform Alfvén speed, allowing
resonant wave effects to occur. It is in such nonuniform
layers that viscous effects are likely to be most important.

In what follows we adopt the cylindrical coordinates r, ’,
and z with the z-axis aligned with the equilibrium magnetic
field. In the dissipative layer, there are large gradients in the
radial direction only. This observation enables us to use the
approximation �r2v � �@2v=@r2. Then the linearizedMHD

z

B

l a

r

ρ ρi e

ϕ

Fig. 1.—Sketch of the equilibrium state, showing a magnetic flux tube
with plasma density �i embedded in a plasma with density �e. The equili-
brium magnetic field everywhere has strength B. The equilibrium density
varies in the annulus region a� ‘ < r < a from �i to �e. The dashed lines
show the perturbedmagnetic tube in its kinkmode of oscillation.
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equations for a cold (zero �) plasma take the form

@u

@t
¼

1

�

B

l

@br
@z

�
@P

@r

� �

þ �
@2u

@r2
; ð1aÞ

@v

@t
¼

1

�

B

l

@b’
@z

�
1

r

@P

@’

� �

þ �
@2v

@r2
; ð1bÞ

@br
@t

¼ B
@u

@z
;

@b’
@t

¼ B
@v

@z
;

D

x b ¼ 0 ; ð1cÞ

@P

@t
¼ �

�V2
A

r

@ðruÞ

@r
þ

@v

@’

� �

: ð1dÞ

Here v ¼ ðu; v; 0Þ is the velocity and b ¼ ðbr; b’; bzÞ is the
perturbed magnetic field, with P ¼ Bbz=l being the per-
turbation in magnetic pressure. The Alfvén speed is
VAðrÞ ¼ B½l�ðrÞ��1=2, with l the magnetic permeability.

We assume that the magnetic tube is bounded at z ¼ 0
and L by dense ideal infinitely conducting plasmas with the
magnetic field frozen in these plasmas. This and the
continuity of bz across the boundaries imply the boundary
conditions

u ¼ v ¼ 0 at z ¼ 0; L : ð2Þ

Equation (2) coupled with equation (1d) implies that P ¼ 0
at z ¼ 0; L.

Observations of coronal loop oscillations reported by
Aschwanden et al. (1999), Nakariakov et al. (1999), and
Schrijver & Brown (2000) relate to displacements of the loop
axis. We consider that the disturbances causing coronal
loop oscillations occur mainly at the coronal level and result
in displacements of the apex part of a loop. If the amplitude
of the initial displacement decreases monotonically with dis-
tance from the apex, then it is the fundamental mode of kink
oscillations that is most efficiently excited. This conclusion
prompts us to consider the kink oscillations of the tube,
these being the only oscillations that perturb the tube axis.
However, if the disturbances causing coronal loop oscilla-
tions occur mainly below the coronal level (Schrijver &
Brown 2000 suggested a model where the disturbances
caused by a coronal flare propagate mainly at the photo-
spheric level and perturb the loop footpoints), then it is not
clear which particular mode (with respect to the loop axis) is
the most easily excited. Nevertheless, our analysis remains
applicable to an overtone if we regard L as the distance
between successive nodes along the loop.

In the kink mode, perturbations are proportional to ei’

(with the coefficients of proportionality real for u, br, and P
and purely imaginary for v and b’). This choice corresponds
to a linearly polarized kink oscillation of the tube. With our
analysis restricted to the fundamental mode, it follows from
the boundary conditions (2) that perturbations of u, v, and
P are proportional to sinð�z=LÞ.

Eliminating br and b’ from equations (1a)–(1c), we
obtain

@2u

@t2
þ !2

Au� �
@3u

@t@r2
¼ �

1

�

@2P

@t@r
; ð3aÞ

@2v

@t2
þ !2

Av� �
@3v

@t@r2
¼ �

i

r�

@P

@t
; ð3bÞ

where the Alfvén frequency is given by !A ¼ �VA=L.

We need also an equation for P. Multiply equation (1a)
by r� and differentiate the result with respect to r. Then mul-
tiply equation (1b) by � and differentiate the result with
respect to ’. Adding the obtained equations, we arrive at

r
d�

dr

@u

@t
þ �

@

@t

@ðruÞ

@r
þ iv

� �

¼
P

r
�

@

@r
r
@P

@r

þ
B

l

@

@z

@ðrbrÞ

@r
þ ib’

� �

� ��
@2

@r2
@ðruÞ

@r
þ iv

� �

: ð4Þ

Finally, we use equation (1d) to eliminate v and the equation

D

x b ¼ 0 to eliminate br and b’. This results in

@2P

@t2
�
V 2

A

r

@

@r
r
@P

@r
þ !2

A þ
V2

A

r2

� �

P ¼ V 2
A

d�

dr

@u

@t
: ð5Þ

Using equation (1d) to express v in terms of u and P and
substituting the result into equation (3b), we obtain

@3ðruÞ

@t2@r
þ !2

A

@ðruÞ

@r
� �

@4ðruÞ

@t@r3

¼ �
r

�V 2
A

@

@t

@2P

@t2
þ !2

A þ
V2

A

r2

� �

P

� �

: ð6Þ

Note that we have neglected terms proportional to
�@2P=@r2 when deriving equations (5) and (6). We can do
this because viscosity is only important in the dissipative
layer where there are large gradients of perturbations. How-
ever, unlike u and v, P is almost constant across a dissipative
layer (see, e.g., Goossens & Ruderman 1995), and thus no
large gradients of P arise.

Equations (3a), (3b), (5), and (6) will be used in what fol-
lows to study damped oscillations of the perturbed magnetic
tube. Note that these equations are not independent because
there are four equations for three variables. However, it
turns out that it is convenient to use equation (3a) in the
regions r > a and r < a� ‘, while equation (6) is more suit-
able in the region a� ‘ < r < a.

To complete the formulation of the problem, we have to
specify initial conditions at t ¼ 0. The basic system of equa-
tions (1a)–(1d) is a system of the first-order equations with
respect to the time derivatives for the quantities u, v, br, b’,
and P. This implies that we have to specify all these quanti-
ties at t ¼ 0. However, in what follows, we will use only u, v,
and P. It follows from equations (1a) and (1d) that we can
specify @u=@t and @v=@t instead of br and b’ at t ¼ 0. Hence,
eventually, we write the initial conditions as

u ¼ u0ðrÞ ;
@u

@t
¼ u1ðrÞ ; v ¼ v0ðrÞ ;

@v

@t
¼ v1ðrÞ ; P ¼ P0ðrÞ at t ¼ 0 : ð7Þ

It follows from equations (1d) and (5) that these functions
are related through

d

dr
r
dP0

dr
�

�2r

L2
þ
1

r

� �

P0 þ
dðr�u1Þ

dr
þ i�v1 ¼ 0 : ð8Þ

To solve equation (5) we also need to know @P=@t at t ¼ 0.
In accordance with equation (1d) we obtain

@P

@t
¼ �

�V 2
A

r

@ðru0Þ

@r
þ iv0

� �

� P1ðrÞ at t ¼ 0 : ð9Þ
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We assume that all perturbations vanish as r ! 1 and
impose the condition u0; u1; v0; v1; P0 ! 0 as r ! 1.
Note that u0, u1, P0, and P1 are real while v0 and v1 are
purely imaginary.

It turns out in what follows that the asymptotic state
of a loop oscillation is determined by the complex fre-
quency of the eigenmode of the viscous MHD equations.
However, we cannot draw this conclusion a priori. The
main point of concern is that the time necessary for
motions in the vicinity of the ideal resonant position to
reach a steady state is much larger than the characteristic
time required for the global motion of the loop to be
described by its eigenmode. Hence, to conclude that
global loop motions for times much larger than the
eigenmode period are described by the eigenmode, it is
necessary first to solve the initial value problem and then
carry out an asymptotic analysis of the solution.

3. SOLUTION FOR THE PERTURBATION OF THE
MAGNETIC PRESSURE

To obtain the solution for the perturbation of the mag-
netic pressure, we first derive the governing equation for it.
We do this in steps. First we obtain its solution in the exter-
nal region (r > a) and in the internal region (r < a� ‘), and
then in the annulus (a� ‘ < r < a). Finally, we match these
solutions at the boundaries.

3.1. The External Region

The perturbation of the total pressure in the region r > a
where � is uniform is described by equation (5) with zero
right-hand side. The only quantity that we need in what fol-
lows is @P=@r at r ¼ a. Introduce the Laplace transform

L½ f ðtÞ�ð!Þ ¼

Z 1

0

f ðtÞei!t dt : ð10Þ

Applying this transform to equation (5) with d�=dr ¼ 0 and
making the variable substitution

Qe ¼ L½P� �L½Ae�
K1ð�r=LÞ

K1ð�a=LÞ
; ð11Þ

where AeðtÞ ¼ Pðt; aÞ and K1 is the modified Bessel (Mac-
donald) function of the first order, we obtain

1

r

@

@r
r
@Qe

@r
�

1

r2
þ

�2

L2
1�

!2

!2
Ae

� �� �

Qe

¼ �
P1 � i!P0

V 2
Ae

�
!2K1ð�r=LÞ

V2
AeK1ð�a=LÞ

L½Ae� : ð12Þ

The quantityQeðr;!Þ satisfies the boundary conditions

Qeða;!Þ ¼ 0 ; Qeðr;!Þ ! 0 as r ! 1 : ð13Þ

The two linearly independent solutions to the homoge-
neous counterpart of equation (12) are I1ðr�eÞ and
K1ðr�eÞ, where I1 is the modified Bessel function of the
first order and �e ¼ V�1

Ae ð!
2
Ae � !2Þ1=2. The function �eð!Þ

has two branch points, ! ¼ �!Ae, and so do the func-
tions I1ðr�eÞ and K1ðr�eÞ. To obtain single-valued
branches of these functions, we make cuts in the complex
!-plane that start from �!Ae and !Ae and go along the

real axis to �1 and 1, respectively (see Fig. 2). One of
the branches of the function �eð!Þ maps the complex
plane with the two cuts on the right half of the complex
plane, and the other on the left half. We choose the first
branch, so that < �eð!Þð Þ > 0, where < indicates the real
part of a quantity. The function K1ðzÞ has a logarithmic
branch point at z ¼ 0. We choose a branch of K1ðzÞ that
takes real values when z > 0. Then it follows from the
asymptotic formulae (Abramowitz & Stegun 1964)

I1ðzÞ �
ez

ð2�zÞ1=2
; K1ðzÞ �

�

2z

� �1=2
e�z ; ð14Þ

valid for j arg zj < �=2 and jzj ! 1, that I1ðr�eÞ ! 1
and K1ðr�eÞ ! 0 as r ! 1 for any value of ! that is not
on one of the two cuts.

The Green’s function of equation (12), Geðr; s;!Þ, has to
satisfy the homogeneous counterpart of equation (12) for
r 6¼ s, the boundary conditions (13), and be continuous at
r ¼ swith jump condition

lim
"!þ0

@Ge

@r

�

�

�

�

r¼sþ"

�
@Ge

@r

�

�

�

�

r¼s�"

� �

¼ 1 : ð15Þ

Using the identity (Abramowitz & Stegun 1964)

I 01ðzÞK1ðzÞ � I1ðzÞK
0
1ðzÞ ¼

1

z
; ð16Þ

where the prime indicates a derivative, it is straightforward
to show thatGeðr; s;!Þ is given by

Geðr; s;!Þ ¼
s

K1ða�eÞ

n

Hðs� rÞK1ðs�eÞ

�
h

K1ðr�eÞI1ða�eÞ � I1ðr�eÞK1ða�eÞ
i

þHðr� sÞK1ðr�eÞ

�
h

K1ðs�eÞI1ða�eÞ � I1ðs�eÞK1ða�eÞ
io

; ð17Þ

where HðxÞ is the Heaviside function, HðxÞ ¼ 1 for x > 0,
andHðxÞ ¼ 0 for x < 0. Then the solution to equation (12),
satisfying the boundary conditions (13), is

Qeðr;!Þ ¼ �

Z 1

a

Geðr; s;!Þ

�
P1ðsÞ � i!P0ðsÞ

V 2
Ae

þ
!2K1ð�s=LÞ

V 2
AeK1ð�a=LÞ

L½Ae�

� 	

ds :

ð18Þ

Fig. 2.—Complex !-plane with two cuts shown by the bold lines. The
function �eð!Þ is single-valued in this plane. Similar cuts in the complex !-
plane, although from �!Ai and !Ai , are used to make the functions �ið!Þ
single-valued.
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It follows from equations (11), (16), (17), and (18) that

@L½P�

@r

�

�

�

�

r¼a

¼

Z 1

a

sK1ðs�eÞ

aK1ða�eÞ

�
P1ðsÞ � i!P0ðsÞ
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AeK1ð�a=LÞ

L½Ae�

� 	

ds

þ
�K 0

1ð�a=LÞ

LK1ð�a=LÞ
L½Ae� : ð19Þ

Using the modified Bessel equation, it is straightforward to
derive the relation

Z 1

a

K1ð�s=LÞK1ðs�eÞs ds ¼
aV 2

Ae

!2

� �eK1ð�a=LÞK
0
1ða�eÞ �

�

L
K1ða�eÞK

0
1ð�a=LÞ

h i

;

ð20Þ

which allows us to rewrite equation (19) as

@L½P�

@r

�

�

�

�

r¼a

¼
1

V 2
Ae

Z 1

a

sK1ðs�eÞ

aK1ða�eÞ
P1ðsÞ � i!P0ðsÞ½ �ds

þ
�eK 0

1ða�eÞ

K1ða�eÞ
L½Ae� : ð21Þ

Applying the Laplace transform to equation (3a) and
neglecting viscosity in the external region, we obtain

L½ue� ¼
1

!2
Ae � !2

�
1

�e

dP0

dr

�

�

�

�

r¼a

þ
i!

�e

@L½P�

@r

�

�

�

�

r¼a

þ u1ðaÞ � i!u0ðaÞ

� 	

;

ð22Þ

where ue ¼ uðt; aÞ.

3.2. The Internal Region

The perturbation of the total pressure in the region
r < a� ‘ ¼ b is described by equation (5) with zero right-
hand side. We need only calculate @L½P�=@r at r ¼ b from
this equation. Applying the Laplace transform to equation
(5) and making the variable substitution

Qi ¼ L½P� �L½Ai�
I1ð�r=LÞ

I1ð�b=LÞ
; ð23Þ

whereAiðtÞ ¼ Pðt; bÞ, we obtain

1

r

@

@r
r
@Qi

@r
�

1

r2
þ

�2

L2
1�

!2

!2
Ai

� �� �

Qi

¼ �
P1 � i!P0

V 2
Ai

�
!2I1ð�r=LÞ

V2
AiI1ð�b=LÞ

L½Ai� : ð24Þ

The quantityQiðr;!Þ satisfies the boundary condition

Qiðb;!Þ ¼ 0 ; ð25Þ

and, in addition, it must be regular at r ¼ 0. Taking into
account that I1ðzÞ is regular at r ¼ 0 and K1ðzÞ is singular,
we find that the Green’s function of equation (24) is

Giðr; s;!Þ ¼
s

I1ðb�iÞ

n

Hðs� rÞI1ðr�iÞ

�
h

I1ðs�iÞK1ðb�iÞ � K1ðs�iÞI1ðb�iÞ
i

þHðr� sÞI1ðs�iÞ

�
h

I1ðr�iÞK1ðb�iÞ � K1ðr�iÞI1ðb�iÞ
io

; ð26Þ

where �i ¼ V�1
Ai ð!

2
Ai � !2Þ1=2. Similar to the function

�eð!Þ, the function �eð!Þ has two branch points,
! ¼ �!Ai, and so do the functions I1ðr�iÞ and K1ðr�iÞ. To
obtain single-valued branches of these functions, we
make cuts in the complex !-plane that start from �!Ai

and !Ai and go along the real axis to �1 and 1, respec-
tively (see Fig. 2). One of the branches of the function
�ið!Þ maps the complex plane with the two cuts on the
right half of the complex plane, and the other on the left
half. We choose the first branch, so that <ð�ið!ÞÞ > 0.
Once again we choose a branch of K1ðzÞ that takes real
values when z > 0.

The solution to equation (24), satisfying the boundary
conditions (25) and regular at r ¼ 0, is

Qiðr;!Þ ¼ �

Z b

0

Giðr; s;!Þ

�
P1ðsÞ � i!P0ðsÞ

V2
Ai

þ
!2I1ð�s=LÞ

V2
AiI1ð�b=LÞ

L½Ai�

� 	

ds :

ð27Þ

It follows from equations (16), (23), (26), and (27) that

@L½P�

@r

�

�

�

�

r¼b

¼ �

Z b

0

sI1ðs�iÞ

bI1ðb�iÞ

�
P1ðsÞ � i!P0ðsÞ

V 2
Ai

þ
!2I1ð�s=LÞ

V 2
AiI1ð�b=LÞ

L½Ai�

� 	

ds

þ
�I 01ð�b=LÞ

LI1ð�b=LÞ
L½Ai� : ð28Þ

Using the modified Bessel equation, it is straightforward to
derive the relation

Z b

0

I1ð�s=LÞI1ðs�iÞs ds

¼
bV2

Ai

!2

�

L
I1ðb�iÞI

0
1ð�b=LÞ � �iI1ð�b=LÞI

0
1ðb�iÞ

h i

: ð29Þ

Using this relation, we rewrite equation (28) as

@L½P�

@r

�

�

�

�

r¼b

¼ �
1

V2
Ai

Z b

0

sI1ðs�iÞ

bI1ðb�iÞ
P1ðsÞ � i!P0ðsÞ½ �ds

þ
�iI 01ðb�iÞ

I1ðb�iÞ
L½Ai� : ð30Þ
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Applying the Laplace transform to equation (3a) and
neglecting viscosity in the internal region, we obtain

L½ui� ¼
1

!2
Ai � !2

�
1

�i

dP0

dr

�

�

�

�

r¼b

þ
i!

�i

@L½P�

@r

�

�

�

�

r¼b

þ u1ðbÞ � i!u0ðbÞ

� 	

;

ð31Þ

where ui ¼ uðt; bÞ.

3.3. The Solution in the Annulus

In what follows we assume that the characteristic scale of
variation of perturbations of all quantities is initially a. This
implies that we can take u0ðbÞ � u0ðaÞ, u1ðbÞ � u1ðaÞ, and
so on. It follows from equation (3a) that u � Pð�‘!AÞ

�1.
Then it is straightforward to get from equation (5)
that @2P=@r2 � Pða‘Þ�1, which implies that Pðt; rÞ ¼
AðtÞ þ Oð‘=aÞ. Hence, we can neglect variations of P in the
annulus. In particular, AeðtÞ � AiðtÞ � AðtÞ. This approxi-
mation significantly simplifies the analysis. It was first used
by Hollweg (1987) and subsequently by Hollweg & Yang
(1988) to study resonant absorption of MHD surface waves
in a thin inhomogeneous layer. Recently, it was used by
Ruderman & Wright (2000) to study nonstationary driven
oscillations of a thin planar magnetic cavity.

Since P is determined by its values at the annulus bounda-
ries, we can consider equation (6) as an equation with
known right-hand side. It determines @ðruÞ=@r for
b < r < a. If we introduce the notation V1 ¼ @ðruÞ=@r and
denote the right-hand side of equation (6) as ð2=�Þgðt; rÞ,
then we obtain an equation that exactly coincides with
equation (13) by Ruderman (1999) with n ¼ 1 and � ¼ 0.
This enables us to immediately write down an approximate
solution to equation (6):

@ðruÞ

@r
¼ expð��t3=RÞ

dðru0Þ

dr
cosð!AtÞ þ

dðru1Þ

dr

sinð!AtÞ

!A

� �

�
a

�V2
A

Z t

0

Gðt� �Þ
d

d�

d2A

d�2
þ !2

A þ
V 2

A

a2

� �

A

� �

d� :

ð32Þ

Here � ¼ 1
6 aVAeðd!A=drÞ

2, R ¼ aVAe=� is the viscous
Reynolds number based upon the Alfvén speedVAe, and the
Green’s functionGðtÞ is given by

GðtÞ ¼ HðtÞ expð��t3=RÞ
sinð!AtÞ

!A
: ð33Þ

Note that, since all equilibrium quantities are assumed to be
smooth functions, �ðaÞ ¼ �ðbÞ ¼ 0. When writing down
equation (32), we have taken r � a in the last term on the
right-hand side. The corresponding solution was obtained
by Ruderman (1999) using the WKB method with R�1=3 as
a small parameter. Hence, the approximate solution (32) is
valid for only large values of the Reynolds numberR.

Let us calculate the Laplace transform of @ðruÞ=@r. To do
this we introduce the incomplete F-function as

~FFðx; tÞ ¼

Z t

0

expðixs� s3=3Þ ds ð34Þ

and the complete F-function as FðxÞ ¼ ~FFðx;1Þ. The latter

function was first introduced by Boris (1968, p. 172); it has
been used to describe wave motion in dissipative layers
(Mok & Einaudi 1985; Goossens, Ruderman, & Hollweg
1995; Goossens & Ruderman 1995). It is straightforward to
obtain the relation

L½expð�i!At� �t3=RÞ�ð!Þ ¼ 	�1
! Fðð!� !AÞ=	!Þ ; ð35Þ

where 	! ¼ ð3�=RÞ1=3. It follows from equation (1d) that

@2P

@t2

�

�

�

�

t¼0

¼ �
�V2

A

r

@ðru1Þ

@r
þ iv1

� �

� P2ðrÞ : ð36Þ

Using equations (35) and (36) and the convolution theorem,
we eventually arrive at

@ðrL½u�Þ

@r
¼

1

2	!

(

dðru0Þ

dr
�

i

!A

dðru1Þ

dr

� �

Fðð!þ !AÞ=	!Þ

þ
dðru0Þ

dr
þ

i

!A

dðru1Þ

dr

� �

Fðð!� !AÞ=	!Þ

)

þ ia
Fðð!þ !AÞ=	!Þ � Fðð!� !AÞ=	!Þ

2�V2
A!A	!

�

(

!2 � !2
A �

V 2
A

a2

� �

ði!L½A� þ A0Þ

� A2 þ i!A1

)

; ð37Þ

where A0, A1, and A2 are the values of A, dA=dt, and
d2A=dt2, respectively, at t ¼ 0; in turn, these are approxi-
mately equal to P0, P1, and P2 at r ¼ a.

3.4. Matching Solutions

Integrating equation (37) with respect to r from b to a, we
obtain the Laplace transform of the quantity aue � bui. On
the other hand, we can calculate this quantity using equa-
tions (22) and (31). Comparing the two expressions, taking
into account equations (21) and (30), and substituting A for
Ae andAi, we arrive at the following expression forL½A�:

L½A� ¼
Wð!;RÞ

Dð!;RÞ
; ð38Þ

where

Dð!;RÞ ¼ D0ð!Þ þD1ð!;RÞ ;

Wð!;RÞ ¼ W0ð!Þ þW1ð!;RÞ ; ð39Þ

D0ð!Þ ¼
b�iI 01ðb�iÞ

�ið!2 � !2
AiÞI1ðb�iÞ

�
a�eK 0

1ða�eÞ

�eð!2 � !2
AeÞK1ða�eÞ

; ð40Þ

D1ð!;RÞ ¼
ia

2�V 2
A

Z a

b

!2
A � !2 þ

V 2
A

a2

� �

�
Fðð!þ !AÞ=	!Þ � Fðð!� !AÞ=	!Þ

!A	!
dr ; ð41Þ
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W0ð!Þ ¼

Z b

0

sI1ðs�iÞ

I1ðb�iÞ

P1ðsÞ � i!P0ðsÞ

�V 2
Að!

2 � !2
AiÞ

ds

þ

Z 1

a

sK1ðs�eÞ

K1ða�eÞ

P1ðsÞ � i!P0ðsÞ

�V 2
Að!

2 � !2
AeÞ

ds

þ
ib

!ð!2 � !2
AiÞ

1

�i

dP0

dr

�

�

�

�

r¼b

þ u1ðbÞ � i!u0ðbÞ

� �

�
ia

!ð!2 � !2
AeÞ

1

�e

dP0

dr

�

�

�

�

r¼a

þ u1ðaÞ � i!u0ðaÞ

� �

:

ð42Þ

It can be shown thatW1ð!;RÞ=W0ð!Þ � ‘=a5 1. Therefore,
W1ð!;RÞ can be neglected in comparison with W0ð!Þ, and
we do not give the expression for this quantity.

The functionsD0ð!Þ andW0ð!Þ are multivalued and have
four branch points: ! ¼ �!Ae and ! ¼ �!Ai. To obtain
their single-valued branches we make the cuts in the com-
plex !-plane from�!Ai to�1 and from !Ai to1 as shown
in Figure 2 and consider the branches of �eð!Þ, �ið!Þ, and
K1ðzÞ determined in xx 3.1 and 3.2. Since !Ai < !Ae, both
�eð!Þ and �ið!Þ are single valued in the !-plane with these
cuts.

4. WEAKLY DAMPED EIGENMODES

The complex frequencies of the loop oscillations are
determined by the equation

Dð!;RÞ ¼ 0 : ð43Þ

If ! is a solution to equation (43), then the dependence of
the corresponding eigenfunction on r in the region r > a is
given by equations (11), (17), and (18) with P0 ¼ P1 ¼ 0
andL½Ae� arbitrary. The quantity ! is a true eigenfrequency
because the corresponding eigenfunction tends to zero
exponentially as r ! 1, and, consequently, it is square
integrable.

It is straightforward to obtain the estimate
D1ð!;RÞ=D0ð!Þ ¼ Oð‘=aÞ. This estimate enables us to use
the regular perturbation method and look for a solution to
equation (43) in the form ! ¼ !0 þ !1, where j!1j5 j!0j. In
the first-order approximation we obtain

D0ð!0Þ ¼ 0 : ð44Þ

Now coronal loops are much thinner than they are long, so
that a5L. Then ja�ej5 1 and jb�ij5 1, and we can use the
approximate formulae (Abramowitz & Stegun 1964)

I1 ðzÞ �
z

2
; I 01ðzÞ �

1

2
; K1ðzÞ �

1

z
; K 0

1ðzÞ � �
1

z2

ð45Þ

to rewrite the expression (40) as

D0ð!Þ ¼
1

�ið!2 � !2
AiÞ

þ
1

�eð!2 � !2
AeÞ

: ð46Þ

Then the solution to equation (44) is

! ¼ !0 ¼ �!k � �
2�!2

A

�e þ �i

� �1=2

: ð47Þ

The quantity !k is the frequency of kink oscillations of a
thin homogeneous magnetic tube and has been discussed in

Edwin & Roberts (1983) and Roberts (2000). It was used by
Nakariakov (2000) and Nakariakov & Ofman (2001) to cal-
culate the magnetic field strength in the coronal loops by
comparing the observed oscillations with theory.

In the second-order approximation we obtain

!1 ¼ �D1ð!0;RÞ
@D0

@!

�

�

�

�

!¼!0

 !�1

: ð48Þ

Using integration by parts, we obtain

Fð !0 � !Að Þ=	!Þ �
i	!

!0 � !A
; ð49Þ

valid when j!0 � !Aj4	!. However, since !2
Ae < !2

0 < !2
Ai,

there is a location r ¼ rA, called the Alfvén resonant posi-
tion, at which !2

AðrAÞ ¼ !2
0. For !

2
AðrÞmonotonic, this posi-

tion is unique. Let us introduce the thickness of the Alfvén
dissipative layer 	A as (e.g., Goossens & Ruderman 1995;
Goossens et al. 1995)

	A ¼
2j!0j	!ðrAÞ

jDj
¼

�!0

D

�

�

�

�

�

�

1=3

; D ¼ �
d!2

A

dr

�

�

�

�

r¼rA

: ð50Þ

Now we take sA such that 	A5 sA5 ‘ and write the integral
in equation (41) as a sum of integrals over ½b; rA � sA�,
½rA � sA; rA þ sA�, and ½rA þ sA; a�. Then we use the
approximate expression (49) to calculate the first and third
integrals. To calculate the second integral we use the
approximate formula

j!0j � !A �
Dðr� rAÞ

2j!0j
ð51Þ

and neglect the nonresonant term, which is proportional to
Fð�ð!k þ !AÞ=	!Þ. Since !2

A � !2
05V2

Aa
�2, we can take

!2
A � !2

0 þ V2
Aa

�2 � V 2
Aa

�2 in the integrand in equation
(41). Making the substitution s ¼ 	�1

A ðr� rAÞsgn ðD!0Þ in
the second integral, we eventually arrive at the following
approximate expression:

D1ð!0;RÞ �
1

a

Z rA�sA

b

þ

Z a

rAþsA

� �

dr

�ð!2
0 � !2

AÞ

�
i!0

�Aaj!0Dj

Z sA=	A

�sA=	A

FðsÞds ; ð52Þ

where �A ¼ �ðr ¼ rAÞ. Since sA5 a� b ¼ ‘ and sA4	A, we
take sA ! þ0 and sA=	A ! 1. Then, using the formula
R1
�1 FðsÞds ¼ �, we obtain

D1ð!0;RÞ �
1

a
P

Z a

b

dr

�ð!2
0 � !2

AÞ
�

i�!0

�Aaj!0Dj
; ð53Þ

where P indicates the principal Cauchy part of an integral.
With the use of equations (46), (48), and (53), we finally
obtain

!1 ¼ !1r � i� ; ð54Þ

where

!1r ¼
�2A!

3
0ð�i � �eÞ

2

2að�i þ �eÞ
3

P

Z a

b

dr

�ð!2
0 � !2

AÞ
; ð55Þ
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� ¼
��Aj!0j

3ð�i � �eÞ
2

2ajDjð�i þ �eÞ
3

: ð56Þ

Note that the decrement � is always positive, as it should be.
It is straightforward to show that !1r=!0 ¼ Oð‘=aÞ5 1, so
that we can neglect !1r in comparison with !0 in the expres-
sion for !0 þ !1. The same estimate is valid for �=!0,
though we cannot neglect �i� in the expression for !0 þ !1

because it describes damping of oscillations due to resonant
absorption in the dissipative layer embracing rA.

It is interesting to note (M. Goossens 2002, private com-
munication) that expression (56) can be obtained as a par-
ticular case from a more general expression for the damping
rate given by Goossens et al. (1992; see their eq. [77]), cor-
recting for a typographical error in their equation). Expres-
sion (56) is also similar to expressions for the damping rate
of surface waves on a finite-thickness single interface (see,
e.g., Ionson 1978; Mok & Einaudi 1985; Lee & Roberts
1986; Hollweg 1987; Hollweg &Yang 1988), although it dif-
fers from these studies in that our result involves the radius
of the flux tube as well as the scale of the inhomogeneity.
The fact that the damping rate � is independent of R
(assumed large) is not surprising—it is found in previous
analytical studies of such wave problems—although it is an
important property of resonant absorption. This property is
also confirmed by numerical studies (e.g., Poedts & Kerner
1991; Tirry & Goossens 1996). The damping timescale ��1

is generally much shorter than the timescale by which small-
scale disturbances in the resonance layer dissipate; in phase
mixing and in steadily driven resonant absorption, small-
scale disturbances damp on a timescale proportional toR1=3

(e.g., Heyvaerts & Priest 1983; Kappraff & Tataronis 1977),
which is very long under coronal conditions. Consequently,
it is the shorter timescale, ��1, that will be most apparent in
observations.

5. OSCILLATIONS OF THE MAGNETIC
TUBE BOUNDARY

In this section we study the asymptotic state of the motion
of the magnetic tube boundary for t4!�1

k . We start from
studying the asymptotic state of the total pressure oscilla-
tion in the annulus b < r < a and then consider the annulus
displacement.

5.1. The Asymptotic State of the Total Pressure Oscillation

Since L½A�ð!Þ is an analytic function in the half-plane
Ið!Þ > 0 (I indicates the imaginary part of a quantity), it
follows from equation (38) that

AðtÞ ¼
1

2�

Z 1þi&

�1þi&

W0ð!Þ

Dð!;RÞ
e�i!t d! ; ð57Þ

where & is an arbitrary positive constant and we have taken
into account that jW1j5 jW0j. To evaluate the integral in
equation (57), we close the Bromwich integration contour
as shown in Figure 3. When the radius of the semicircle is
large enough, the integral over the closed contour is equal to
the sum of the residues of the integrand with respect to poles
in the lower half-plane multiplied by�2�i.

Both W0ð!Þ and Dð!;RÞ have simple poles at ! ¼ �!Ae

and ! ¼ �!Ai, so their ratio is regular at these points. The
function Dð!;RÞ has simple poles at ! ¼ !d and ! ¼ �!�d .

Hence, the integral over the closed contour is equal to the
sum of residues with respect to ! ¼ !d and ! ¼ �!�d multi-
plied by�2�i.

It is straightforward to show that the integral over the
semicircle tends to zero when its radius tends to infinity. As
a result we obtain the expression forAðtÞ valid for t4!�1

k :

AðtÞ ¼ � i

�

res!¼!d

W0ð!Þ

Dð!;RÞ
e�i!t

� �

þ res!¼�!�
d

W0ð!Þ

Dð!;RÞ
e�i!t

� �	

�
1

2�

Z

C�

þ

Z

Cþ

 !

W0ð!Þ

Dð!;RÞ
e�i!td! : ð58Þ

Here C� is a contour running from �1 along the lower
edge of the left cut, turning around ! ¼ �!Ai, and then run-
ning back to �1 along the upper edge of the left cut (see
Fig. 3). The contour Cþ runs from 1 along the upper edge
of the right cut, turns around at ! ¼ !Ai, and then runs back
to1 along the lower edge of the right cut.

The integral over the contourC� can be written as

Z

C�

W0ð!Þ

Dð!;RÞ
e�i!td!

¼

Z �!Ai

�1

W�
0 ð!Þ

D�ð!;RÞ
�

Wþ
0 ð!Þ

Dþð!;RÞ

� �

e�i!t d!; ð59Þ

where the superscripts ‘‘�’’ and ‘‘ + ’’ indicate the values of
a function on the lower and upper edges, respectively, of the
left cut. Using integration by parts, it is easy to show that
the ratio of the integral on the right-hand side of equation
(59) to the expression in the curly brackets on the right-hand
side of equation (58) is of the order of ðt!kÞ

�1 when t4!�1
k .

Similarly, we can obtain the same estimate for the integral
over the contour Cþ. These two estimates enable us to
neglect the second term on the right-hand side of equation
(58).

.. .. .. .
ωω

ω ω ω ω

d d−

− −A A A Ae ei i

C C− +*

Fig. 3.—Sketch of the integration contour used to evaluate the integral
in eq. (57). The arrows on the contour show the direction of integration.
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Taking into account that !d � !k and Dð!;RÞ � D0ð!Þ,
we obtain

res!¼!d

W0ð!Þ

Dð!;RÞ
e�i!t

� �

¼ �Se�i!d t ; ð60aÞ

S ¼
�2!4

Að�i � �eÞ
2
W0ð!kÞ

2!kð�i þ �eÞ
3

: ð60bÞ

We do not give the expression forW0ð!kÞ because we do not
use it in what follows. For the residue with respect to
! ¼ �!�d we obtain S�ei!

�
d
t. As a result, we reduce equation

(58) to

AðtÞ ¼ ie��t Se�i!d t � S�ei!
�
d
t


 �

¼ 2jSje��t sinð!ktþ 
Þ ;

ð61Þ

where we have written S as S ¼ jSje�i
. We see that for
t4!�1

k the perturbation of the total pressure in the annulus
oscillates harmonically with the frequency !k and decays
with the decrement �, timescale ��1.

5.2. The Asymptotic State of the Boundary Oscillation

Let us study the asymptotic state of oscillations of the
annulus boundaries. The velocities of the external and inter-
nal boundary are determined by equations (22) and (31),
respectively. Using equations (21), (30), and (38)–(42), it is
straightforward to show that L½ue� is regular at ! ¼ �!Ae

and L½ui� is regular at ! ¼ �!Ai. This implies that the
asymptotic behavior of ue and ui is determined by the contri-
butions from the poles of L½A� at ! ¼ !d and ! ¼ �!�d .
Using the same technique as in deriving equation (61), we
obtain that, in the long-wavelength approximation (a5L),
this asymptotic behavior is given by

aueðtÞ ¼ buiðtÞ ¼ �e��t cosð!ktþ 
Þ ; ð62aÞ

� ¼
�!2

Að�i � �eÞjW0ð!kÞj

ð�i þ �eÞ
2

: ð62bÞ

Since b ¼ a� ‘, we see that ui ¼ ue þ Oð‘=aÞ, and the boun-
daries of the annulus oscillate with approximately the same
velocity.

The quantities ue and ui are the complex amplitudes of
the radial component of the velocity at r ¼ a and r ¼ b,
respectively. The real radial velocity is given by
<ðuðrÞei’Þ ¼ uðrÞ cos’. If we introduce the Cartesian coor-
dinates x and y in such a way that ’ is counted from the pos-
itive x-direction, then the radial velocities ue cos’ and
ui cos’ correspond to the oscillations of the external and
internal boundaries in the x-direction with the velocities ue
and ui, respectively. We see from equation (62a) that the
internal and external boundaries harmonically oscillate with
the frequency of the global mode !k and with amplitudes
a�1� and b�1�, respectively. The relative difference in these
amplitudes is of the order of ‘=a. Boundary oscillations
decay with the decrement �. Using equation (42), we obtain
the estimate ue � ui � u0.

6. MOTION IN THE DISSIPATIVE LAYER

In this section we study the motion in the dissipative layer
embracing the ideal resonant position r ¼ rA. Since the
dominant motion in the dissipative layer resides in the ’-

component of the velocity (e.g., Goossens et al. 1995; Goos-
sens &Ruderman 1995), we study only the behavior of v.

Let us derive the expression for v in the annulus. We use
the same method as in deriving equation (32). Introducing
the notationV1 ¼ v and ð2=�Þg ¼ �ði=r�Þ@P=@t, we rewrite
equation (3b) in a form that exactly coincides with
equation (13) by Ruderman (1999) with n ¼ 1 and � ¼ 0.
This enables us to write down the solution to equation (3b):

v ¼ expð��t3=RÞ v0 cosð!AtÞ þ v1
sinð!AtÞ

!A

� �

�
i

a�

Z t

0

Gðt� �Þ
dA

d�
d� ; ð63Þ

where GðtÞ is given by equation (33). We have used the facts
that r � a and Pðt; rÞ � AðtÞ in the annulus when deriving
equation (63).

Substituting equations (33) and (57) into equation (63),
introducing the new integration variable s ¼ ðt� �Þ	!, and
changing the order of integration, we obtain

v ¼ expð��t3=RÞ v0 cosð!AtÞ þ v1
sinð!AtÞ

!A

� �

�
1

4�a�!A	!

Z 1þi&

�1þi&

!W0ð!Þ

Dð!;RÞ

h

~FFðð!þ !AÞ=	!; t	!Þ

� ~FFðð!� !AÞ=	!; t	!Þ
i

e�i!td! ; ð64Þ

where the function F is defined in equation (34). Using the
same procedure as in deriving equation (61), we obtain that
for t4!�1

k the asymptotic behavior of v is given by

v ¼ expð��t3=RÞ v0 cosð!AtÞ þ v1
sinð!AtÞ

!A

� 	

�
i!ke��t

a�!A	!
<
n

Se�!kt
h

~FFðð!d � !AÞ=	!; t	!Þ

� ~FFðð!d þ !AÞ=	!; t	!Þ
io

: ð65Þ

It is straightforward to obtain the estimate
	! � !kðaL=R‘2Þ

1=3. For typical coronal loops, L � 100a.
In what follows we take ‘ � 0:1a. Then
	! � 20!kR�1=3 � 20�ða=‘ÞR�1=3. For typical coronal con-
ditions, Re1012, and so 20ða=‘ÞR�1=35 1. Thus, !k=	!41
and �=	!41. Using integration by parts, we obtain the
estimate

~FFðð!d þ !AÞ=	!; t	!Þ � 	!=!k : ð66Þ

Another important estimate for what follows is
ð�=!kÞR1=3 � ‘R1=3=ae103. It was shown by Ruderman,
Tirry, & Goossens (1995; see also Tirry & Goossens 1996
and Ruderman et al. 2000) that in the case where
�=!k4R�1=3, the thickness of the dissipative layer is equal
not to 	A but to ‘�=!k � ‘2=a. Hence, in what follows we
consider jr� rAjd‘2=a. Then we can use the approximate
formula similar to equation (51),

!d � !A �
Dðr� rAÞ

2!k

� i� ; ð67Þ

to evaluate the first term in the square brackets in equation
(65). Using this formula, we immediately obtain that this
term is of the order of or larger than t	!. This estimate and
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equation (66) imply that the second term in the square
brackets and the terms proportional to v0 and v1 on the
right-hand side of equation (65) can be neglected in compar-
ison with the first term in the square brackets for t4!�1

k . As
a result, we rewrite equation (65) in the following approxi-
mate form:

v ¼ �
ie��t

a�	!
<

(

Se�i!kt

Z t	!

0

exp
�

i	�1
A ðr� rAÞs sgnD

þ s�=	! � s3=3
�

ds

)

: ð68Þ

Let us estimate the ratio of the third and second terms in the
exponent in equation (68). We have

s3=3

s�=	!
	

t2	3!
3�

� t2
8� 103!3

kR
�1

3ð‘=aÞ!k

� 3� 104t2!2
kR

�1 : ð69Þ

Now we consider times t such that !�1
k 5 t5 10�2!�1

k R1=2.
Note that 10�2R1=2 � R1=3 for R � 1012. Then, in accord-
ance with equation (69), we can neglect the term s3=3 in the
exponent in equation (68) in comparison with the term
s�=	!, and the integral in equation (68) is easily calculated.
As a result we arrive at

v � �
i

a�
<

(

Se�i!kt

� þ iDðr� rAÞ=ð2!kÞ

� exp iðr� rAÞDt=ð2!kÞð Þ � e��t½ �

)

: ð70Þ

Using equation (60b), we obtain the estimate v � u0a=‘,
valid for te��1 (note that ��15 10�2!�1

k R1=2 for R4106).
Hence, during the characteristic time ��1 of the global-
mode damping, the amplitude of the wave motion in the dis-
sipative layer increases from a value of order u0 to a value of
order u0a=‘. This increase occurs because of the energy flux
from the global motions into the dissipative layer. Then the
amplitude remains of the same order of magnitude at least
up to the time satisfying t5 10�2!�1

k R1=2.
Note that, in accordance with equation (70), the charac-

teristic scale of variation of v in the dissipative layer
decreases as 1=t. This decrease corresponds to phase mixing
of Alfvén oscillations that occurs because !A depends on r
and the neighboring magnetic field lines oscillate with differ-
ent frequencies (e.g., Heyvaerts & Priest 1983; Wright
1992a, 1992b;Mann,Wright, & Cally 1995).

The behavior of v given by equation (68) was studied by
Ruderman & Wright (2000). It was shown that, in the case
where �4!kR�1=3, jvj takes its maximum value at r ¼ rA
when t ¼ tm � 3��1 lnð�=	!Þ. Since 	! � 20�ða=‘ÞR�1=3, we
obtain tm � 15��1 for a=‘ � 0:1 and R ¼ 1012 1014. This
maximum value is of the order of au0=‘. After reaching its
maximum value, jvj exponentially decreases on the charac-
teristic timescale !�1

k R1=3. Phase mixing continues until a
time of order ð�=	3!Þ � 10�2!�1

k R1=2. At this time the char-
acteristic spatial scale is of order 102‘R�1=2, while the ampli-
tude of oscillations is already exponentially small.

The analysis of this section is based on the estimate
Re1012 obtained with the use of Braginskii formulae for
the viscosity coefficients. However, the coronal viscosity can
be enhanced orders of magnitude by, for example, turbu-

lence. In that case it is quite possible that, instead of the
��15!R1=3, we would have ��1e!R1=3. Then the dissipa-
tive layer would be quasi-stationary and described by the
same formulae as in the case of stationary resonant absorp-
tion (e.g., Mok& Einaudi 1985).

7. APPLICATION TO CORONAL LOOP OSCILLATIONS

Formula (56) gives the calculated decay rate of oscilla-
tions in the kink mode. Its use may be conveniently illus-
trated by taking the density profile in the annulus in the
form

�ðrÞ ¼
�i
2

ð1þ �Þ � ð1� �Þ sin
�ð2rþ ‘� 2aÞ

2‘

� �

;

a� ‘ < r < a ; ð71Þ

where � ¼ �e=�i. Using equation (47), we obtain
rA ¼ a� ‘=2 and �A ¼ �ið1þ �Þ=2. Then it follows from
equations (50) and (56) that

� ¼
!k‘ð1� �Þ

4að1þ �Þ
: ð72Þ

In terms of the period � ¼ 2L=ck of the fundamental kink
mode with wavenumber k ¼ �=L and kink speed ck
(=!k=k), we obtain an oscillation decay rate �decay (=��1) of

�decay ¼
2

�

a

‘

�i þ �e
�i � �e

� : ð73Þ

We consider this result in relation to the observational data
reported by Nakariakov et al. (1999). These authors
reported a coronal loop oscillation with frequency
!k � 0:024 s�1 (� ¼ 256 s) and decrement � � 0:0011 s�1

(�decay ¼ 870 s). Taking �i ¼ 10�e, we obtain from equation
(72) that ‘=a � 0:23.

It follows from equation (72) (and more generally from
eq. [56]) that the condition �5!k is equivalent to ‘5 a. It
can be shown that, in the general case where the density
varies through the whole tube cross section, the condition
�5!k is equivalent to jDj4!2

k=a. This inequality means
that the characteristic scale of the density variation near the
resonant position is much smaller than the tube radius.
When this condition is not satisfied, all solutions to the dis-
persion equation corresponding to the kink oscillations
have imaginary parts of the same order as real parts. As a
result all tube perturbations damp aperiodically or almost
aperiodically, and an external perturbation does not cause
pronounced tube oscillations.

Hollweg & Yang (1988) also discussed damping of the
kink mode by resonant absorption, in the ideal case. Their
analysis was for a plane, but they applied it to a cylinder by
replacing the perpendicular wavenumber by 1/a. Surpris-
ingly, their procedure gives results identical to equations
(56) and (73). They concluded that under coronal conditions
‘‘ the waves are very effectively damped with an e-folding
time of only two wave periods.’’

8. DISCUSSION AND CONCLUSIONS

In this paper we have studied the plane-polarized kink
oscillations of a straight cylindrical magnetic tube with the
footpoints embedded in a dense immovable plasma. We
have assumed that the equilibrium plasma density varies
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only in a thin annulus at the tube boundary, the density fall-
ing smoothly from a value �i to a value �e (< �iÞ. We have
used the cold plasma approximation in viscous MHD and
restricted the analysis to the fundamental mode.

We have determined the time evolution of the magnetic
pressure in the annulus in terms of a Bromwich integral,
thus obtaining the global mode of the tube oscillation. The
global oscillation is weakly damped and, for large values of
the viscous Reynolds number R, the decrement is indepen-
dent of R and proportional to the ratio of the thickness ‘ of
the annulus and the radius a of the tube. We have shown
that this global mode describes the asymptotic state of tube
motions for times much larger than !�1

k , the inverse of the
eigenmode frequency !k.

We have also studied the wave motion in the dissipative
layer embracing the ideal resonant position, which is deter-
mined by the condition that the global-mode frequency
matches the local Alfvén frequency at this position. The the-
oretical results obtained here may be compared with obser-
vations of coronal loop oscillations.

The main conclusions of our analysis are as follows:

1. The asymptotic state of motion of an arbitrarily per-
turbed thin magnetic tube is a weakly damped harmonic
oscillation with the frequency of the global mode.
2. The tube oscillation is damped because of the conver-

sion of the energy of the global mode into the energy of local
Alfvén oscillations in the dissipative layer located at the
ideal Alfvén resonant position.
3. The decrement � of the tube oscillation is independent

of the Reynolds number R when R41, and �=!k is of order
of ‘=a; hence, the condition �5!k is equivalent to ‘5 a.
4. After the characteristic damping time ��1 of the tube

oscillation, the energy of the tube oscillation is converted
into the energy of Alfvén oscillations in the dissipative layer;
at this time the amplitude of oscillations in the dissipative
layer is of the order of a=‘ times the maximum amplitude of
the tube oscillation.
5. Under the assumption �=!k4R�1=3, as in applications

to the solar corona, the amplitude of oscillations in the dissi-
pative layer continues to grow until a time of order tm; there-

after, it exponentially decreases on the timescale !�1
k R1=3.

For typical coronal conditions, tm � 15��1. The maximum
amplitude of Alfvénic oscillations is of order a=‘ times the
maximum amplitude of the tube oscillation.
6. The Reynolds number R affects only the behavior of

wave motions in the vicinity of the ideal resonant position,
so that we cannot here draw any conclusions about the
value of the viscosity in the corona on the basis of observa-
tions of damping of the coronal loop oscillations. In the case
where �=!k4R�1=3, motions in this region are characterized
by strong spatial oscillations in the radial direction. How-
ever, if because of certain physical processes (e.g., turbu-
lence) the viscosity becomes anomalously large, so that
�=!kdR�1=3, then motions in the vicinity of the ideal reso-
nant position are characterized by a monotonic spatial
behavior in the radial direction. If future observations are
able to resolve spatial scales down to a few percent of a loop
radius, then it may prove possible to make qualitative esti-
mates of the value of R on the basis of this difference in the
character of wave motions in the vicinity of the resonant
position.

The conclusion that the condition �5!k is equivalent to
‘5 a is of particular importance. It implies that, in the case
where the density varies through the whole tube cross sec-
tion with a characteristic scale a, � � !k, and an external
perturbation does not cause pronounced tube oscillations.
This fact may explain why coronal loop oscillations are so
rarely observed.

There are indications that loop structure in general is
multithreaded on a scale below the loop radius, so that ‘5 a
(Aschwanden et al. 1999). It is thus of interest to consider
such small-scale loop structures; we may expect that reso-
nant absorption will then occur not in one but in n resonant
layers, and the damping rate will accordingly be scaled by a
factor of order n‘=a. A detailed calculation of the damping
rate for such amodel, and its comparison with observations,
is a natural extension of the present study.

The authors acknowledge support of INTAS grant
97-31931.
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