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Abstract

Low trauma fractures are amongst the most frequently encountered problems in the ehnical a
sessment and treatment of bones, with dramatic health consequences for individuals and high
financial costs for health systems. Consequently, significant research efforts have been dedicated
to the development of accurate computational models of bone biomechanics and stremgth. Ho
ever, the estimation of the fabric tensors, which describe the microarchitecture of the bone, has
proven to be challenging using in vivo imaging. On the other hand, existing research has shown
that isotropic models do not produce accurate predictions of stress states within the bone, as the
the material properties of the trabecular bone are anisotropic. In this paper, we present the first
biomechanical study that uses statistically-derived fabric tensors for the estimation of bone
strength in order to obtain patient-specific results. We integrate a statistical predictive model of
trabecular bone microarchitecture previously constructed from a sample of ex vivo mices-CT d
tasets within a biomechanical simulation workflow. We assess the accuracy and flexibility of the
statistical approach by estimating fracture load for two different databases and bone sites, i.e.

the femur and the T12 vertebra. The results obtained demonstrate good agreement between the
statistically-driven and micr&T-based estimates, with concordance coefficients of 98.6% and

95.5% for the femur and vertebra datasets, respectively.

Keywords: Bone fracture, finite element methods, bone microarchitecture, statistical predictive

models, fracture load estimation.
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1 Introduction

Fractures are amongst the most frequently encountered problems in the clinical assessment and
treatment of bone@ Typically, fractures are caused by the application of a load that exceeds
bone strength| In particular, bones are susceptible to fracture even under small loads when the
bone strength is affected due to b@baormalities such as osteoporc@l%l The pathology of
osteoporosis is very common worldwigand it is characterized by significant reduction in bone
mass and deterioration of bone microarchitedt is estimated that 1 out of 3 women and 1

out of 5 men are at risk of a low trauma fracture during their lifetime. Due to the dramatic health
consequences for individu@@ and the high financial costs for health systElmrcurate pre-

diction and effective prevention of low trauma bone fractures is of paramount importance.

To achieve this goal, techniques are required to assess the quality, and eventually the fragility,
of bones. However, direct subject-specific estimation of bone strength using in vivo ime&ging r
mains challenging. Instead, significant research efforts have been dedicated to the development
of computational biomechanical models of bones. With these models, one can simulate the b
havior of the bone under different loading conditions and estimate the load that is required to

cause the fracture of the bone, i.e. the fracture load, as an indicator of bone strengthmifor exa

ple, a large fracture load is an indication of high Stl‘@ll‘l% i e o b B 14|15 These models arexe

—

pected to play an important role in orthopedics for in silico personalized selection of bone-

implant configurations that increase the strength/stability of the BEIﬁE &

Because of the geometric and constitutive complexity of bones, stress/strain simulations are
usually performed using advanced numerical tools such as the Finite Element (FE) method.
However, the accuracy, and ultimately, the clinical translation of such computational biomechan-
ical models depend currently on one essential requirement, i.e., that all the properties of the bone
that contribute to its biomechanical function at both the macro- and micro-scale levels-are est

mated. Thus, it is important that the computational models include the trabecular micrearchite

ture, which is usually done by estimating the local fabric te ?§|:"rr’~ 22l Trabecular microaréh

Submitted to Ann. Biomed. Eng.SI on Computational Biomechanics for Patient-Specific Applications



Estimation of Bone Strength using StatistiEabric Tensors 4

tecture has been shown to play an important role in determining bone quality and & gth

2349128 However, the subject-specific estimation of the fabric tensors requires iimagimng of

the cancellous bone at high resolution, and this remains technically challenging. Md&BT

example, involves significant radiation and is thus limtteex vivo research studigy?% On the

other hand, high resolution peripheral quantitative CT (HR-p@rﬁ)mostly used for the study

of the distal parts of the skeleton (e.g., tibia and v\f‘RHﬂl"32 and cannot be applied to more

proximal or medial skeletal sites such as the femur and vertebra for which bone fractures are the
most common.

As a consequence, most bone biomechanical studies have considered the tissue to Ibe mechan

cally isotropic, as illustrated in these recent w §3| 1311617 34"13 even though the material

properties of bonearein essence orthotrodi®|243%®’l Some methods have been proposed to

estimate the trabecular fabric tensors directly fromelowsolution imaging such as from dalin

cal CT 38||39||4°||41 However, such approaches can lack accuracy due to the microscopic scale of

the trabeculae, and a recent study with the vertebrae produced inaccurate predictions both for the
eigenvalues and eigenvectors of the fabric ten@n@onsequently, in vivo estimation of ttra-
beculae remains a challenge as highlighted in these recent review papers on fracture @diction
and implant desi

Recently, we presented the first statistical approach for the estimation of trabeculanbone
saropy based on a training database of ex vivo micro-CT da@é@re specifically, pred+
tive models were constructed to relate the known bone shape and density information to the
missing trabecular fabric tensors. We addressed the large variability in vertebral micro-
architecture by developing trabecula-specific predictive models with optimal predictor selection
for each trabecular location. Furthermore, we developed a kernel-based nonlinear regression
modelto extrapolate the values of the unknown fabric tensors even in the presence of amall trai
ing samples. This is particularly important due to the practical difficulties in finding large nu

bers of donors and thus in collecting large training ex vivo samples. Our results demonstrated
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improved predictions of the fabric tensors over existing estimlamd consistent results

across datasets.

In this paper, we exteed our previous work with the following three objectives:

1)

2)

3)

Firstly, we integrated the statistical predictive models of fabric tensors within a biomechan-
ical simulation workflow that includes all important properties of the bones, i.e., shape,
bone density, and micro-architecture. To the best of our knowledge, this is the firgt biom
chanical study that uses statistically-derived fabric tensors for patient-specific simultion of
bone biomechanics.

We evaluated whether the accuracy of the proposed statistical method for the estimation of
fabric tensors translates into similar fidelity in the context of biomechanical simulations.
For this, we also introduce a model for correcting the non-random bias due to thie statist
cally-derived fabric tensors.

Finally, we assegsl the flexibility and applicability of the proposed technique by running
simulations for different databases and bone sites the femur and the vertebrae. These
bones have different geometric and functional properties. The femur is a long bone that is
responsible for main body support, while the vertebrae are small bone structures that enter
in the structural support and stability of the back. Both bone sites, however, are hgghly su

ceptible to bone fractur

2 Material & Methods

In this study we performeBE simulations for a total of 53 bone samples, including 33 proximal

femurs and 20 vertebral bones (T12). The goal was to compare the simulation results obtained

from ex vivo high resolution micro-CT images with those estimated based on the statistically-

derived fabric tensors. The inputs of our statistical predictive model are low resolution estimates

of shape and bone density obtained from low resolution image data, while the outputs are the st

tistically-derived fabric tensors which are proposed as an alternative to micro-CT fabric tensors.
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The outputs of the simulations are patient-specific FE models which account for bonedieterog
neity and trabecular bone local anisotropy, which can be used to estimate fracture loads using
existing failure criteria. Figure 1 summarizes schematically the main stages involved in this

study, which are also detailed in the subsequent subsections.

***Eigure 1 appears here***

Fig. 1 - Schematic diagram illustrating the main steps involved in the statistical approach for the
estimation of fabric tensors, subsequently used in patient-specific biomechanical simulation and
fracture load estimationX represents the shape and bone density input variables of the- statist

cal model, whileY represents the output (statistically-predicted) fabric tensors.

2.1 Datasets

Since high-resolution in vivo imaging of the bone trabeculae does not exist as yet, this study is
performed based on cadaver bone datasets. More specifically, the simulations are run in this
work for a total of 53 ex vivo micro-CT image data that include 33 proximal femurs and 20 T12
vertebrae (see Table 1 for a complete summary of the properties of the datasets). The donors had
dedicated their body by testament to the Institute of Anatomy of the LMU in Munich or the Inst
tute of Anatomy of the VU Amsterdam during life after Ethics approval for the purpose of teach-
ing and research.

For the femur, 33 cases ex vivo micro-CT images were obtained from an online base
drawn from a population of 17 female donors and 16 male donors, and with an average age of
77.8 = 10.0 years. The samples were initially stored in a buffered formalin solution. The images

were acquired using micro-CT scans (XtremeCT, Scanco Medical AG, Brittisellen, Switzerland)
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of the most proximal part (~10 cm in length), with a nominal isotropic resolution of 82 um. The
images were filtered and processed according to the protocol recommended by the manufacturer.
The 20 donors for the vertebral bones consisted of ten male and ten female, with an average
age of 78.0 £ 8.1 years (range 64-92 years). The T12 vertebrae were then scanned it€C& micro-
system (microCT 80, Scanco Medical AG, Briittisellen, Switzerland) at a nominal isotropic reso-

lution of 37 um using a 2048x2048 in plane image matrix. The scanner energy was 70 kV (114

HA).
2.2 Shape Extraction

The first stage of the simulation study involves the generation of subject-specific volumetric
meshes of the bone morphology. We used a robust shape morphing approach that involved two
stages, i.e., image segmentation and template mapping. Firstly, in order to define the trabecular
bone, the original images were filtered and segmented using a thresholding procedure. For the
femur, we applied a Laplace-Hamming filter (Laplace-epsilon = 0.5 voxel, Hamming-cetoff fr
guency = 0.4 voxel) and a segmentation threshold of 40% of the maximum possible value. For
the vertebra, we used instead a strong Gaussian filter (sigma = 5, support = 5 voxels) and
threshold of 15% of the maximum gray-value. The difference in the filtering method is due to the
higher-resolution of the vertebral images, for which a strong Gaussian filter is suitable. In con-
trast, the Laplace-Hamming filter is used for the femur because it better preserves the structures
at such resolution.

Additional, the most periosteal 1 mm region of the trabecular bone as obtained from the
thresholding was removed from the trabecular region, to ensure that no partial cortical bone is
considered as trabecular bone.

Subsequently, we applied shape morphing to obtain the volumetric meshes for all bones with
point correspondence (i.e., each element number identifies an element that, with good approx
mation, is at the same specific anatomical location in all samplés)ised previously deve

oped reference mesh templates for both the f@\and the verteb@ as estimated from large
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CT databases of bones presenting average morphological characteristics. The reference templates
were then mapped onto the individual bones by using the thin plate spline te%lnl@meana—

tomical markers were first manually defined on the segmented images (8 landmarks éer the f
mur, 20 for the vertebra). Finally, the obtained meshes ced§t70,776 and 51,119 tetrahe-

dral elements for the femur and the vertebra, respectively.

2.3 Bone Density

To derive the values of the bone density, a subsampling of the high resolution images-was pe
formed based on a new resolution of 4 mm. At each element centroid, a spherical region of 4 mm
in diameter was defined and the bone density for that region was determined from the segmented
micro-CT scans as the fraction of bone voxels over the total number of voxels in the spherical

region.

2.4 Micro-CT Fabric Tensors

The fabric tensors were firstly quantified from the high-resolution micro-CT images to serve as
the reference results for the evaluations and for statistical model training. For all the elements of
the volumetric meshes, we calceldin the micro-CT imagethe Mean Intercept Length tensor
based on the same spherical regions from previous section, using the software accompanying
the microCT scanner (IPL, Scanco Medical AG, Brittisellen, Switzerland).

It is important to note that no fabric was calculated for cortical bone in this study. Instead, a
unit fabric tensor was defined for cortical bone elements. Furthermore, the density of the cortical
bone was determined as the fraction of bone voxels over the total number of voxels within the

element volume.

2.5 Statistical Fabric Tensors

In this section we briefly describe the statistical approach used to estimate the fabric tensors. The
fundamental idea was to determine statistically the relationship between the low resolution in-

formation found in clinical bone imaging such as CT (i.e., shape and density) and the trabecular
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fabric tensors as extracted from high-resolution image data (micro-CT in our case). Tlae estim
tion of high resolution information from laevresolution image data is a well-known problem in
computer visio In our work, we used a database /of ex vivo micro-CT datasets as a
training sample to build the statistical predictive model, by following four mairestayfabric
tensor alignment, 2) fabric tensor transformation, 3) optimal selection of shape/density predi
tion, and 4) construction of a nonlinear regression model.

The tensor alignment step of the algorithm was necessary in our work due to the differences in
shape and pose between the acquired datasets. To resolve this issue, all fabric tensers were
oriented within a common coordinate system before the actual construction of the statistical
model was carried out. More specifically, Procrustes an@s@as applied to align all the fab-
ric tensors before subsequent statistical anabysisalculating the local rigid transformatioe-b
tween corresponding tetrahedrons in the bone sample and in the reference mesh, and the obtained
rotation matrices were then applied to reorient the eigenvectors of the fabric tensors.

Secondly, the proposed technique required a suitable mathematical representation of the fabric
tensors, as they are symmetric tensors and thus lie on a Riemannian r@n‘ﬁbld means we
cannot use standard statistical tools, which can only be applied to variables that lie on Euclidean
spaces, as this is not the case for symmetric tensors. To resolve this issue, we implemented the
well-known Log-Euclidean framework in order to transform the tensor into an Euclidean space
where the new variables can be manipulated using standard statistical tools. It has been shown

that the following 6-D Log-Euclidean vector can be @d

y= (Lll’ Ly Ly \/EL 12 \/72[’ 13 \/72[’ ng ' (1)

where the L coefficients are the matrix logarithm components. More details can be found in

Lekadir et a

Subsequently, for each individual local trabecular at each specific location of the bone, the

shape and density predictors that correlate most with each fabric tensor were selected such that
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the prediction power of the statistio@odel was optimized. For this, we constructed multiple

linear regressions to the data of the form:

vy =au” +b, +e (density,

/A

vy =AY +b, +e" (shape) @
where the upper index (s) denotes tHesample in the training sea , A, b, are the coelf
cients of the linear regressions, aﬁﬁ is the residual vector of the regression® thén neas-
ured the predictive power of each density and shape variable at elgrfmnthe prediction of
the fabric tensor at elementby calculating the squared sum of the prediction residuals:
N

r(y, |u, orv,) = ZeijTei], . (3)

1
The bone shape and density variables with the low@st| . orv ) values were then selected
within the predictive model of each specific fabric tengar

Finally, a non-linear regression model based on partial least squares regressioR)
was estimated for the prediction of each local fabric tensor conditioned on the selected optimal
predictors. Given a new vector that encapsulates the shape and density predictansl a ke
nel Gramm functiorK used to unfold the underlying nonlinear relationships in the data, the un-

known fabric tensoy, at locationi was predicted using the following equation:

y, = K(x,,)A, (4)

where A  is the optimal regression matrix calculated from the training data as:

A =KD (C'KD,) 'C'Y,, (5)
andC. andD, are the PLSR latent matrices. More details on the properties and implementation
of the kernel PLSR model can be founn

The advantage of this regression technique is that it explicitly estimates the model parameters

that best fit the training data, which leads to statistically optimal predictions. Only weak a priori
assumptions are made about the type of relationship or model between the shape/density info

mation and the output tensors (i.e., that it is non-linear).
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Following the statistical prediction of the missing fabric tensors, some incorrect or n@isy pr
dictions may be present within the resulting microarchitecture, for example due to noise in the
input images. Therefore, as a final stage of our algorithm, we apply a mean fiIterinEIstage
which replaces each predicted fabric tensor value with the average tensor of its neighbors in the
volumetric mesh, including itself. This has the effect of eliminating trabecular values which are
unrepresentative of their surroundings due to noisy predictiond/ igtbe the set of neighbo
ing elements for each trabecular eleméemt the volumetric mesh, as derived from the voltime
ric mesh (i.e., two elements are neighbors if they are connected by an edge in the tetrahedral
mesh). The new smoothed tensor veqt@ris calculated from the previously calculated neigh-

boring valuesy  (j € V(7)) as follows:

Y, :Z—w (6)

The WeightSwM are defined as the inverse of the distance between the ¢eahdwcations:
and j in the volumetric mesh to take into account the relative proximity of the neighbors during

the smoothing.

2.6 Finite Element Simulations

FE-based simulations of simplified femoral and vertebral physiological loading scenarios were
performed to allow estimation of fracture loads for each subject. In each case, two simulations
were performed, one using mic@F- and the second using statistically-derived distributions of
fabric tensors. Element-wise fabric tensors estimated using each method were converted into

fourth order compliance tensors, for usé-Eacomputations, using the formulation of Zysset and

Curnie All simulations were performed using the ANSYS FEA packiagew.ansys.comp

Deformations were assumed to remain in a small strain range, and correspondingly linear elastic

analyses were performed throughout. Both femur and vertebra FE meshes were generated using

mesh templates from previous stqu?u%7 44>l wherein mesh convergence analyses were also
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undertaken. The computational meshes for vertebra models employed 10-node tetrabedron el
ments, and so a standard displacement-based element formulation with quadratic shape functions
(known to give reliable resu was used. Femur meshes were constructed of 4-nodectetrah
dron elements and a mixed displacement-pressure formulation was chosen to ensureereliable r
sult

For femur datasets, nodes on the distal (cut) surfaces of the models were fully constrained.
Static loads of 1000 distributed over a small patch of nodes and with directions ajpprox
mately normal to the bone surface, were applied to the femoral heads in the vicinity of the fovea
capitus, emulating pelvic loading. For the vertebral datasets, an axial compression scenario was

simulated, in which superior vertebral surfaces were fixed and inferior surfaces were displaced

vertically by 0.5 m

2.7 Estimation of Fracture Load

Simulation results were firstly compared on the basis of principal straiand stresso,

(7 = 1 2 3) distributions within the models. Subsequently siresults were used to estimate the
fracture loads for each subject following an approach similar to that of Pistoi@tlalthis
scheme, local failure of the bone tissue was assumed to occur when it exceeds the material-
dependent critical value of a relevant failure criterion. We employed a maximum principal strain
(MPS) criterion previously formulated and validated by Schitetis Wor More specifick

ly, bone tissue was assumed to exhibit tension/compression asymmetry such that failure occurs

when eitheﬂsl‘ > 0.0073 or |¢,| > 0.0104. This criterion has been shown to be an excelles pr

&3

dictor of bone tissue failure in ex vivo femur experimgtitsGiven the quasi-brittle nature of

bone 59|6° and of trabecular bone in particular, organ-level fracture (i.e. fracture of the bone as a

whole, rather than localized failure of individual trabeculae) was then assumed to occur when >
5% of the elements in the mesh reach failure. We identified the external load level required to

produce this state as the fracture ldad Since linear analyses were performed, simple scaling
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of the model loads (or of reaction forces in the case of imposed displacements) and of corre-
sponding solutions was required to estimate the fracture load in each case.

Using this approach, we obtaithfor each dataset< k < N in the training sample a micro-
CT fracture loadr';). and a statistically-based fracture Id&d . For the leave-one-out testspe
formed in this study (i.e., the dataset used for verification was not included for the training of the
models), N = 32 for the femur datasets and = 19 for the vertebrae.

Due to the differences in the two types of fabric tensors, and more particularlystoobidn-
ing effect that is common to statistical methods, a systematic (non-random) bias can be expected
between the two fracture load values. More specifically, while the micro-CT models properly
incorporate the discontinuities and transitions between the trabeculae found in the real tissue, the
statistical model produces smooth bone micro-architectures. This is due to the PLSR prediction,
which like any other eigen-decomposition dimensionality reduction technique, removes small
(noisy in the statistical senseomponents of variability during the predictions. The tensorilte
ing stage, which is effective for correcting potemyiarroneous trabecular predictions, atso-
tributes to more continuous bone microarchitectures than the ones quantified with micro-CT.
When the resulting fabric tensors are used within simulations, these phenomena lead to a sys-
tematic over-estimation of the fracture load. Fortunately, unless for random prediction errors,
systematic bias can be easily corrected for with different techniques that exist in the Iilélrature
Here, we used a simple linear regression to obtain the final estimated fractun@;it oad

follows:

F,=afF,, +6, (7)

stat

where the systematic bias correction parameteed 3 were computed such that the diffe

ences betweet, and F';) were minimized over the training sample, resulting in:

N

N N
N FuFier = 2 Fud Fx -

k=1 k=1 k=1

N N
NY (B = Qo FL)

o =
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1 > k k
b= O Eer =B FL). (©)

N
k=1 k=1

3 Experimental Results

In this section, we compared the simulation results obtained using i) the fabric tensors extracted
from micro-CT andi) those predicted using the proposed statistical approach. For the proposed
statistical method, all experiments were performed using a leave-one-out approach. Far each d
taset, we obtamd a fracture IoadF/f?T based on the fabric tensors extracted from micro-CT and
another fracture Ioatﬁji’? by using the proposed statistical method (Eg. (7)). We then calculated
the following relative error measure for each dataset:
K K
B~ B | 100%. (10)

(k)
}W/ICT

Additionally, we quantified the agreement in the estimation of the fracture loads betwean the m

cro-CT and statistical models based on the concordance correlation coefﬁg@ (

3.1 Femur Datasets

Firstly, first principal stress, and straing distributions in example cases from the fema+ d
tasets are shown in Figs. 2 and 3, respectively. Very good correspondence can be seen between

the solutions produced using midBI- and statistical model-derived material anisotropy.

***Eigure 2 appears here***

Fig. 2— First principal stress distributions (Pa) computed for two femur datasets using material

anisotropy measured from micro-CT (a) and estimated using the proposed statistical approach

(b).
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***Eigure 3 appears here***

Fig. 3— First principal strain computed for two femur datasets using material anisotropy mea

ured from micro-CT (a) and estimated using the proposed statistical approach (b).

Subsequently, excellent agreement between the computed fracture loads using the two material
models was found in all cases as shown in Fig. 4, with 98.6% . Relative error statistics for
the estimates are sumarized in Table 2. The average relative error equals 1.7% and all the cases

are estimated with less than 4.8% relative errors, which shows the consistency of the technique.

***Eigure 4 appears here***

Fig. 4— Degree of agreement between the miC{x axis) and the statistical model-based (y

axis) fracture load estimates, for the 33 femurs (unit in N).

Examples of the locations of failed elements within the femur models are shown in Fig. 5, where
it can be seen that very good agreement concerning the failure regions within the models is pro-

duced in each case.

***Eigure 5 appears here***

Fig. 5— Failed elements for two femur datasets using material anisotropy measured from micro-

CT (a) and estimated using the proposed statistical approach (b).
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3.2 Vertebra Datasets

Good agreement between the simulation results derived from the @ilerand statistical mod-
el-based material models was also obtained for the vertebra datasets. Example first principal
stress and strain distributions are shown in Figs. 6 and 7, and close correspondence is again ob-

served.

***Eigure 6 appears here***

Fig. 6 First principal stress distributions (Pa) computed for two vertebra datasets using material

anisotropy measured from micro-CT (a) and estimated using the proposed statistical approach

(b).

***Eijgure 7 appears here***

Fig. 7— First principal strain computed for two femur datasets using material anisotropy mea

ured from micro-CT (a) and estimated using the proposed statistical approach (b).

In terms of the computation of the fracture loads for the vertabrae, the correlation of fracture load
estimates, while slightly lower than for the femur datasets, is very good nonetheless

(p, = 95.5%) as shown in Fig. 8. Summary error statistics for the vertebra datasets are presented
in Table 3, with an average relative error for the 20 vertebrae of 4.0%. Only a single case was

simulated with a relative error over 10%.

Submitted to Ann. Biomed. Eng.SI on Computational Biomechanics for Patient-Specific Applications



Estimation of Bone Strength using StatistiEabric Tensors 17

***Eigure 8 appears here***

Fig. 8— Degree of agreement between the micro-CT (x axis) and the statistical model-based (y

axis) fracture load estimates, for the 20 vertebrae (unit in N).

Figure 9 show some examples of the locations of failed elements for vertebral datasets, with,
again, good agreement concerning the failure regions between the results obtained with micro-

CT and by using the proposed statistical estimates of fabric tensor.

***Eigure 9 appears here***

Fig. 9— Failed elements for two vertebral datasets using material anisotropy measured-from m

cro-CT (a) and estimated using the proposed statistical approach (b).

4 Discussion & Conclusions

In this work, we have demonstrated the viability of estimating patient-specific bone tisgde mat
rial parameters from clinical images using a statistical model of the tissue microarchitecture. Our
approach allows estimation of the distribution of material fabric tensors throughout individual
bones, and therebgn estimation of the tissue’s mechanical anisotropy. Whereas micro-CT or

other similarly high resolution modalities are required to observe and quantify these chsracteri
tics directly, our approach requires only relatively low resolution images of the bone, such as
from routinely acquired CT. Simulation results using miCib-and statistically-based estimates

of anisotropy showed excellent agreement. Given the difficulties, both practical and ethical, in
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using high resolution modalities in patients, and considering the importance of mechanical an
sotropy to overall bone function and strength, this capability is significant for patient-specific
modeling applications.

As mentioned, the effectiveness of the proposed approach was assessed by meana-of simul
tions of femur and vertebra models using both m€ie-and statistical model-derived anisotro-
py estimates. In particular, the fracture loads predicted in each case by this means, and for each
anisotropy estimate, were compared. Fracture loads were selected as a point of focus given their
clear clinical relevance. Though these predictions were based on a well-established methodology
it should be noted that even in the case of the n@drddased values, they remain in silico
estimates only; i.e., no comparisons with real fracture data were made. However, it is important
to empahsize that the main goal of the paper is to show that our statistical approach to fabric ten-
sor estimation affords biomechanical simulation results of similar accuracy to those obtained
when the fabric tensors are measured directly from micro-CT, in other words, verification of the
numerical procedure rather than validation of the physical model. Similarly, several failexe crit
ria could have been chosen for the computation of the failure loads. However, the comparison
remains valid as long as the same criterion was used in both the micro-CT and statistical models.
In this work, we performed our calculations using the MR®rion, which has been shown to
be an accurate predictor of failure in experiments with loading configurations that are reasonably
similar to those in our simulatio@ The simulations thus serve the purposes of the present
work by demonstrating that in such applications miCieederived material data can, with high
confidence, be replaced with data derived from clinically feasible lower resolution images, using
our approach.

The use of linear elasti€E analysis to investigate fracture behavior may be similarly consid-
ered a limitation of this work. It is commonly considered that bone behaves linear elastic until a
0.7% strai However, real bone fracture processes may be accompanied by progressive
degradation and softening as localized failure of tissue constituents occurs, and real fracture

loads are thus likely to differ from those predicted in linear analyses. Continuum damade forma
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ism (e.g@ provides a more robust basis for such investigations. Again, however, our objective
in the present work was to verify the effectiveness of the proposed statistical modeling scheme in
a simulation context, not to validate any particular model of bone failure. For this purpose, the
described linear analyses are suitable.

It is worth noting from the experiments that the performance of the proposed technique for the
estimation of the fracture loads is higher for the femar= 98.6% , average relative error of
1.7%) than for the vertebrgo(= 95.4%, average relative error of 4.0%). This is an expected
result as the statistical models were trained with more datasets in the case of the femur (32 in the
leave-one-out experiments, against 19 for the vertebra), which resuléedider coverage of
variability and increased prediction accuracy. This is a general limitation of statistical methods,
which require by definition representative training samples to increase the quality of the models.
While we acknowledge that the number of datasets used in the validation is not very high, it is
important that the statistical models perform well even when trained with small training samples
due to the difficulties to find large numbers of donors in practice and thus to collect large ex vivo
training samples. This is well demonstrated in this paper with the accurate results obtained con-
sistently in all simulations (both femur and vertebra).

Finally, at a time where there is also an increasing interest in the collection and sharing of high
resolution ex vivo datasets of bone microarchitectures in the research commun@,(wg.
hope this study will also promote the development and use of statistical predictive methods as

the one presented in this work for biomechanical simulation of bone structure and function.
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tistical model, whileY represents the output (statistically-predicted) fabric tensors.

2. First principal stress distributions (Pa) computed for two femur datasets using material ani-
saropy measured from micro-CT (a) and estimated using the proposed statistical approach
(b).

3. First principal strain distributions computed for two femur datasets using material anisotropy
measured from micro-CT (a) and estimated using the proposed statistical approach (b).

4. Degree of agreement between the micro-CT (x axis) and the statistical model-basis)l (y
fracture load estimates, for the 33 femur datasets (units are N).

5. Failed elements for two femur datasets using material anisotropy measured from micro-CT

(a) and estimated using the proposed statistical approach (b).
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6. First principal stress distributions (Pa) computed for two vertebra datasets using material an

sotropy measured from micro-CT (a) and estimated using the proposed statistical approach

(b).

7. First principal strain computed for two femur datasets using material anisotropy measured

from micro-CT (a) and estimated using the proposed statistical approach (b).

8. Degree of agreement between the micro-CT (x axis) and the statistical modelybasisjl (

fracture load estimates, for the 20 vertebra datasets (units are N).

9. Failed elements for two vertebral datasets using material anisotropy measured from micro-CT

(a) and estimated using the proposed statistical approach (b).

Table 1. Table summarizing the properties and parameters of the femur and vertebral datasets

used for the simulations.

Epsilon = 0.5 voxel
Cut-off frequency = 0.4

voxel

Femur Vertebra
Number of datasets 33 20
Female / male 17/16 10/10
Average age (years) 77.8+£10.0 78.0+8.1
Age range (years) 61-95 64-92
Nominal isotropic resolutiof 82 37
(Hm)
Filtering Laplace-Hamming filter: Gaussian filter:

Sigma=5

Support =5 voxels

Thresholding (wrt. the max-

40%

15%
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imum value)

Table 2. Relative error statistics for the femur datasets between the @ikcrand statistical

model-based fracture load estimates.

Number of dataset
Mean Std Min Max
> 10% errors

1.7 1.2 0.3 4.8 0

Table 3. Relative error statistics for the vertebra datasets between the Gliermad statistical

model-based fracture load estimates.

Number of dataset
Mean Std Min Max
> 10% errors

4.0 2.9 0.6 11.9 1
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