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ABSTRACT

Recent probabilistic model checking techniques can verify relia-
bility and performance properties of software systems affected by
parametric uncertainty. This involves modelling the system be-
haviour using interval Markov chains, i.e., Markov models with
transition probabilities or rates specified as intervals. These inter-
vals can be updated continually using Bayesian estimators with
imprecise priors, enabling the verification of the system properties
of interest at runtime. However, Bayesian estimators are slow to
react to sudden changes in the actual value of the estimated param-
eters, yielding inaccurate intervals and leading to poor verification
results after such changes. To address this limitation, we introduce
an efficient interval change-point detection method, and we inte-
grate it with a state-of-the-art Bayesian estimator with imprecise
priors. Our experimental results show that the resulting end-to-end
Bayesian approach to change-point detection and estimation of
interval Markov chain parameters handles effectively a wide range
of sudden changes in parameter values, and supports runtime prob-
abilistic model checking under parametric uncertainty.
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1 INTRODUCTION

Detecting sudden changes in the parameters of a software or soft-
ware-controlled system has a plethora of important applications. For
a system undergoing development, such changes may correspond
to defects being introduced in the code base, and knowing the time
when the changes occurred can help identify and remove these
defects. For a running system, sudden parameter changes may
correspond to faults in a system component such as a disk drive
storing a system database, or a sensor used by a robot. Alternatively,
they may be due to violations of service-level agreements by third-
party components such as a public cloud service, or to cyberattacks,
or to environmental changes such as a sudden increase in the rate of
requests received by a web server. In all these scenarios, detecting
the change supports the identification of its cause, the analysis of its
impact on the system, and (if needed) the mitigation of this impact.

Given these benefits, numerous change-point detection (CPD)
methods have been developed to estimate the time of such sudden
changes and the new values of the affected parameters. These meth-
ods have been successfully used in domains ranging from software
engineering [20, 25] to medicine [38] and finance [46], and are
described in multiple surveys, e.g., [1, 17, 42, 44].

In this paper, we focus on self-adaptive systems whose closed-
loop software controllers use probabilistic model checking of Mar-

kovian models at runtime [11, 13, 29] to re-verify the satisfaction of
non-functional requirements as new observations of the unknown
model parameters are obtained [9, 30]. Consequently, the prompt
detection of sudden changes can contribute to the timely identifica-
tion of requirement violations and support adaptation to recover
from such violations.

Our paper introduces an interval Change-Point Detection (iCPD)
method that complements existing CPD methods by efficiently
solving an important and previously unexplored variant of the
problem. The key distinguishing features of iCPD (and thus the
main contributions of our paper) are summarised below:
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(1) To the best of our knowledge, iCPD is the first method that tack-
les the detection of sudden changes in systems affected by para-
metric uncertainty and verified through the probabilistic model
checking of interval Markov chains. Interval Markov chains
are Markov models whose transition probabilities (for discrete-
time Markov chains) and transition rates (for continuous-time
Markov chains) are expressed as intervals due to the epistemic
and/or aleatory uncertainty affecting the corresponding system
parameters. Examples of such parameters include the success
probability of a web service invocation and the measurement
rate of a sensor, as incomplete knowledge and parametric vari-
ability often mean that these can only be estimated correctly
using intervals such as [0.92, 0.95] and [6s−1, 7.5s−1], respec-
tively. The use of point estimates for these parameters masks
their uncertainty [6]; for Markov models, this can lead to highly
inaccurate verification results that may endorse invalid software
engineering decisions [12, 39].

(2) iCPD is integrated with a recently developed Bayesian estimator

with imprecise priors [45], and computes new intervals of priors
for this estimator after each sudden change detected in the
monitored transition parameter (i.e., probability or rate) of a
Markov chain. Bayesian estimators with imprecise priors (also
called robust Bayesian estimators) [6] associate intervals with the
uncertain parameters of a system; they use intervals as priors,
and their posteriors are also intervals.

(3) Its integration with a robust Bayesian estimator enables iCPD
to decide in constant time whether a new system observation
(corresponding to a state transition in the Markov chain) should
trigger the full CPD analysis, which is computationally more
expensive. This lightweight decision mechanism makes iCPD
particularly suited for online use, and is missing from traditional
CPD methods.

(4) Used in conjunction, iCPD and the robust Bayesian estima-
tor [45] form an end-to-end Bayesian approach to change-point
detection and estimation of interval Markov chain parameters.
The approach supports the effective runtime probabilistic model

checking of systems affected by parametric uncertainty.
We structured the rest of the paper as follows. Section 2 provides

the required background on probabilisticmodel checking and robust
Bayesian estimators. Our iCPD change-point detection method and
its integration with a robust Bayesian estimator are described in
Section 3, and their effectiveness is evaluated in Section 4. Finally,
Section 5 compares iCPD to existing CPD methods, and Section 6
summarises the paper and suggests areas of future work.

2 PRELIMINARIES

2.1 Probabilistic model checking

Probabilistic model checking (PMC) is a formal technique for veri-
fying the correctness, reliability, and performance of systems char-
acterised by stochastic behaviour [3, 36], where this behaviour is
modelled by Markov chains. Formally, a Markov chain is a tuple
𝑀 = (𝑆, 𝑠0, 𝛿), where 𝑆 is a finite set of states, 𝑠0 ∈ 𝑆 is the initial
state, and 𝛿 is a state-transition function defined as:
• 𝛿 : 𝑆 × 𝑆 → [0, 1] for discrete-time Markov chains (DTMCs),
with 𝛿 (𝑠𝑖 , 𝑠 𝑗 ) = 𝑝𝑖 𝑗 giving the probability of transition between
states 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆 , and

∑
𝑠 𝑗 ∈𝑆 𝛿 (𝑠𝑖 , 𝑠 𝑗 ) = 1;

• 𝛿 : 𝑆 × 𝑆 → R≥0 for continuous-time Markov chains (CTMCs),
with 𝛿 (𝑠𝑖 , 𝑠 𝑗 ) = 𝑟𝑖 𝑗 giving the rate of transition between states
𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆 .
PMC supports the verification of discrete-time properties (e.g.,

successful completion probability of a protocol) using DTMCs, and
of continuous-time properties (e.g., expected execution time of an
application, or energy consumption of a device) using CTMCs. To
this end, the states of Markov models are labelled with atomic
propositions that hold in those states, and the properties to verify
are expressed in temporal logics over these atomic propositions,
e.g., probabilistic temporal tree logic (PCTL) [8, 33] for DTMCs
and continuous stochastic logic (CSL) [2, 4] for CTMCs. Efficient
PMC algorithms are available, and are implemented by widely used
probabilistic model checkers such as PRISM [37] and Storm [21].

Recent advances in PMC [12, 18, 19, 40] support the verifica-
tion of interval Markov chains [35]. In these models, the transition
probabilities of DTMCs and the transition rates of CTMCs can be
specified as intervals, enabling the representation of parametric
uncertainty for the modelled systems. Accordingly, the verification
of interval Markov chains with automated tools such as Prism-
PSY [18] and FACT [12] yields value intervals for the reliability and
performance properties of the verified system.

2.2 Robust Bayesian estimation of interval
Markov chain parameters

Building on the theory of imprecise probability with sets of priors
(IPSP) [43], recent research has introduced a robust Bayesian esti-
mator [45] for the transition parameters of interval Markov chains.
This IPSP estimator supports the use of imprecise prior knowledge
in the Bayesian learning process, and provides bounded estimates
on transition parameters. Due to space constraints, we only detail
the operation of the IPSP estimator for a generic transition probabil-
ity 𝑝𝑖 𝑗 between states 𝑠𝑖 and 𝑠 𝑗 of an interval DTMC (iDTMC); the
changes needed to use the estimator for an interval CTMC (iCTMC)
transition rate are mentioned at the end of the section.

Given a DTMC (𝑆, 𝑠0, 𝛿) and a state 𝑠𝑖 ∈ 𝑆 , the outgoing tran-
sitions from 𝑠𝑖 follow a multinomial distribution with parameters
given by the probabilities 𝛿 (𝑠𝑖 , ·) of these transitions. As such, if
we observe 𝑛𝑖 𝑗 transitions from 𝑠𝑖 to a state 𝑠 𝑗 out of 𝑛𝑖 outgoing
transitions from 𝑠𝑖 (a scenario labelled ‘data’ in the equations be-
low), the binomial likelihood for this scenario is (by omitting the
combinatorial factor that will be cancelled in the Bayes formula):

Pr (data | 𝑝𝑖 𝑗 ) = 𝑝
𝑛𝑖 𝑗
𝑖 𝑗 (1 − 𝑝𝑖 𝑗 )

𝑛𝑖−𝑛𝑖 𝑗 , (1)

where 𝑝𝑖 𝑗 = 𝛿 (𝑠𝑖 , 𝑠 𝑗 ). As usual, for mathematical convenience in
Bayesian inference, the IPSP estimator uses a conjugate prior distri-
bution for the above likelihood function, i.e., a beta distribution of
𝑝𝑖 𝑗 , thus ensuring that the posterior is also beta distributed. How-
ever, unlike point estimators that use the posterior mean as an
approximation for the value of 𝑝𝑖 𝑗 (e.g., [24]), the IPSP estimator
can, more realistically, operate with imprecise prior knowledge ob-
tained, for instance, from a group of experts or derived from noisy
historical data.
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The IPSP estimator uses the canonical parameterisation Beta
(
𝑛
(0)
𝑖 ,

𝑝
(0)
𝑖 𝑗

)
of the beta distribution,1 which allows an intuitive interpre-

tation of 𝑝 (0)𝑖 𝑗 as the łbest prior guessž, and of 𝑛 (0)𝑖 as the size of an

imaginary sample on which the prior estimation 𝑝
(0)
𝑖 𝑗 is based [43].

However, instead of point values for the two prior parameters, the
IPSP estimator operates with prior intervals

[
𝑛𝑖

(0) , 𝑛𝑖
(0) ],

[
𝑝𝑖 𝑗

(0) , 𝑝𝑖 𝑗
(0) ] (2)

for 𝑛 (0)𝑖 and 𝑝
(0)
𝑖 𝑗 , respectively. Accordingly, the lower and upper

bounds for 𝑝 (𝑛𝑖 )𝑖 𝑗 , the posterior of interest after 𝑛𝑖 observations of

outgoing transitions from state 𝑠𝑖 of the iDTMC, can be calculated
in constant time as [43]:

𝑝𝑖 𝑗
(𝑛𝑖 ) =




𝑛𝑖
(0)𝑝𝑖 𝑗

(0)+𝑛𝑖 𝑗

𝑛𝑖
(0)+𝑛𝑖

, if
𝑛𝑖 𝑗
𝑛𝑖

≥ 𝑝𝑖 𝑗
(0)

𝑛𝑖
(0)𝑝𝑖 𝑗

(0)+𝑛𝑖 𝑗

𝑛𝑖 (0)+𝑛𝑖
, otherwise

𝑝𝑖 𝑗
(𝑛𝑖 ) =





𝑛𝑖
(0)𝑝𝑖 𝑗

(0)
+𝑛𝑖 𝑗

𝑛𝑖
(0)+𝑛𝑖

, if
𝑛𝑖 𝑗
𝑛𝑖

≤ 𝑝𝑖 𝑗
(0)

𝑛𝑖
(0)𝑝𝑖 𝑗

(0)
+𝑛𝑖 𝑗

𝑛𝑖 (0)+𝑛𝑖
, otherwise

(3)

The IPSP robust estimator [45] is generic to Bayesian inference
in canonical exponential families [43], where the Gamma-Poisson
setup is typically applied (cf. Proposition 5.4 and Example 5.5 in [7,
pp.266ś277]). Thus, IPSP can be applied to iCTMC transition rates
by replacing the beta priors with gamma priors.

3 INTERVAL CHANGE-POINT DETECTION

3.1 Problem definition

Our iCPD method is applicable to systems modelled by interval
Markov chains whose transition parameters are associated with
system parameters affected by sudden changes. Given such a system
and an interval Markov chain that models its behaviour, we assume
that:
(1) The system is monitored and all the events that correspond to

state transitions within the Markov chain (and, for iCTMCs, the
timing of these events) are recorded. Examples of such events
include the invocation of a method, the receipt of a database
query, and the failure or repair of a server.

(2) The intervals for the transition probabilities or rates of the
interval Markov chains are continually updated using the IPSP
robust estimator from Section 2.2.
The information required to detect sudden changes in the prob-

ability 𝑝𝑖 𝑗 of transitioning between states 𝑠𝑖 and 𝑠 𝑗 of an iDTMC
consists of the sequence of observations 𝑜1, 𝑜2, . . . , 𝑜𝑛𝑖 of all events
corresponding to the outgoing transitions from state 𝑠𝑖 , where

∀𝑘 = 1, 2, . . . , 𝑛𝑖 , 𝑜𝑘 =

{
1, if the 𝑘-th transition is to state 𝑠 𝑗

0, otherwise
(4)

1i.e., a parameterisation in which the shape parameters 𝛼 and 𝛽 of the common

parameterisation Beta(𝛼, 𝛽) are replaced by 𝑛
(0)
𝑖

= 𝛼 + 𝛽 and 𝑝
(0)
𝑖 𝑗

= 𝛼/(𝛼 + 𝛽) ,

where the superscript ‘(0) ’ reflects the fact that these values represent the knowledge
before any observation is available.

The monitoring window, defined as𝑤 = 𝑛𝑖 for an iDTMC, may be
fixed (in which case only the most recent 𝑛𝑖 observations are used)
or may include all observations since the monitoring began.

Given this information, the interval change-point detection prob-

lem for an iDTMC transition probability 𝑝𝑖 𝑗 is to determine:
(1) whether the value of 𝑝𝑖 𝑗 experienced a sudden change within

the monitoring window𝑤 ;
(2) if the answer to (1) is positive, the time step from {1, 2, . . . , 𝑛𝑖 }

when the change occurred;
(3) if the answer to (1) is positive, new prior intervals (2) for the

robust IPSP estimator of 𝑝𝑖 𝑗 .
The interval change-point detection problem for an iCTMC tran-

sition rate 𝑟𝑖 𝑗 is defined similarly. In this case, the system monitor
needs to also record the sojourn times 𝑡1, 𝑡2, . . . , 𝑡𝑛𝑖 that the system
spent in state 𝑠𝑖 prior to undertaking each of the 𝑛𝑖 outgoing tran-
sitions given by observations (4), and the monitoring window is
defined as𝑤 =

∑𝑛𝑖
𝑘=1

𝑡𝑘 .

3.2 The iCPD method

Fig. 1 shows a generic window of 𝑤 = 𝑛𝑖 observations (4) for an
iDTMC, where the shaded circles correspond to transitions from
state 𝑠𝑖 to state 𝑠 𝑗 , and the empty circles correspond to transitions
from 𝑠𝑖 to other states than 𝑠 𝑗 . Assuming that the transition proba-
bility 𝑝𝑖 𝑗 undergoes a sudden change from 𝑝𝑖 𝑗 =𝑎 to 𝑝𝑖 𝑗 =𝑏 within
this time window; we use a random variable 𝑥 to denote the un-
known change point in the sequence, and 𝑁 (𝑥) =

∑𝑥
𝑘=1 𝑜𝑘 and

𝑀 (𝑥)=
∑𝑛𝑖
𝑘=𝑥+1

𝑜𝑘 to denote the number of transitions from 𝑠𝑖 to 𝑠 𝑗
before and after the time step 𝑥 , respectively. An analogous nota-
tion can be defined for a transition rate 𝑟𝑖 𝑗 of an iCTMC changing
suddenly from 𝑟𝑖 𝑗 = 𝑎 to 𝑟𝑖 𝑗 = 𝑏 within the time window; in this
case, we have 𝑁 (𝑥) =

∑𝑥
𝑘=1 𝑜𝑘𝑡𝑘 and 𝑀 (𝑥) =

∑𝑛𝑖
𝑘=𝑥+1

𝑜𝑘𝑡𝑘 . Given
the parametric uncertainty associated with systems modelled by
interval Markov chains, not only the change time 𝑥 but also the
precise values of 𝑎 and 𝑏 are unknown. The following proposition
defines a Bayesian estimator for these values (this is a formalisation
of a known result, e.g., presented only for DTMCs in [25]).

Proposition 3.1. Given a prior joint distribution 𝑓 (𝑎, 𝑏, 𝑥) for the

unknown values 𝑎 and 𝑏 of an interval Markov chain parameter, and

for the unknown time 𝑥 when the parameter value changes from 𝑎 to

𝑏, the (marginal) estimates for the three unknowns are given by the

posterior joint distribution

𝑎𝑁 (𝑥) (1−𝑎)𝑥−𝑁 (𝑥)𝑏𝑀 (𝑥) (1−𝑏)𝑤−𝑥−𝑀 (𝑥) 𝑓 (𝑎, 𝑏, 𝑥)
∫∫∫

𝐷
𝑎𝑁 (𝑥)(1−𝑎)𝑥−𝑁 (𝑥)𝑏𝑀 (𝑥)(1−𝑏)𝑤−𝑥−𝑀 (𝑥) 𝑓 (𝑎, 𝑏, 𝑥) d𝑎 d𝑏 d𝑥

(5)

for an iDTMC, where 𝐷 = [0, 1] × [0, 1] × {1, 2, . . . ,𝑤}, and

𝑎𝑁 (𝑥)𝑒−𝑎𝑥𝑏𝑀 (𝑥)𝑒−𝑏 (𝑤−𝑥) 𝑓 (𝑎, 𝑏, 𝑥)
∫∫∫

𝐷
𝑎𝑁 (𝑥)𝑒−𝑎𝑥𝑏𝑀 (𝑥)𝑒−𝑏 (𝑤−𝑥) 𝑓 (𝑎, 𝑏, 𝑥) d𝑎 d𝑏 d𝑥

(6)

for an iCTMC, where 𝐷 = [0,∞) × [0,∞) × [0,𝑤].2

2We use Lebesgue-Stieltjes integration in (5), (6) and throughout the rest of the paper,
to cover in a compact way both discrete and continuous prior distributions 𝑓 , as these
integrals naturally reduce to sums for discrete distributions.
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Figure 1: Sequence of 𝑤 successive transitions from state 𝑠𝑖
of a DTMC; shaded circles denote transitions to state 𝑠 𝑗 .

posterior
interval
eq. (3)

false

posterior
interval
eq. (3)true

change point eq. (16)
new priors eq. (17) corrected

estimates
eq. (19)

PMC

IPSP

estimation

1 2 iCPD

triggering

3 iCPD

analysis

Retrospective

IPSP estimation

4

prior
intervals
eq. (2)

observations
eq. (4)

Figure 2: Robust Bayesian change-point detection and esti-

mation for interval Markov chain parameters (shown for an

iDTMC transition probability) supports runtime probabilis-

tic model checking (PMC) under parametric uncertainty.

Proof. As in (1), we canwrite the likelihood function associated
with the iDTMC ‘data’ from Fig. 1 as

𝐿(𝑎, 𝑏, 𝑥 ; data) = 𝑃𝑟 (data until 𝑥 |𝑎, 𝑏, 𝑥) ·𝑃𝑟 (data after 𝑥 |𝑎, 𝑏, 𝑥)

=

(
𝑎𝑁 (𝑥) (1 − 𝑎)𝑥−𝑁 (𝑥)

)
·
(
𝑏𝑀 (𝑥) (1 − 𝑏)𝑤−𝑥−𝑀 (𝑥)

)
(7)

and the likelihood function associated with analogous observations
for an iCTMC as

𝐿(𝑎, 𝑏, 𝑥 ; data) = 𝑃𝑟 (data until 𝑥 |𝑎, 𝑏, 𝑥) ·𝑃𝑟 (data after 𝑥 |𝑎, 𝑏, 𝑥)

=

(
𝑎𝑁 (𝑥)𝑒−𝑎𝑥

)
·
(
𝑏𝑀 (𝑥)𝑒−𝑏 (𝑤−𝑥)

)
. (8)

Applying the Bayes theorem to the prior joint distribution 𝑓 (𝑎, 𝑏, 𝑥)

and to these likelihood functions yields the result from (5) and (6),
respectively. □

As we explain later in this section, our iCPD method:
• avoids the difficulty and bias of choosing a multivariate prior

distribution 𝑓 (𝑎, 𝑏, 𝑥) (which is hard to be elicited from human
experts in practice and implicitly introduces unjustified assump-
tions) by reducing the number of unknowns;

• determines the posterior estimates of interest with lower compu-
tational cost than the traditional way of using Gibbs samplings
for (5) and (6) (e.g., [25]);

• uses a lightweight mechanism to only trigger the CPD analysis
under certain conditions, reducing the CPD overheads further.

iCPD operates in conjunction with the IPSP robust Bayesian esti-
mator described in Section 2.2, as an end-to-end Bayesian approach

to CPD and estimation of interval Markov chain parameters. This
approach is shown in Fig. 2, and its four steps are detailed next.

1 IPSP estimation ś IPSP runs as the online robust Bayesian estima-
tor for the uncertain transition parameters of the interval Markov
chain under verification. As described in Sec. 2.2, this provides
bounded estimates for the transition parameter, e.g., (3) for iDTMCs.

2 iCPD triggering ś The width of the interval defined by the
IPSP bounds from step 1 is monitored, and increases in this width
are used to trigger a change-point detection analysis. This trigger
exploits the ability of IPSP to detect prior-data conflicts [26], i.e.,
conflicts between prior beliefs and the observed data in Bayesian
inference. For an iDTMC transition probability for instance, the
interval width can be written [43] as a sum of two terms:3

𝑝𝑖 𝑗
(𝑛𝑖 )− 𝑝𝑖 𝑗

(𝑛𝑖 ) =

𝑛𝑖
(0)

(
𝑝𝑖 𝑗

(0)−𝑝𝑖 𝑗
(0)

)

𝑛𝑖
(0) + 𝑛𝑖

+
Δ
(𝑛𝑖 )𝑛𝑖

(
𝑛𝑖

(0) − 𝑛𝑖
(0)

)

(
𝑛𝑖

(0) +𝑛𝑖

) (
𝑛𝑖 (0) +𝑛𝑖

)

(9)

where

Δ
(𝑛𝑖 ) = Δ

(
𝑛𝑖 𝑗

𝑛𝑖
;𝑝𝑖 𝑗

(0), 𝑝𝑖 𝑗
(0)

)
=




𝑛𝑖 𝑗
𝑛𝑖

− 𝑝𝑖 𝑗
(0) , if

𝑛𝑖 𝑗
𝑛𝑖

> 𝑝𝑖 𝑗
(0)

𝑝𝑖 𝑗
(0) −

𝑛𝑖 𝑗
𝑛𝑖

, if
𝑛𝑖 𝑗
𝑛𝑖

< 𝑝𝑖 𝑗
(0)

0 otherwise

(10)

represents [43] the degree of prior-data conflict after observation 𝑛𝑖 .
The first term in (9) decreases as 𝑛𝑖 grows (and becomes negligible
for 𝑛𝑖 ≫ 1), whereas the second term becomes suddenly positive

when a prior-data conflict
𝑛𝑖 𝑗
𝑛𝑖

∉

[
𝑝𝑖 𝑗

(0) , 𝑝𝑖 𝑗
(0)

]
occurs, leading to

an increase in the interval width (also cf. Remark 4.2 in [43]).
Note that the computational cost of our iCPD triggering is negli-

gible, as the IPSP interval width can be computed in constant time.
Additionally, as we will show in Section 4, the sensitivity of the
iCPD trigger can be configured by adjusting the IPSP estimator pa-
rameters and the size of the sliding window for the observations (4).

3 iCPD analysis ś This step is executed infrequently, i.e., only
when the iCPD trigger from step 2 is exercised. To further lower
the iCPD overheads, we reduce the number of unknowns from the
multivariate Bayesian estimator in Proposition 3.1 by replacing 𝑎
and 𝑏 with their maximum likelihood estimations (MLEs) calcu-
lated using the observations made until and after the (unknown)
change point 𝑥 , respectively. The justification for using these MLEs
is twofold. First, since no prior-data conflict exists until 𝑥 , the ob-
servations collected until 𝑥 reflect well the true value of 𝑎. Second,
after the sudden change at time 𝑥 , we have no prior knowledge
about the new value of the transition parameter, so using the MLE
for 𝑏 is the best strategy available. The next result formalises the
effect of using the two MLEs for an iDTMC transition probability.4

Proposition 3.2. Using the MLEs for 𝑎 and 𝑏 in the multivari-

ate Bayesian estimator from Proposition 3.1, and assuming no prior

knowledge about the change point 𝑥 reduces the posterior (5) to:

3The calculations for an iCTMC transition rate are entirely similar, and not included
in the paper due to space constraints.
4The adjustments needed to replicate this result for an iCTMC transition rate are
summarised at the end of the description for this step.
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𝑓𝑋 (𝑥 | data) =
𝐿𝑋 (𝑥 ; data)

∑𝑛𝑖
𝑥=1 𝐿𝑋 (𝑥 ; data)

, where 𝐿𝑋 (𝑥 ; data) = (11)

𝑁 (𝑥)𝑁 (𝑥) (𝑥−𝑁 (𝑥))𝑥−𝑁 (𝑥)𝑀 (𝑥)𝑀 (𝑥) (𝑛𝑖−𝑥−𝑀 (𝑥))𝑛𝑖−𝑥−𝑀 (𝑥)

𝑥𝑥 (𝑛𝑖 − 𝑥)𝑛𝑖−𝑥
.

Proof. For an iDTMC transition probability, the MLEs for 𝑎 and

𝑏 are 𝑎 =
𝑁 (𝑥)
𝑥 and 𝑏 =

𝑀 (𝑥)
𝑤−𝑥 , so the likelihood (7) becomes:

𝐿𝑋 (𝑥 ; data) = 𝑃𝑟 (data | 𝑥) =
(
𝑁 (𝑥)
𝑥

)𝑁 (𝑥) (
1−

𝑁 (𝑥)
𝑥

)𝑥−𝑁 (𝑥) (𝑀 (𝑥)
𝑛𝑖−𝑥

)𝑀 (𝑥)(
1−

𝑀 (𝑥)
𝑛𝑖−𝑥

)𝑛𝑖−𝑥−𝑀 (𝑥) (12)

Additionally, with no prior knowledge of where the change point 𝑥
is, we need to assume a discrete uniform distribution 𝑓𝑋 (𝑥) for it:

∀𝑥 ∈ {1, 2, . . . , 𝑛𝑖 }, 𝑓𝑋 (𝑥) = 1/𝑛𝑖 . (13)

The posterior (11) can now be obtained by using the likelihood (12)
(after simple algebraic manipulations) and the prior (13) in (5), with
the Lebesgue-Stieltjes integration rewritten as a summation. □

To estimate the univariate posterior distribution (11), iCPD uses
theMarkov chainMonte Carlo (MCMC)methodwith theMetropolis-
Hastings algorithm (whose presentation is out of the scope here,
but is available in [23]). This yields an MCMC sample sequence

⟨𝑥1, 𝑥2, . . . , 𝑥𝑘 ⟩ (14)

for the change point 𝑥 , and from this iCPD computes a sample
sequence

⟨𝑏1, 𝑏2, . . . , 𝑏𝑘 ⟩ =

〈
𝑀 (𝑥1)

𝑛𝑖 − 𝑥1
,
𝑀 (𝑥2)

𝑛𝑖 − 𝑥2
, . . . ,

𝑀 (𝑥𝑘 )

𝑛𝑖 − 𝑥𝑘

〉
(15)

for the unknown transition probability 𝑏. Note that computing the
latter sequence in this way is far more efficient than using Gibbs
sampling (if we treat 𝑏 as an unknown) to obtain 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , from
a conditional probability distribution given 𝑥𝑖 .

Given theMCMC sample sequences (14) and (15), iCPD computes
the change point as

𝑥 =

∑𝑘
𝑖=1 𝑥𝑖

𝑘
(16)

and calculates the following new IPSP prior intervals (2):
[
𝑛𝑖

(0) , 𝑛𝑖
(0)

]
= [𝑤−max{𝑥1, 𝑥2, . . . , 𝑥𝑘 },𝑤−min{𝑥1, 𝑥2, . . . , 𝑥𝑘 }]

[
𝑝𝑖 𝑗

(0) , 𝑝𝑖 𝑗
(0)

]
= [min{𝑏1, 𝑏2, . . . , 𝑏𝑘 },max{𝑏1, 𝑏2, . . . , 𝑏𝑘 }] (17)

These calculations can be preceded by an elimination of any outliers
that might be present in the sequences (14) and (15).

iCPD performs calculations similar to (12)ś(17) for an iCTMC
transition rate. These calculations treat 𝑎 and 𝑏 as rates, start from
the likelihood function (8) to compute the univariate likelihood
function

𝑃𝑟 (data | 𝑥) =

(
𝑁 (𝑥)

𝑥

)𝑁 (𝑥)

𝑒−𝑥 ·

(
𝑀 (𝑥)

𝑤 − 𝑥

)𝑀 (𝑥)

𝑒−𝑀 (𝑥) , (18)

and yield prior rate intervals
[
𝑟𝑖 𝑗

(0) , 𝑟𝑖 𝑗
(0)

]
instead of the prior

probability intervals
[
𝑝𝑖 𝑗

(0) , 𝑝𝑖 𝑗
(0)

]
in (17).

4 Retrospective IPSP estimation ś The IPSP estimates
[
𝑝𝑖 𝑗

(𝑥), 𝑝𝑖 𝑗
(𝑥)

]
,
[
𝑝𝑖 𝑗

(𝑥+1) , 𝑝𝑖 𝑗
(𝑥+1)

]
, . . . ,

[
𝑝𝑖 𝑗

𝑛𝑖 , 𝑝𝑖 𝑗
𝑛𝑖
]

(19)

after the change point (16) are retrospectively corrected.5 To this
end, the IPSP estimator is reapplied to the observations 𝑜𝑥+1, 𝑜𝑥+2,
. . . , 𝑜𝑛𝑖 using the new priors (17), and the corrected interval esti-
mates are used to retrospectively revise and re-analyse the interval
Markov chain under verification. This is often essential in order to
establish the impact that the sudden change has already had on the
modelled system, e.g., due to additional energy that may have been
used or (as we will show in Section 4) loss of throughput between
the change point and its detection time.

4 EVALUATION

4.1 Research questions

We evaluated our iCPD approach by performing extensive experi-
ments to address the following research questions.6

RQ1 (Accuracy): How accurately does iCPD detect points of

change in various scenarios? We carried out experiments to as-
sess the ability of iCPD to detect a wide range of changes.

RQ2 (Configurability): How easy is to configure iCPD to op-

erate with different trade-offs?We assessed the ease of calibrat-
ing iCPD to operate with data window sizes and triggering sen-
sitivities that support different needs in terms of detection speed
and/or trade-offs between false positives and false negatives.

RQ3 (Efficiency:) What are the computational overheads of

iCPD ? Since we devised iCPD for the runtime detection of change
points in the transition parameters of interval Markov chains,
we measured its overheads across a range of configurations and
parameter-change scenarios.

RQ4 (Verification support): How effectively does iCPD sup-

port the accurate PMCof system-level properties at runtime?

We examined the effect of using iCPD to continually update inter-
val Markov chain parameters, supporting the runtime PMC of key
system properties.

4.2 Evaluation methodology

Our experimental setup comprises a wide range of nine scenarios
in which each scenario corresponds to a sequence of observations
𝑜1, 𝑜2, . . . , 𝑜𝑛𝑖 for the unknown transition parameter (probability
𝑝𝑖 𝑗 or rate 𝑟𝑖 𝑗 for iDTMC and iCTMC, respectively) instrumented
with changes representing four classes of change patterns com-
monly studied in related research [15, 28]. In particular, we used
the following patterns: (i) Step where a sudden change causes the

5We only describe this step for an iDTMC transition probability, as its application to
an iCTMC transition rate is entirely similar.
6Note that a direct comparison of the iCPD accuracy, efficiency, etc. with those of
existing CPD approaches is not possible because, by tackling change-point detection
for point estimates of system parameters, these CPD approaches solve a different
problem than iCPD .
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parameter value to increase instantaneously; (ii) Square that ex-
tends the Step pattern with another sudden change indicating a
recovery of the parameter to its original value; (iii) Ramp that rep-
resents a gradual or steep change to the parameter value; and (iv)
Fixed where the parameter value remains constant for the duration
of the scenario (to assess whether iCPD produces false positives).

To answer RQ1śRQ3, for each scenario we firstly define an un-

known change point 𝑥 (as ground truth) and the unknown actual
(ground truth) transition parameter values 𝑎 and 𝑏 before and after
the change point 𝑥 , respectively. All this information is𝑢𝑛𝑘𝑛𝑜𝑤𝑛 to
iCPD. Then, for iDTMCs we generate the sequence of observations
𝑜1, 𝑜2, . . . , 𝑜𝑛𝑖 by sampling from two Binomial distributions whose
probabilities are 𝑎 and 𝑏, respectively. Similarly, the sequence of
observations for iCTMCs is sampled from two exponential distribu-
tions whose mean time is set to 1

𝑎 and 1
𝑏
, respectively. Finally, we

run the scenario by providing to iCPD the observations in order as
described in Section 3.2.

We answer RQ4 using the CTMC model of an embedded system
from the area of autonomous underwater vehicles (AUV) adapted
from [16, 31]. The AUV is deployed on an oceanic surveillance mis-
sion, and the successful mission completion requires the continual
verification of the CTMC model to ensure compliance with a pair
of reliability and performance requirements. The AUV is equipped
with several on-board sensors whose operating rates are unknown
and could potentially vary due to sensor failure or degradation in
operating rate. We combine our iCPD with the probabilistic model
checker Prism-PSY [18] and evaluate the extent to which iCPD can
detect abrupt changes in sensor rates and update the transition
parameters of the CTMC, thus supporting the prompt system re-
configuration due to the violation of mission requirements.

All experiments were run on a Windows 10 Pro 64 bit machine
with Intel 1.80GHz i7-8550U CPU and 16GB RAM. The source code,
Markov models, data used for the experimental evaluation and the
full experimental results are publicly available at https://github.
com/x-y-zhao/iCPD.

4.3 Results and discussion

RQ1 (Accuracy). Fig. 3 shows the estimated iCPD transition prob-
ability interval for the unknown transition probability 𝑝𝑖 𝑗 over
nine iDTMC scenarios instrumented with the following change
patterns: (A) big step, (B) medium step, (C) small step, (D) square
representing a normal recovery, (E) square representing a quick
recovery, (F) steep ramp, (G) gradual ramp, (H) early big step and
(I) fixed. Table 1 presents the configurations used for each scenario
including the change pattern and the (unknown) actual values for
both the change point 𝑥 and the transition probability 𝑝𝑖 𝑗 , along
with iCPD-related analysis results, i.e., the estimated change point
𝑥 , the trigger point 𝑥𝑡 and the total computational cost (both repre-
senting the timing information of iCPD’s runtime analysis). Fig. 4
shows the approximated posterior distributions of 𝑥 and 𝑏 derived
from MCMC sampling corresponding to the scenarios from Fig. 3.

In scenario A (Fig. 3A, row A in Table 1), i.e., the big step 𝑝𝑖 𝑗
change from 𝑎 = 0.3 to 𝑏 = 0.7 at change point 𝑥 = 500, we
observe that the interval width of the IPSP estimator (the solid
green and purple lines) continually decreases as new observations
are made signifying no prior-data conflict. At observation 𝑜690 (the

vertical blue line), iCPD detects the change that occurred at 𝑜500
causing a prior-data conflict (10). This detection triggers the CPD
analysis (Step 3 in Section 3.2) which utilises the information up to
the triggering point to approximate the posterior distribution of 𝑥
(Fig. 4A#1) concluding that the change happened at 𝑥 = 504 (the
yellow vertical line), which is very close to the actual change point
𝑥 = 500. Similarly, iCPD approximates the posterior distribution of
𝑏 (Fig. 4A#2) and uses (17) to estimate the new IPSP prior intervals[
𝑛𝑖

(0) , 𝑛𝑖
(0)

]
= [165, 322],

[
𝑝𝑖 𝑗

(0) , 𝑝𝑖 𝑗
(0)

]
= [0.508, 0.740] which

capture the unknown transition probability 𝑏 = 0.7. Starting from
the estimated change point 𝑥 = 504 and the new IPSP prior intervals,
iCPD uses observations 𝑜504, ..., 𝑜690 to execute the retrospective
IPSP estimation (Step 4 in Section 3.2) and refine the IPSP interval
(dashed lines labelled łretrospectedž and showing retrospectively
corrected lower and upper bounds in Fig 3A). For completeness,
the dotted lines show the transition probability interval estimated
by the IPSP estimator without the CPD capability (cf. Section 2.2).
Clearly, the change is not detected and a significant number of new
observations is needed before the estimated interval encloses the
updated transition probability.

The scenario shown in Fig. 3B corresponds to a medium step
change of the unknown transition probability 𝑝𝑖 𝑗 from 0.3 to 0.5.
iCPD detects the change and triggers the iCPD analysis (𝑥𝑡 =

976). As expected, the change is detected later than the big step
change in scenario A, because the term 𝑛𝑖 𝑗/𝑛𝑖 needs more data (and
consequently more time) after the change point to accumulate to a
level that leads to a positive degree of prior-data conflict, i.e.Δ(𝑛𝑖 ) >

0 in (10). Similarly to scenario A, the estimated change point 𝑥 = 492

is very close to the actual change point 𝑥 = 500 (Fig. 4B#1) and the

new IPSP prior interval
[
𝑝𝑖 𝑗

(0) , 𝑝𝑖 𝑗
(0)

]
= [0.492, 0.527] captures

the new unknown transition probability 𝑏 = 0.5 (Fig. 4B#2).
In contrast to the previous step changes, the small step change

in scenario C (Fig. 3C) does not trigger the iCPD analysis. This
behaviour occurs because as new observations are made, the term
𝑛𝑖 𝑗/𝑛𝑖 is asymptotic to the upper bound of the IPSP estimated

interval 𝑝𝑖 𝑗
(0)

= 0.4 ś but very unlikely to exceed it (because 𝑛𝑖 𝑗/𝑛𝑖
also averages the data collected before 𝑥 which is concentrated on
𝑎 = 0.3). Hence, no prior-data conflict is detected in (10).

In scenario D (Fig. 3D), iCPD correctly detected both changes cor-
responding to the normal recovery pattern triggering the iCPD anal-
ysis at 𝑥𝑡 = 623 and 𝑥𝑡 = 1358 and accurately estimating change
points 𝑥 = 499 (Fig. 4D#1) and 𝑥 = 896 (Fig. 4D#3), and the new
IPSP prior intervals (Fig. 4D#2 and Fig. 4D#4)). Although scenario E
(Fig. 3E) follows a similar square pattern, the quick recovery pre-
vents iCPD from identifying the prior-data conflict and triggering
the analysis. We evaluate in RQ2 how adjusting the iCPD hyper-
parameters, cf. (3) and (9), can increase the iCPD łsensitivityž and
enable the detection of small and ephemeral changes.

The steep and gradual ramp scenarios in Figs. 3F and 3G, respec-
tively, demonstrate the competency of iCPD to cope adequately
with this class of changes. More specifically, iCPD performs particu-
larly well in the steep ramp scenario triggering the iCPD analysis at
𝑥𝑡 =750 and calculating close approximations of the change point
𝑥 = 545 (Fig. 4F#1) and new IPSP prior intervals (Fig. 4F#2). The
gradual ramp scenario ismore difficult due to the (unknown) smaller
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Table 1: Configurations and iCPD results over nine iDTMC scenarios. In all scenarios, the IPSP prior parameters are set to

[𝑝𝑖 𝑗
(0) , 𝑝𝑖 𝑗

(0) ] = [0.2, 0.4] and [𝑛 (0) , 𝑛 (0) ] = [10, 300]. The scenario ID is associated with the corresponding subfigure in Fig 3

(Notations ś 𝑥 : change point; 𝑥𝑡 : iCPD trigger point; 𝑥 : iCPD estimated change point;𝑘/𝑙 : ratio of accepted samples over the total

number of MCMC trials; ⟨𝑥1, . . . , 𝑥𝑘 ⟩: MCMC sample sequence of the change point; ⟨𝑏1, . . . , 𝑏𝑘 ⟩: sample sequence of transition

probability 𝑏; N/A: iCPD not triggered).

ID Pattern (unk.) actual values iCPD analysis

# 𝑎 𝑏 𝑥 𝑥𝑡 𝑥 𝑘/𝑙 ⟨𝑥1, . . . , 𝑥𝑘 ⟩ ⟨𝑏1, . . . , 𝑏𝑘 ⟩ time (ms)

A Step (big) 0.3 0.7 500 690 504 1733/5k Fig. 4A#1 Fig. 4A#2 445

B Step (medium) 0.3 0.5 500 976 492 2578/5k Fig. 4B#1 Fig. 4B#2 414

C Step (small) 0.3 0.4 500 N/A

D Square (normal recovery) 0.3 0.7 500, 900 623, 1358 499, 896 1571/5k, 4169/10k Fig. 4D#1,3 Fig. 4D#2,4 392, 810

E Square (quick recovery) 0.3 0.7 500, 600 N/A

F Ramp (steep) 0.3 0.7 [500, 600] 750 544 3987/10k Fig. 4F#1 Fig. 4F#2 790

G Ramp (gradual) 0.3 0.7 [500, 900] 1003 651 4046/10k Fig. 4G#1 Fig. 4G#2 862

H Step (big and early) 0.3 0.7 100 131 93 2082/5k Fig. 4H#1 Fig. 4H#2 402

I Fixed 0.3 0.3 N/A 800 (man.) N/A 3386/5k Fig. 4I#1 Fig. 4I#2 398

slope which entails more time to reach the final value and complete
the change. Since ramp changes (especially those with a gradual
structure) do not by definition constitute sudden changes [1, 42],
the observed behaviour is expected and does not violate the statis-
tical model underpinning iCPD. Extending iCPD with support for
more accurate analysis of ramp changes is planned for future work.

In scenario H (Fig. 3H), we examined how the timing of a change
affects the iCPD accuracy by introducing early in the execution
(𝑥 = 100), the same big step change as in scenario A. The esti-
mated change point 𝑥 =93 (Fig. 4H1) is fairly accurate. Due to the
significantly smaller number of observations available during the
iCPD analysis step (𝑥𝑡 = 131), the new IPSP prior interval is unsur-
prisingly wider compared to that from scenario A. Even though the
change occurs early, the end of the scenario finds the IPSP estimator
alone (i.e., without change-point detection capability) incapable to
adapt its interval to include the new parameter value (dotted lines
in Fig. 3H). This result once more shows the usefulness of iCPD.

Finally, we consider the scenario where the unknown transition
parameter value is fixed throughout the scenario (Fig. 3I). As ex-
pected, the IPSP interval keeps decreasing and no iCPD analysis is
triggered. Enforcing iCPD to run at the end of the scenario resulted
in a nearly uniform posterior distribution of 𝑥 (Fig. 4I#1) signifying
the łhigh uncertaintyž for the location of the change point. Hence,
we have evidence that iCPD is not affected by false positives.

We provide a similar set of scenarios for iCTMCs on our project
webpage at https://github.com/x-y-zhao/iCPD that demonstrate
very similar results. Given these experimental results, we have suf-
ficient evidence to conclude that iCPD can support the detection
of sudden changes in the transition parameters of iDTMCs and
iCTMC under several change patterns and steer the estimation of
new IPSP prior intervals that enclose the new parameter value.

RQ2 (Configurability). The sensitivity of the iCPD triggering
Eq. (9) can be configured either bymodifying the prior parameters of
the IPSP estimator in (2) or by assigning different importance levels
to observations 𝑜1, 𝑜2, . . . , 𝑜𝑤 based on temporal conditions. To
answer this research question and assess whether iCPD can support

the detection of small and/or transient changes, we evaluated how
iCPD performs under different sensitivity configurations.

First, we introduced a sliding time window based on which
iCPD discards old observations and operates using only observa-
tions falling within this time window. We evaluated iCPD enhanced
with a time window in scenario C that includes a small step change
(cf. row C in Table 1) and for which the standard iCPD did not
detect a conflict (cf. Fig 3C). Using a time window of size 500, this
iCPD variant detected the prior-data conflict at 𝑥𝑡 = 924 triggering
the iCPD analysis and calculating new IPSP prior intervals that
include the updated transition probability (Fig 5A). By consider-
ing the 500 most recent observations, the term 𝑛𝑖 𝑗/𝑛𝑖 in (10) is
influenced more by these observations leading to a positive degree
of prior-data conflict. Similar reasoning has been applied in [15]
which assigns ageing information to observations.

Second, we specified narrower IPSP prior intervals by setting

[𝑝𝑖 𝑗
(0) , 𝑝𝑖 𝑗

(0) ] = [0.25, 0.35] and [𝑛 (0) , 𝑛 (0) ] = [5, 150] and evalu-

ated iCPD in scenario E (row E in Table 1) that corresponds to
a quick recovery. Compared to the iCPD configuration used in
RQ1, under which both changes in scenario E were missed (Fig. 3),
the narrower IPSP prior intervals enabled iCPD to detect the first
change despite its short duration (occurring in observations 𝑜500ś
𝑜600) and accurately estimate the change point (𝑥 =498). Given the
sparse observations about the new unknown transition parameter
after the first change 𝑝𝑖 𝑗 = 0.7, the new IPSP prior intervals are
unsurprisingly wider than usual; this finding aligns with our re-
sults in scenario H, cf. Fig. 3H. The wide IPSP prior intervals and
sparse observations are the primary reasons causing iCPD to miss
the second change (i.e., the recovery). CPD using sparse informa-
tion is widely acknowledged as a very challenging problem [1, 42].
Investigating how iCPD can handle more accurately changes of
this type is part of our future work.

Finally, we evaluated an iCPD variant that employs both a time
window and narrower IPSP prior intervals using scenario I (cf.
Fig 3). Although in this scenario the value of the unknown transi-
tion parameter is fixed (and since no prior-data conflict occurs no
iCPD analysis should be triggered), this iCPD variant is proven very
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Figure 3: iCPD results over nine iDTMC scenarios with the configuration shown in Table 1 instrumented with the change

patterns: (A) big step, (B) medium step, (C) small step, (D) square ś normal recovery, (E) square ś quick recovery, (F) steep

ramp, (G) gradual ramp, (H) early big step and (I) fixed.

sensitive (Fig. 5C).More specifically, this iCPD variant is susceptible
to small fluctuations in term 𝑛𝑖 𝑗/𝑛𝑖 in (10) leading to four false pos-
itives, i.e., incorrectly triggering the iCPD analysis. In Fig. 5C, we
also show the width of the IPSP interval and circle the times when
these false alarms were triggered. Since the IPSP interval almost
always enclosed the unknown transition probability, these false
positives had only a minor effect on the overall iCPD behaviour.

These findings clearly indicate that increasing the sensitivity
of iCPD can enable the detection of small and ephemeral changes.
Nevertheless, this should be handled with caution to achieve a
balanced trade-off between false positives and false negatives.

RQ3 (Efficiency). We answer this research question by analysing
the overheads over the steps comprising the iCPD approach (Sec-
tion 3.2). The IPSP estimation and the iCPD triggering steps use the
closed-form formulas in (3) and (9) whose computational costs are
constant and negligible. Similarly, the retrospective IPSP estimation
step applies the closed-form formula of the IPSP estimator in (3) to

the observations 𝑜𝑥 , 𝑜𝑥+1, etc. As we have shown in RQ1 and RQ2
(cf. Table 1 and Fig. 3), the length of each sequence of observations,
given by 𝑥𝑡 − 𝑥 , is typically small. Hence, the final iCPD step has
also insignificant overheads.

Only the iCPD analysis step requires further overheads investi-
gation due to using MCMC [23] to generate the sample sequence
in (14). To quantify the overheads of this step, we replicated scenar-
ios A and B (cf. Table 1) and varied the number of conducted MCMC
trials ∈ [0, 15000], while tuning the MCMC proposal distribution
to keep the MCMC acceptance rate around 0.20ś0.24 which is the
MCMC diagnostics step [22] (Fig. 6 (right)). As shown in Fig. 6 (left),
the computation time increases linearly with the number of MCMC
trials and consumes more than 1 second only when the sampling
size exceeds 13000. The rightmost column in Table 1 shows the time
consumed by iCPD to execute its steps when a change has been
detected (with a maximum of 10000 MCMC samples per change).
Irrespective of the scenario and change pattern, the overheads are
always below 1 second.
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Figure 4: 𝑥 and 𝑏 posterior distributions corresponding to scenarios in Table 1 approximated by histograms of MCMC samples.

Figure 5: iCPD results with different sensitivity configurations. iCPD with time window (left), with narrower IPSP prior inter-

vals (middle), and with both time window and narrower IPSP prior intervals (right) used in scenarios C, E, and I, respectively.

Similarly to [25], we assessed the accuracy of iCPD by measuring

the estimation error 𝐸 of the change point given by 𝐸 =
|𝑒𝑐−𝑟𝑐 |
𝑟𝑐 ,

where 𝑒𝑐 and 𝑟𝑐 are the estimated and real change points, respec-
tively. In both scenarios, the 𝐸 is relatively stable and smaller than
0.02 after 2000 MCMC trials; Fig. 6 (middle). As expected, the more
MCMC trials conducted themore precise the iCPD estimation. Since
in all our scenarios the minimum number of MCMC trials was 5000,
we have evidence that iCPD has a fairly small change-point estima-
tion error.

RQ4 (Verification support). We combined iCPD with the prob-
abilistic model checker Prism-PSY [18] to establish if this inte-
grated solution can support the effective PMC of the iCTMC of
an autonomous underwater vehicle (AUV) by accurately detecting
change points and estimating the updated transition rate intervals.

This iCTMC model, which has been used in related research [31,
32, 41], models an AUV equipped with 𝑛 ≥ 1 sensors that can
make observations of an oceanic parameter (e.g., salinity). The
𝑛 sensors can be switched on and off individually (e.g., to save
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Figure 6: iCPD overheads in scenarios A and B showing computation time (left), change point estimation error (middle), and

MCMC diagnostics acceptance rate [23] (right) over the number of conducted MCMC trials.

Figure 7: Runtime analysis results of an AUV surveillance mission in which the sudden change of the 𝑖-th sensor rate at

mission time 300s from 6Hz to 2Hz is detected by iCPD with a trigger point at 358s and an estimated change point at 299s (left

- reusing the legends of Fig. 3). The revised transition rate interval correctly encloses the updated sensor rate, and the PMC

results of mission requirements R1 (middle) and R2 (right), in which shaded areas show requirement violation, lead to the

selection of a new sensor configuration.

battery power when not used). When sensor 𝑖 is switched on, it
makes observations of the oceanic parameter with unknown and
variable operating rate 𝑟𝑖 . During operation, the AUV must adapt
to changes in the operating rate 𝑟𝑖 of its sensors due to failure or
service degradation by adjusting its speed and sensor configurations
so that the following requirements are satisfied at all times7:
R1: An active sensormust make at least 20 observations of sufficient

accuracy per 10 surveyed metres.
R2: The energy consumed by each sensor should not exceed 120

Joules per 10 surveyed metres.
Fig. 7 (left) shows the estimated IPSP transition rate interval

that accurately captures the actual operating rate of the 𝑖-th sensor.
After 300 seconds of operation, the AUV experiences a sudden ser-
vice degradation of its currently active 𝑖-th sensor that reduced the
sensor’s operating rate from 6Hz to 2Hz. iCPD detects this change
at 𝑥𝑡 = 358 and triggers the iCPD analysis leading to the correct
estimation of the change point 𝑥 =299 and the accurate calculation
of the revised IPSP prior interval that encloses the updated sensor
operating rate. The revised transition rate interval is employed for
the verification of requirements R1 and R2 over the iCTMC using
Prism-PSY. Although requirement R2 is always met (Fig. 7 (right)),
the reduced sensor rate results in the violation of R1, depicted by
the shaded area in Fig. 7 (middle), requiring the AUV controller

7We only use the set of requirements needed to demonstrate the combined use of
iCPD and Prism-PSY. For the complete set of system-level requirements, see [31].

to select another sensor configuration that meets both R1 and R2
for all active sensors. To simplify the presentation, we do not show
this reconfiguration task; for further information about this task,
see [31]. iCPD can also establish the period during which require-
ment R1 was violated (i.e., 𝑥𝑡 − 𝑥) enabling the AUV controller to
identify the region in which insufficient observations have been
made, thus instructing the AUV to revisit this region and make
additional observations to meet R1 for the region.

4.4 Threats to validity

Construct validity threats may arise due to simplifications and
assumptions made when designing the evaluation methodology
and instrumenting the investigated scenarios with the changes de-
scribed in Section 4.2. To mitigate this threat, we devised changes
that conform to four classes of change patterns (i.e., Step, Square,
Ramp, Fixed) widely studied in the literature [15, 25, 28]. The
iCTMC model of the AUV system used to answer RQ4 has also
been used in related research [16, 31, 41].

Internal validity threats may correspond to bias in establishing
cause-effect relationships in our experiments. We limit them by
examining instantiations of the four classes of change patterns for
multiple values of the unknown transition parameters 𝑎 and 𝑏 (cf.
Proposition 3.1), and for multiple pattern configurations concerning
the change duration (Table 1). We reduce further the risk of biased
results due to using a fine-tuned iCPD by comparing it against a
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CPD-agnostic IPSP estimator, showing that although the intervals of
both estimators typically become narrower with new observations,
the CPD-agnostic estimator is in most scenarios unable to adapt
its interval to include the new parameter value. We also performed
experiments with varied numbers of MCMC trials, showing that
more MCMC trials lead to better estimates of the change point 𝑥 ,
thus conforming to the Bayesian practice [23]. Finally, we enable
replication by making all experimental results publicly available on
our project webpage https://github.com/x-y-zhao/iCPD.

External validity threats might challenge the generalisability of
our findings to other types of systems and processes; thus, we miti-
gate these threats as follows. Since iCPD requires the sequence of
observations 𝑜1, ..., 𝑜𝑛𝑖 as defined in (4), we limit this threat by de-
vising iCPD to work in running systems enhanced with closed-loop
controls (e.g., MAPE-K [34]), which include a monitor component
that continually monitors the system and records data about its
behaviour. Another threat might occur if the sensitivity level of
iCPD is inapplicable for the target system. We mitigated this by
demonstrating how configuring the iCPD hyper-parameters (e.g.,
IPSP estimator prior intervals, monitoring window𝑤 size) enables
achieving the desired trade-off between false positives and false
negatives. Finally, to further reduce the risk that iCPD might be
difficult to use in practice, we validated it both using iDTMCs and
iCTMCs, and showed in RQ4 how it can be integrated with the
probabilistic model checker Prism-PSY to verify key system prop-
erties (cf. Fig. 2). Nevertheless, additional experiments are needed
to establish further the generalisability of iCPD in interval Markov
chains modelling software systems other than those used in our
evaluation.

5 RELATED WORK

CPD analysis has been widely studied and successfully applied in
many areas, including software engineering [20], climate change [5]
and medicine [38]. From the numerous types of CPD solutions
developed by this research (likelihood ratio methods, kernel-based
methods, etc. ś see [1] for a survey), iCPD falls into the category of
hierarchical Bayesian models (HBMs) [17], i.e., CPD methods that
rely on MCMC techniques to calculate change-point posteriors.

However, existing HBM methods employ MCMC each time a
new data point becomes available, which is too computationally
expensive for online analysis. This is also true about [25], which
ś to the best of our knowledge ś is the only other project that
has tackled CPD for (discrete-time) Markov chain parameters. In
contrast, iCPD use a lightweight trigger to decide when this MCMC-
based CPD analysis is needed, and can therefore be much more
efficiently used for online CPD.

Additionally, current HBM methods (including [25]) compute
point estimates for parameters affected by sudden changes. As
emphasised in [6], point estimates of (uncertain) parameters can
rarely be justified in practice. Unlike these methods, which it com-
plements, iCPD focuses on interval CPD, computing new intervals
of priors that support the robust Bayesian estimation of the uncer-
tain parameters after the detected change point.

Bayesian methods to learn the transition parameters of Markov
chains at runtime have been proposed in [24, 27], and a light-
weight adaptive filter is introduced in [28] to reduce noise and

provide smooth estimates. However, those approaches do not con-
sider change-points explicitly, and need a relatively long time to
make accurate estimates after sudden changes. In addition, these ap-
proaches yield point estimates that can be affected by unquantified
and potentially significant errors. The work in [12] is the first to
synthesise bounds for unknown transition probabilities of DTMCs,
based on the frequentist theory of simultaneous confidence inter-
vals. The only Bayesian approach to computing bounded estimates
for PMC that we are aware of is [45]. Our iCPD builds on this robust
Bayesian estimator and, to the best of our knowledge, is the first
that provides CPD analysis for PMC with interval Markov models.

6 CONCLUSION & FUTUREWORK

We introduced iCPD, an end-to-end Bayesian approach to change-
point detection and estimation of interval Markov chain parameters.
iCPD enables the quantitative verification of systems affected by
parametric uncertainty [14], as using point estimates for the pa-
rameters of these systems hides this uncertainty [6] and can lead
to highly inaccurate verification results that may endorse invalid
software engineering decisions [10, 12].

Our experimental evaluation comprising scenarios instrumented
with changes from four widely studied classes of change patterns
showed that (i) iCPD can detect different types of changes accu-
rately and efficiently; (ii) adjusting the iCPD hyper-parameters
can enable achieving different trade-offs between false alarms and
missed changes; and (iii) iCPD supports the effective runtime PMC
of systems affected by parametric uncertainty. As future work, we
plan to extend iCPD with support for other patterns of change
(e.g., waves, triangles), and to investigate principled mechanisms
of eliciting the IPSP priors.
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