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Abstract 

Low trauma fractures are amongst the most frequently encountered problems in the clinical as-

sessment and treatment of bones, with dramatic health consequences for individuals and high 

financial costs for health systems. Consequently, significant research efforts have been dedicated 

to the development of accurate computational models of bone biomechanics and strength. How-

ever, the estimation of the fabric tensors, which describe the microarchitecture of the bone, has 

proven to be challenging using in vivo imaging. On the other hand, existing research has shown 

that isotropic models do not produce accurate predictions of stress states within the bone, as the 

the material properties of the trabecular bone are anisotropic. In this paper, we present the first 

biomechanical study that uses statistically-derived fabric tensors for the estimation of bone 

strength in order to obtain patient-specific results. We integrate a statistical predictive model of 

trabecular bone microarchitecture previously constructed from a sample of ex vivo micro-CT da-

tasets within a biomechanical simulation workflow. We assess the accuracy and flexibility of the 

statistical approach by estimating fracture load for two different databases and bone sites, i.e., for 

the femur and the T12 vertebra. The results obtained demonstrate good agreement between the 

statistically-driven and micro-CT-based estimates, with concordance coefficients of 98.6% and 

95.5% for the femur and vertebra datasets, respectively. 

 

Keywords: Bone fracture, finite element methods, bone microarchitecture, statistical predictive 

models, fracture load estimation. 
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1 Introduction 

Fractures are amongst the most frequently encountered problems in the clinical assessment and 

treatment of bones 1, 2. Typically, fractures are caused by the application of a load that exceeds 

bone strength 3. In particular, bones are susceptible to fracture even under small loads when the 

bone strength is affected due to bone abnormalities such as osteoporosis 4, 5. The pathology of 

osteoporosis is very common worldwide 6 and it is characterized by significant reduction in bone 

mass and deterioration of bone microarchitecture 7, 8. It is estimated that 1 out of 3 women and 1 

out of 5 men are at risk of a low trauma fracture during their lifetime. Due to the dramatic health 

consequences for individuals 2, 6 and the high financial costs for health systems 1, accurate pre-

diction and effective prevention of low trauma bone fractures is of paramount importance. 

To achieve this goal, techniques are required to assess the quality, and eventually the fragility, 

of bones. However, direct subject-specific estimation of bone strength using in vivo imaging re-

mains challenging. Instead, significant research efforts have been dedicated to the development 

of computational biomechanical models of bones. With these models, one can simulate the be-

havior of the bone under different loading conditions and estimate the load that is required to 

cause the fracture of the bone, i.e. the fracture load, as an indicator of bone strength (for exam-

ple, a large fracture load is an indication of high strength) 9, 10, 11, 12, 13, 14, 15. These models are ex-

pected to play an important role in orthopedics for in silico personalized selection of bone-

implant configurations that increase the strength/stability of the bones 16, 17, 18, 19. 

Because of the geometric and constitutive complexity of bones, stress/strain simulations are 

usually performed using advanced numerical tools such as the Finite Element (FE) method. 

However, the accuracy, and ultimately, the clinical translation of such computational biomechan-

ical models depend currently on one essential requirement, i.e., that all the properties of the bone 

that contribute to its biomechanical function at both the macro- and micro-scale levels are esti-

mated. Thus, it is important that the computational models include the trabecular microarchitec-

ture, which is usually done by estimating the local fabric tensors 20, 21, 22. Trabecular microarchi-
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tecture has been shown to play an important role in determining bone quality and strength 23, 24, 

25, 9, 26. However, the subject-specific estimation of the fabric tensors requires in vivo imaging of 

the cancellous bone at high resolution, and this remains technically challenging. Micro-CT 27, for 

example, involves significant radiation and is thus limited to ex vivo research studies 28, 29. On the 

other hand, high resolution peripheral quantitative CT (HR-pQCT) 30 is mostly used for the study 

of the distal parts of the skeleton (e.g., tibia and wrist) 30, 31, 32 and cannot be applied to more 

proximal or medial skeletal sites such as the femur and vertebra for which bone fractures are the 

most common.  

As a consequence, most bone biomechanical studies have considered the tissue to be mechani-

cally isotropic, as illustrated in these recent works 14, 33, 15, 16, 17, 34, 13, even though the material 

properties of bones are in essence orthotropic 35, 21, 36, 37. Some methods have been proposed to 

estimate the trabecular fabric tensors directly from lower resolution imaging such as from clini-

cal CT 38, 39, 40, 41. However, such approaches can lack accuracy due to the microscopic scale of 

the trabeculae, and a recent study with the vertebrae produced inaccurate predictions both for the 

eigenvalues and eigenvectors of the fabric tensors 42. Consequently, in vivo estimation of the tra-

beculae remains a challenge as highlighted in these recent review papers on fracture prediction 12 

and implant design 18.  

Recently, we presented the first statistical approach for the estimation of trabecular bone ani-

sotropy based on a training database of ex vivo micro-CT datasets 43. More specifically, predic-

tive models were constructed to relate the known bone shape and density information to the 

missing trabecular fabric tensors. We addressed the large variability in vertebral micro-

architecture by developing trabecula-specific predictive models with optimal predictor selection 

for each trabecular location. Furthermore, we developed a kernel-based nonlinear regression 

model to extrapolate the values of the unknown fabric tensors even in the presence of small train-

ing samples. This is particularly important due to the practical difficulties in finding large num-

bers of donors and thus in collecting large training ex vivo samples. Our results demonstrated 
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improved predictions of the fabric tensors over existing estimations 37 and consistent results 

across datasets.  

In this paper, we extended our previous work with the following three objectives: 

1) Firstly, we integrated the statistical predictive models of fabric tensors within a biomechan-

ical simulation workflow that includes all important properties of the bones, i.e., shape, 

bone density, and micro-architecture. To the best of our knowledge, this is the first biome-

chanical study that uses statistically-derived fabric tensors for patient-specific simultion of 

bone biomechanics. 

2) We evaluated whether the accuracy of the proposed statistical method for the estimation of 

fabric tensors translates into similar fidelity in the context of biomechanical simulations. 

For this, we also introduce a model for correcting the non-random bias due to the statisti-

cally-derived fabric tensors. 

3) Finally, we assessed the flexibility and applicability of the proposed technique by running 

simulations for different databases and bone sites, i.e., the femur and the vertebrae. These 

bones have different geometric and functional properties. The femur is a long bone that is 

responsible for main body support, while the vertebrae are small bone structures that enter 

in the structural support and stability of the back. Both bone sites, however, are highly sus-

ceptible to bone fractures 1.  

2 Material & Methods 

In this study we performed FE simulations for a total of 53 bone samples, including 33 proximal 

femurs and 20 vertebral bones (T12). The goal was to compare the simulation results obtained 

from ex vivo high resolution micro-CT images with those estimated based on the statistically-

derived fabric tensors. The inputs of our statistical predictive model are low resolution estimates 

of shape and bone density obtained from low resolution image data, while the outputs are the sta-

tistically-derived fabric tensors which are proposed as an alternative to micro-CT fabric tensors. 
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The outputs of the simulations are patient-specific FE models which account for bone heteroge-

neity and trabecular bone local anisotropy, which can be used to estimate fracture loads using 

existing failure criteria. Figure 1 summarizes schematically the main stages involved in this 

study, which are also detailed in the subsequent subsections. 

 

 
 

***Figure 1 appears here*** 

 

Fig. 1 - Schematic diagram illustrating the main steps involved in the statistical approach for the 

estimation of fabric tensors, subsequently used in patient-specific biomechanical simulation and 

fracture load estimation. X  represents the shape and bone density input variables of the statisti-

cal model, while Y  represents the output (statistically-predicted) fabric tensors.  

2.1 Datasets 

Since high-resolution in vivo imaging of the bone trabeculae does not exist as yet, this study is 

performed based on cadaver bone datasets. More specifically, the simulations are run in this 

work for a total of 53 ex vivo micro-CT image data that include 33 proximal femurs and 20 T12 

vertebrae (see Table 1 for a complete summary of the properties of the datasets). The donors had 

dedicated their body by testament to the Institute of Anatomy of the LMU in Munich or the Insti-

tute of Anatomy of the VU Amsterdam during life after Ethics approval for the purpose of teach-

ing and research.  

For the femur, 33 cases ex vivo micro-CT images were obtained from an online database 44 

drawn from a population of 17 female donors and 16 male donors, and with an average age of 

77.8 ± 10.0 years. The samples were initially stored in a buffered formalin solution. The images 

were acquired using micro-CT scans (XtremeCT, Scanco Medical AG, Brüttisellen, Switzerland) 
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of the most proximal part (~10 cm in length),  with a nominal isotropic resolution of 82 µm. The 

images were filtered and processed according to the protocol recommended by the manufacturer.  

The 20 donors for the vertebral bones consisted of ten male and ten female, with an average 

age of 78.0 ± 8.1 years (range 64-92 years). The T12 vertebrae were then scanned in a micro-CT 

system (microCT 80, Scanco Medical AG, Brüttisellen, Switzerland) at a nominal isotropic reso-

lution of 37 µm using a 2048x2048 in plane image matrix. The scanner energy was 70 kV (114 

µA).  

2.2 Shape Extraction 

The first stage of the simulation study involves the generation of subject-specific volumetric 

meshes of the bone morphology. We used a robust shape morphing approach that involved two 

stages, i.e., image segmentation and template mapping. Firstly, in order to define the trabecular 

bone, the original images were filtered and segmented using a thresholding procedure. For the 

femur, we applied a Laplace-Hamming filter (Laplace-epsilon = 0.5 voxel, Hamming-cutoff fre-

quency = 0.4 voxel) and a segmentation threshold of 40% of the maximum possible value. For 

the vertebra, we used instead a strong Gaussian filter (sigma = 5, support = 5 voxels) and a 

threshold of 15% of the maximum gray-value. The difference in the filtering method is due to the 

higher-resolution of the vertebral images, for which a strong Gaussian filter is suitable. In con-

trast, the Laplace-Hamming filter is used for the femur because it better preserves the structures 

at such resolution.  

Additional, the most periosteal 1 mm region of the trabecular bone as obtained from the 

thresholding was removed from the trabecular region, to ensure that no partial cortical bone is 

considered as trabecular bone. 

Subsequently, we applied shape morphing to obtain the volumetric meshes for all bones with 

point correspondence (i.e., each element number identifies an element that, with good approxi-

mation, is at the same specific anatomical location in all samples). We used previously devel-

oped reference mesh templates for both the femur 45 and the vertebra 9 as estimated from large 
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CT databases of bones presenting average morphological characteristics. The reference templates 

were then mapped onto the individual bones by using the thin plate spline technique 46. Key ana-

tomical markers were first manually defined on the segmented images (8 landmarks for the fe-

mur, 20 for the vertebra). Finally, the obtained meshes consisted of 70,776 and 51,119 tetrahe-

dral elements for the femur and the vertebra, respectively.  

2.3 Bone Density 

To derive the values of the bone density, a subsampling of the high resolution images was per-

formed based on a new resolution of 4 mm. At each element centroid, a spherical region of 4 mm 

in diameter was defined and the bone density for that region was determined from the segmented 

micro-CT scans as the fraction of bone voxels over the total number of voxels in the spherical 

region.  

2.4 Micro-CT Fabric Tensors 

The fabric tensors were firstly quantified from the high-resolution micro-CT images to serve as 

the reference results for the evaluations and for statistical model training. For all the elements of 

the volumetric meshes, we calculated in the micro-CT images the Mean Intercept Length tensor 

21 based on the same spherical regions from previous section, using the software accompanying 

the microCT scanner (IPL, Scanco Medical AG, Brüttisellen, Switzerland). 

It is important to note that no fabric was calculated for cortical bone in this study. Instead, a 

unit fabric tensor was defined for cortical bone elements. Furthermore, the density of the cortical 

bone was determined as the fraction of bone voxels over the total number of voxels within the 

element volume. 

2.5 Statistical Fabric Tensors 

In this section we briefly describe the statistical approach used to estimate the fabric tensors. The 

fundamental idea was to determine statistically the relationship between the low resolution in-

formation found in clinical bone imaging such as CT (i.e., shape and density) and the trabecular 
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fabric tensors as extracted from high-resolution image data (micro-CT in our case). The estima-

tion of high resolution information from lower resolution image data is a well-known problem in 

computer vision 47, 48. In our work, we used a database of N  ex vivo micro-CT datasets as a 

training sample to build the statistical predictive model, by following four main stages: 1) fabric 

tensor alignment, 2) fabric tensor transformation, 3) optimal selection of shape/density predic-

tion, and 4) construction of a nonlinear regression model. 

The tensor alignment step of the algorithm was necessary in our work due to the differences in 

shape and pose between the acquired datasets. To resolve this issue, all fabric tensors were re-

oriented within a common coordinate system before the actual construction of the statistical 

model was carried out. More specifically, Procrustes analysis 49 was applied to align all the fab-

ric tensors before subsequent statistical analysis by calculating the local rigid transformation be-

tween corresponding tetrahedrons in the bone sample and in the reference mesh, and the obtained 

rotation matrices were then applied to reorient the eigenvectors of the fabric tensors. 

Secondly, the proposed technique required a suitable mathematical representation of the fabric 

tensors, as they are symmetric tensors and thus lie on a Riemannian manifold 50. This means we 

cannot use standard statistical tools, which can only be applied to variables that lie on Euclidean 

spaces, as this is not the case for symmetric tensors. To resolve this issue, we implemented the 

well-known Log-Euclidean framework in order to transform the tensor into an Euclidean space 

where the new variables can be manipulated using standard statistical tools. It has been shown 

that the following 6-D Log-Euclidean vector can be used 50: 

11 22 33 12 13 23
2 2 2( , , , , , )TL L L L L Ly . (1) 

where the L  coefficients are the matrix logarithm components. More details can be found in 

Lekadir et al. 43. 

Subsequently, for each individual local trabecular at each specific location of the bone, the 

shape and density predictors that correlate most with each fabric tensor were selected such that 
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the prediction power of the statistical model was optimized. For this, we constructed multiple 

linear regressions to the data of the form: 

 (density)

 (shape)

( ) ( ) ( )

( ) ( ) ( )

s s s

i ij j ij ij

s s s

i ij j ij ij

uy a b e

y A v b e
. (2) 

where the upper index (s) denotes the sth sample in the training set. 
ij
a , 

ij
A , 

ij
b  are the coeffi-

cients of the linear regressions, and ( )k
ij
e  is the residual vector of the regressions. We then meas-

ured the predictive power of each density and shape variable at element j  for the prediction of 

the fabric tensor at element i  by calculating the squared sum of the prediction residuals:  

1

 or ( | )
N

T

i j j ij ij
s

r uy v e e . (3) 

The bone shape and density variables with the lowest  or ( | )
i j j

r uy v  values were then selected 

within the predictive model of each specific fabric tensor 
i
y . 

Finally, a non-linear regression model based on partial least squares regression (PLSR) 51, 52 

was estimated for the prediction of each local fabric tensor conditioned on the selected optimal 

predictors. Given a new vector that encapsulates the shape and density predictors 
new
x  and a ker-

nel Gramm function K  used to unfold the underlying nonlinear relationships in the data, the un-

known fabric tensor ̂
i
y  at location i  was predicted using the following equation: 

ˆ ( )
i new i
y K x A  (4) 

where 
i
A  is the optimal regression matrix calculated from the training data as: 

1( )T T

i i i i i i
A KD C KD C Y , (5) 

and 
i
C  and 

i
D  are the PLSR latent matrices. More details on the properties and implementation 

of the kernel PLSR model can be found in 52. 

The advantage of this regression technique is that it explicitly estimates the model parameters 

that best fit the training data, which leads to statistically optimal predictions. Only weak a priori 

assumptions are made about the type of relationship or model between the shape/density infor-

mation and the output tensors (i.e., that it is non-linear).  
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Following the statistical prediction of the missing fabric tensors, some incorrect or noisy pre-

dictions may be present within the resulting microarchitecture, for example due to noise in the 

input images. Therefore, as a final stage of our algorithm, we apply a mean filtering stage 53, 

which replaces each predicted fabric tensor value with the average tensor of its neighbors in the 

volumetric mesh, including itself. This has the effect of eliminating trabecular values which are 

unrepresentative of their surroundings due to noisy predictions. Let ( )V i  be the set of neighbor-

ing elements for each trabecular element i  in the volumetric mesh, as derived from the volumet-

ric mesh (i.e., two elements are neighbors if they are connected by an edge in the tetrahedral 

mesh). The new smoothed tensor vector *

i
y  is calculated from the previously calculated neigh-

boring values ̂
j
y  ( ( )j V i ) as follows: 

,
( )*

,
( )

ˆ
i j j

j V i

i

i j
j V i

w

w

y

y . (6) 

The weights 
,i j
w  are defined as the inverse of the distance between the elements at locations i  

and j  in the volumetric mesh to take into account the relative proximity of the neighbors during 

the smoothing.  

2.6 Finite Element Simulations 

FE-based simulations of simplified femoral and vertebral physiological loading scenarios were 

performed to allow estimation of fracture loads for each subject. In each case, two simulations 

were performed, one using micro-CT- and the second using statistically-derived distributions of 

fabric tensors. Element-wise fabric tensors estimated using each method were converted into 

fourth order compliance tensors, for use in FE computations, using the formulation of Zysset and 

Curnier 22. All simulations were performed using the ANSYS FEA package (www.ansys.com). 

Deformations were assumed to remain in a small strain range, and correspondingly linear elastic 

analyses were performed throughout. Both femur and vertebra FE meshes were generated using 

mesh templates from previous studies 9, 37, 44, 54, wherein mesh convergence analyses were also 

http://www.ansys.com/
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undertaken. The computational meshes for vertebra models employed 10-node tetrahedron ele-

ments, and so a standard displacement-based element formulation with quadratic shape functions 

(known to give reliable results 55) was used. Femur meshes were constructed of 4-node tetrahe-

dron elements and a mixed displacement-pressure formulation was chosen to ensure reliable re-

sults 56. 

For femur datasets, nodes on the distal (cut) surfaces of the models were fully constrained. 

Static loads of 1000 N 57, distributed over a small patch of nodes and with directions approxi-

mately normal to the bone surface, were applied to the femoral heads in the vicinity of the fovea 

capitus, emulating pelvic loading. For the vertebral datasets, an axial compression scenario was 

simulated, in which superior vertebral surfaces were fixed and inferior surfaces were displaced 

vertically by 0.5 mm 57. 

2.7 Estimation of Fracture Load 

Simulation results were firstly compared on the basis of principal strain 
i
 and stress 

i
 

( 1 2 3, ,i ) distributions within the models. Subsequently, these results were used to estimate the 

fracture loads for each subject following an approach similar to that of Pistoia et al. 57. In this 

scheme, local failure of the bone tissue was assumed to occur when it exceeds the material-

dependent critical value of a relevant failure criterion. We employed a maximum principal strain 

(MPS) criterion previously formulated and validated by Schileo in this work 58. More specifical-

ly, bone tissue was assumed to exhibit tension/compression asymmetry such that failure occurs 

when either 
1

0 0073.  or 
3

0 0104. . This criterion has been shown to be an excellent pre-

dictor of bone tissue failure in ex vivo femur experiments 58. Given the quasi-brittle nature of 

bone 59, 60, and of trabecular bone in particular, organ-level fracture (i.e. fracture of the bone as a 

whole, rather than localized failure of individual trabeculae) was then assumed to occur when > 

5% of the elements in the mesh reach failure. We identified the external load level required to 

produce this state as the fracture load F . Since linear analyses were performed, simple scaling 
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of the model loads (or of reaction forces in the case of imposed displacements) and of corre-

sponding solutions was required to estimate the fracture load in each case. 

Using this approach, we obtained for each dataset 1 k N  in the training sample a micro-

CT fracture load ( )k
CT
F  and a statistically-based fracture load( )k

stat
F . For the leave-one-out tests per-

formed in this study (i.e., the dataset used for verification was not included for the training of the 

models), 32N  for the femur datasets and 19N  for the vertebrae.  

Due to the differences in the two types of fabric tensors, and more particularly to the smooth-

ing effect that is common to statistical methods, a systematic (non-random) bias can be expected 

between the two fracture load values. More specifically, while the micro-CT models properly 

incorporate the discontinuities and transitions between the trabeculae found in the real tissue, the 

statistical model produces smooth bone micro-architectures. This is due to the PLSR prediction, 

which like any other eigen-decomposition dimensionality reduction technique, removes small 

(noisy in the statistical sense) components of variability during the predictions. The tensor filter-

ing stage, which is effective for correcting potentially erroneous trabecular predictions, also con-

tributes to more continuous bone microarchitectures than the ones quantified with micro-CT. 

When the resulting fabric tensors are used within simulations, these phenomena lead to a sys-

tematic over-estimation of the fracture load. Fortunately, unless for random prediction errors, 

systematic bias can be easily corrected for with different techniques that exist in the literature 61, 

62. Here, we used a simple linear regression to obtain the final estimated fracture load ( )k

est
F  as 

follows: 

est stat
F F , (7) 

where the systematic bias correction parameters  and  were computed such that the differ-

ences between ( )k
est
F  and ( )k

CT
F  were minimized over the training sample, resulting in: 

1 1 1

2 2

1 1

( ) ( ) ( ) ( )

( ) ( )

,

( ) ( )

N N N
k k k k

stat CT stat CT
k k k

N N
k k

stat stat
k k

N F F F F

N F F

 
(8) 
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1 1

1 ( ) ( )( ).
N N

k k

CT stat
k k

F F
N

 (9) 

3 Experimental Results 

In this section, we compared the simulation results obtained using i) the fabric tensors extracted 

from micro-CT and ii ) those predicted using the proposed statistical approach. For the proposed 

statistical method, all experiments were performed using a leave-one-out approach. For each da-

taset, we obtained a fracture load ( )k
CT
F  based on the fabric tensors extracted from micro-CT and 

another fracture load ( )k
est
F  by using the proposed statistical method (Eq. (7)). We then calculated 

the following relative error measure for each dataset: 

100
( ) ( )

( )

| |
. %

k k

est CT

k

CT

F F

F
. (10) 

Additionally, we quantified the agreement in the estimation of the fracture loads between the mi-

cro-CT and statistical models based on the concordance correlation coefficient (
c
 ) 63. 

3.1 Femur Datasets 

Firstly, first principal stress s 1 and strain e1 distributions in example cases from the femur da-

tasets are shown in Figs. 2 and 3, respectively. Very good correspondence can be seen between 

the solutions produced using micro-CT- and statistical model-derived material anisotropy.  

 

 
***Figure 2 appears here*** 

 

Fig. 2 – First principal stress distributions (Pa) computed for two femur datasets using material 

anisotropy measured from micro-CT (a) and estimated using the proposed statistical approach 

(b). 
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***Figure 3 appears here*** 

 

Fig. 3 – First principal strain computed for two femur datasets using material anisotropy meas-

ured from micro-CT (a) and estimated using the proposed statistical approach (b). 

 

Subsequently, excellent agreement between the computed fracture loads using the two material 

models was found in all cases as shown in Fig. 4, with 98 6. %
c
 . Relative error statistics for 

the estimates are summarized in Table 2. The average relative error equals 1.7% and all the cases 

are estimated with less than 4.8% relative errors, which shows the consistency of the technique.  

 

 
***Figure 4 appears here*** 

 

Fig. 4 – Degree of agreement between the micro-CT (x axis) and the statistical model-based (y 

axis) fracture load estimates, for the 33 femurs (unit in N). 

 

Examples of the locations of failed elements within the femur models are shown in Fig. 5, where 

it can be seen that very good agreement concerning the failure regions within the models is pro-

duced in each case. 

 
***Figure 5 appears here*** 

 

Fig. 5 – Failed elements for two femur datasets using material anisotropy measured from micro-

CT (a) and estimated using the proposed statistical approach (b). 
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3.2 Vertebra Datasets 

Good agreement between the simulation results derived from the micro-CT- and statistical mod-

el-based material models was also obtained for the vertebra datasets. Example first principal 

stress and strain distributions are shown in Figs. 6 and 7, and close correspondence is again ob-

served.  

 

 
***Figure 6 appears here*** 

 

Fig. 6 – First principal stress distributions (Pa) computed for two vertebra datasets using material 

anisotropy measured from micro-CT (a) and estimated using the proposed statistical approach 

(b). 

 
***Figure 7 appears here*** 

 

Fig. 7 – First principal strain computed for two femur datasets using material anisotropy meas-

ured from micro-CT (a) and estimated using the proposed statistical approach (b). 

 

In terms of the computation of the fracture loads for the vertabrae, the correlation of fracture load 

estimates, while slightly lower than for the femur datasets, is very good nonetheless 

( 95 5. %
c
 ) as shown in Fig. 8. Summary error statistics for the vertebra datasets are presented 

in Table 3, with an average relative error for the 20 vertebrae of 4.0%. Only a single case was 

simulated with a relative error over 10%. 
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***Figure 8 appears here*** 

 

Fig. 8 – Degree of agreement between the micro-CT (x axis) and the statistical model-based (y 

axis) fracture load estimates, for the 20 vertebrae (unit in N). 

 

Figure 9 show some examples of the locations of failed elements for vertebral datasets, with, 

again, good agreement concerning the failure regions between the results obtained with micro-

CT and by using the proposed statistical estimates of fabric tensor. 

 

 
***Figure 9 appears here*** 

Fig. 9 – Failed elements for two vertebral datasets using material anisotropy measured from mi-

cro-CT (a) and estimated using the proposed statistical approach (b). 

 

4 Discussion & Conclusions 

In this work, we have demonstrated the viability of estimating patient-specific bone tissue mate-

rial parameters from clinical images using a statistical model of the tissue microarchitecture. Our 

approach allows estimation of the distribution of material fabric tensors throughout individual 

bones, and thereby an estimation of the tissue’s mechanical anisotropy. Whereas micro-CT or 

other similarly high resolution modalities are required to observe and quantify these characteris-

tics directly, our approach requires only relatively low resolution images of the bone, such as 

from routinely acquired CT. Simulation results using micro-CT- and statistically-based estimates 

of anisotropy showed excellent agreement. Given the difficulties, both practical and ethical, in 
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using high resolution modalities in patients, and considering the importance of mechanical ani-

sotropy to overall bone function and strength, this capability is significant for patient-specific 

modeling applications.  

As mentioned, the effectiveness of the proposed approach was assessed by means of simula-

tions of femur and vertebra models using both micro-CT- and statistical model-derived anisotro-

py estimates. In particular, the fracture loads predicted in each case by this means, and for each 

anisotropy estimate, were compared. Fracture loads were selected as a point of focus given their 

clear clinical relevance. Though these predictions were based on a well-established methodology 

57, it should be noted that even in the case of the micro-CT-based values, they remain in silico 

estimates only; i.e., no comparisons with real fracture data were made. However, it is important 

to empahsize that the main goal of the paper is to show that our statistical approach to fabric ten-

sor estimation affords biomechanical simulation results of similar accuracy to those obtained 

when the fabric tensors are measured directly from micro-CT, in other words, verification of the 

numerical procedure rather than validation of the physical model. Similarly, several failure crite-

ria could have been chosen for the computation of the failure loads. However, the comparison 

remains valid as long as the same criterion was used in both the micro-CT and statistical models. 

In this work, we performed our calculations using the MPS criterion, which has been shown to 

be an accurate predictor of failure in experiments with loading configurations that are reasonably 

similar to those in our simulations 58. The simulations thus serve the purposes of the present 

work by demonstrating that in such applications micro-CT-derived material data can, with high 

confidence, be replaced with data derived from clinically feasible lower resolution images, using 

our approach. 

The use of linear elastic FE analysis to investigate fracture behavior may be similarly consid-

ered a limitation of this work. It is commonly considered that bone behaves linear elastic until a 

0.7% strain 64, 65. However, real bone fracture processes may be accompanied by progressive 

degradation and softening as localized failure of tissue constituents occurs, and real fracture 

loads are thus likely to differ from those predicted in linear analyses. Continuum damage formal-
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ism (e.g. 60) provides a more robust basis for such investigations. Again, however, our objective 

in the present work was to verify the effectiveness of the proposed statistical modeling scheme in 

a simulation context, not to validate any particular model of bone failure. For this purpose, the 

described linear analyses are suitable. 

It is worth noting from the experiments that the performance of the proposed technique for the 

estimation of the fracture loads is higher for the femur ( 98 6. %
c
 , average relative error of 

1.7%) than for the vertebra ( 95 4. %
c
 , average relative error of 4.0%). This is an expected 

result as the statistical models were trained with more datasets in the case of the femur (32 in the 

leave-one-out experiments, against 19 for the vertebra), which resulted in a wider coverage of 

variability and increased prediction accuracy. This is a general limitation of statistical methods, 

which require by definition representative training samples to increase the quality of the models. 

While we acknowledge that the number of datasets used in the validation is not very high, it is 

important that the statistical models perform well even when trained with small training samples 

due to the difficulties to find large numbers of donors in practice and thus to collect large ex vivo 

training samples. This is well demonstrated in this paper with the accurate results obtained con-

sistently in all simulations (both femur and vertebra).  

Finally, at a time where there is also an increasing interest in the collection and sharing of high 

resolution ex vivo datasets of bone microarchitectures in the research community (e.g. 44), we 

hope this study will also promote the development and use of statistical predictive methods as 

the one presented in this work for biomechanical simulation of bone structure and function. 
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Table 1. Table summarizing the properties and parameters of the femur and vertebral datasets 

used for the simulations. 

 Femur Vertebra 

Number of datasets 33 20 

Female / male 17 / 16 10 / 10 

Average age (years) 77.8 ± 10.0 78.0 ± 8.1 

Age range (years) 61-95 64-92 

Nominal isotropic resolution 

(µm) 

82 37 

Filtering  Laplace-Hamming filter: 

Epsilon = 0.5 voxel 

Cut-off frequency = 0.4 

voxel 

Gaussian filter: 

Sigma = 5 

Support = 5 voxels 

Thresholding (wrt. the max- 40% 15% 
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imum value) 
 

 

 

Table 2. Relative error statistics for the femur datasets between the micro-CT- and statistical 

model-based fracture load estimates. 

Mean Std Min Max 
Number of datasets  

> 10% errors 

1.7 1.2 0.3 4.8 0 

 

 

 

Table 3. Relative error statistics for the vertebra datasets between the micro-CT- and statistical 

model-based fracture load estimates. 

Mean Std Min Max 
Number of datasets  

> 10% errors 

4.0 2.9 0.6 11.9 1 
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