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Intruder Localization and Tracking Using Two

Pyroelectric Infrared Sensors
Saleh O. Al-Jazzar, Sami A. Aldalahmeh, Member, IEEE, Des McLernon, Member, IEEE, and

Syed Ali Raza Zaidi, Member, IEEE

Abstract—In this paper, we introduce a method to estimate
the range of an intruder and track its trajectory by utilizing the
received signal strength of the heat flux for pyroelectric infrared
(PIR) sensors. To this end, we first develop a mathematical model
of the received heat flux signal strength and the corresponding
PIR signal for a moving intruder. The algorithm uses only two
PIR sensors and the geometry of the field of views (FOVs)
to perform the estimation and tracking process without any
knowledge of the intruder’s parameters. The tracking algorithm
shows remarkable performance in estimating the intruder’s
parameters. The intruder heat flux was accurately estimated
even at large separation distances as was the intruder path angle.
Finally, the intruder’s location was also very accurately estimated
with sub-meter error for large separation distances.

Index Terms—Pyroelectric infrared sensor, localization, track-
ing, received signal strength.

I. INTRODUCTION

Localization and tracking of intruders are vital aspects

of any surveillance system. A range of different sensing

technologies including, magnetic, acoustic, seismic and ther-

mal sensors [1] have been employed for provisioning such

a surveillance functionality. Infrared sensors, in particular,

are used in many applications [2], especially localization

[3]. However pyroelectric infrared (PIR) sensors [4] render

themselves as a promising choice due to their low power

requirement, low cost and small form factor.

Recently, PIR sensors have been used in low-range indoor

applications, such as hand gesture recognition [5], [6]. Also,

PIR sensors have been used for assisted living applications

with a combination of other sensors (see [7] and references

therein). PIR sensors have been extensively employed in

the context of human tracking and classification. Interested

readers are referred to [8]–[12] for details. The PIR sensors

are also instrumented in several outdoor applications such as

critical area surveillance [13] and intrusion classification [14].

More recently, a combination of PIR and seismic sensors has

been used for target classification in [15]. Similarly, PIR and

ultrasonic sensors were used for flash flood detection in [16].

The previous sensor combination was also used for traffic

monitoring systems in [17], in which both sensors’ data are

fused to detect and estimate vehicle velocity.
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Obviously, the PIR sensor signal provides a valuable source

of information that can be used for detection, localization and

classification of pedestrians [10] and vehicles [17]. Several

processing methods have been suggested in the literature

to extract such information. In [18], energy detection with

an adaptive noise threshold was proposed. Simple high-pass

filtering was also used to improve the signal-to-noise ratio

(SNR). A combination of the Haar transform and support-

vector-machine was used in [19] to detect intrusion in the

presence of clutter. In [20], the authors proposed using

probabilistic nonnegative matrix factorization (PNMF) as a

learning mechanism to detect and classify human walking

movement. The PIR sensors were assembled in arrays fitted

in towers deployed on four walls of a room. PIR sensors

were used for the tracking of direction and distance of motion

in [21] via feature extraction methods. The sensor nodes

were mounted on a hallway and reported back wirelessly

to the base station. A set of two orthogonal PIR sensor

pairs was used in [22] to detect the direction of movement,

where the array was mounted in the ceiling. In [23], the

authors suggested an enhanced detection range method via the

windowed periodgram method, with a single PIR sensor.

In this paper, we propose an array of only two PIR sensors

for intruder localization and tracking using the PIR sensors’

signal strength together with the geometrical setting of the

Fresnel lens field of views (FOVs) angles. This method does

not assume the knowledge of any physical aspect of the

intruder. Nor does it require a specific inter-sensor separation.

Hence, the proposed method is suitable for various outdoor

applications

The rest of the paper is organized as follows: Section II

presents the modeling of the intruder signature. Section III

presents the PIR signal processing chain. The proposed local-

ization algorithm is given in Section IV. Simulation results are

introduced in Section V. Finally, in Section VI the conclusions

are presented.

II. MODELING OF INTRUDER’S SIGNATURE

In this section, the time-varying heat flux signature gen-

erated by the intruder and the PIR sensor output signal are

formulated.

A. PIR Sensor

A pyroelectric infrared sensor is a type of thermal sensor

that reacts to the change in the sensor’s temperature. Pyro-

electric materials consist of crystals with ionic bonds that
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Fig. 1: PIR sensor electrical equivalent circuit.

are relatively separated, hence creating an electrical dipole

moment. However, when exposed to a temperature change

the structure of the crystals also changes thus modifying the

polarization. The polarization in turn generates an electric

displacement field that redistributes the charges on the sensor’s

surfaces creating a small current. This current is usually turned

into a voltage through the use of a pre-amplifier circuit,

included in modern PIR sensors. The change of the PIR sensor

temperature results from incident heat flux emanating from an

external (remote) source. A succinct discussion of the above

is provided in [24] and extensive details can be found in [2].

The incident thermal flux is partially absorbed and converted

into heat. However some of this heat is lost due to thermal

convection in the sensor. This behavior is described by the

following first order linear differential equation

α∆φ(t) = CTh

d

dt
∆TS (t) +GTh∆TS (t) (1)

where 0 < α < 1 is the absorption factor, CTh is the thermal

heat capacity, GTh is the thermal conductivity, ∆φ(t) is the

change in heat flux and ∆TS (t) is the change in the sensor’s

temperature. As mentioned earlier, the temperature difference

creates a displacement current due to the pyroelectricity prop-

erty. Assuming zero initial voltage in the pyroelectric crystal,

the pyroelectric current is given by

IP (t) =
dQ

dt
= AS

dD

dt

= πpAS

d∆TS
dt

(2)

where Q is the surface charge on the crystal, D is displacement

current magnitude, AS is the sensor’s area and πp is the

pyroelectricity constant.

Now turning to the electrical properties of the PIR crystal,

for a given pre-amplifier, its output voltage (VS(t)) obeys the

following:

Ceq

d

dt
VS(t) +

VS(t)

Req

= IP (t) (3)

where Ceq and Req are the equivalent capacitance and re-

sistance of the PIR crystal and pre-amplifier, respectively, as

shown in Fig. 1.

In summary, equations (1), (2) and (3) represent the trans-

formation process from heat flux to voltage in the PIR sensor.

In the frequency domain, these relationships are given by

∆TS (ω) =
α∆Φ(ω)

jωCTh +GTh

(4)

IP (ω) = jωπpAS∆TS (ω) (5)

VS(ω) =

(
Req

1 + jωReqCeq

)
IP (ω) (6)

where ∆Φ(ω) is the change in the flux in the frequency

domain. The overall conversion process is captured by the

PIR sensor responsivity that is the system’s transfer function

H(ω) =
VS(ω)

∆Φ(ω)
(7)

So, the transfer function takes the form

H(ω) =
jωαπpASReq

(1 + jωReqCeq) (GTh + jωCTh)

= K
jωτTh

(1 + jωτE) (1 + jωτTh)
(8)

where

K = απpAS

(
Req

CTh

)
(9)

τE = ReqCeq (10)

τTh = CTh/GTh (11)

are the PIR sensor gain, thermal time constant and electrical

time constant respectively. Note that the sensor behaves as

a bandpass filter with a lower cutoff frequency of fTh =
1/2πτTh Hz and an upper cutoff frequency of fE = 1/2πτE
Hz.

B. Intruder Heat Flux

We are interested in measuring the heat flux generated by

a non-manoeuvring intruder moving with constant speed and

direction. The intruder is assumed to be in thermal equilibrium

with its environment. The measured flux at the sensor mainly

depends on the temperature, source geometry, and the spatial

orientation of the intruder and the sensor with respect to

(w.r.t.) each other. Assuming a Lambertian grey body emitting

uniformly in space, the heat flux at the sensor is [2], [23]

φ =
1

π
εkBωint,s

(
T 4
int − T 4

e

)
Aint (12)

where 0 < ε < 1 is the intruder’s emissivity, kB ≈ 5.67 ×
10−8Watt/(m2Kelvin4) is the Stefan-Boltzmann constant, Tint
is the intruder’s absolute temperature, Te is the environment’s

temperature, Aint is the intruder’s surface area, and ωint,s

is the projected solid angle of the intruder onto the sensor,

describing the geometry of the source w.r.t. the sensor:

ωint,s =
1

As

∫

Aint

∫

As

cosβint cosβs
R2

int,s

dAsdAint . (13)

Here As is the sensor’s area, βint and βs are the angles of

the infinitesimal elements dAint and dAs w.r.t. to the axis

connecting them, and Rint,s is the distance separating dAint

and dAs. Consequently, the total heat flux is found by solving

the double integration above and substituting into (12).

For an arbitrary geometry, the incident heat flux at the sensor

can be approximated, for a distance (R) between the intruder

and the sensor of more than 5 meters, as [23]

φ ≈ εkB
(
T 4
int − T 4

e

) AintAs

4R2
(14)

which is simply an inverse square law relationship.



3

As the intruder passes in front of the PIR sensor, a Fresnel

lens modulates the incident heat flux by partitioning the FOV

into multiple segments1 as shown in Fig. 4, where each seg-

ment concentrates the flux onto the PIR sensor. Consequently,

the PIR sensor’s signal depends on the intruder’s trajectory

through the FOVs and becomes time dependent (see (16)).

Take for example an intruder crossing the central FOV segment

with constant speed v making an angle ψ0 with the main

sensor axis at distance R0 as shown in Fig. 3. The squared

distance between the intruder and the sensor is given by the

cosine rule [19] as

R2(t) = v2t2 +

(
R0 sinψ0

sin (ψ0 + ξ)

)2

+
2vtR0 sinψ0

tan (ψ0 + ξ)
(15)

where ξ is the angle between the first FOV axis at which the

intruder enters and the main sensor axis. So, for example ξ
will be γ (which is the half FOV angle) for the single FOV

case shown in Fig.3 and 3γ + θ for the case shown in Fig.4

where θ is the half angle of the dead band (i.e., no flux signal

in this angle region). Therefore, the incident heat flux has the

form

φ(t) =
φ0

R2(t)

[
Π

(
t− t0

d+0 /v

)
−Π

(
t− t0 − d+0 /v

d−0 /v

)]
(16)

where

φ0 =
εkBAintAs

4

(
T 4
int − T 4

e

)
(17)

and t0 is the entry time. In addition

Π(t) =

{
1, t ∈ [0, 1]

0, otherwise
(18)

with d+0 and d−0 the distances the intruder travels in the positive

and negative segments in the FOV as shown in Fig. 3.

In general, for 2F + 1 FOV segments indexed by j =
−F, · · · , F , we have the heat flux signature in the form

φ(t) =
φ0

R2(t)

F∑

j=−F

[
Π

(
t− tj

d+j /v

)
−Π

(
t− tj − d+j /v

d−j /v

)]

(19)

where tj is the jth segment entry time.

C. PIR Signal

As stated earlier, the PIR sensor converts the impinging heat

flux into an electrical voltage. Therefore, the output voltage

signal is a filtered version of the heat flux in (19), i.e.,

s(t) = h(t) ∗ φ(t) (20)

where h(t) is the sensor’s time-domain responsivity (i.e.,

impulse response) and ” ∗ ” is the convolution operator. The

PIR sensor elements are usually followed by a JFET voltage

buffer, which superimposes the sensor signal onto a dc bias of

the transistor. Also, the signal is corrupted by noise, which is

dependent on the sensor and the environment background heat

radiation. However, we assume that the voltage signal (p(t))
at the input to the analog to digital converter is appropriately

1In the context of intrusion detection, such an arrangement increases the
probability of detection.

conditioned to remove the dc bias, reduce the noise and

amplify the signal by a proper gain (G) before being sampled

at frequency Fs =
1

T
. Hence,

p[n] = Gs[n] + w[n] (21)

for 0 ≤ n ≤ N − 1 where s[n] = s(nT ) with w[n] assumed

to be additive white Gaussian noise (AWGN) with zero mean

and known variance (σ2).

III. PIR SIGNAL PREPROCESSING CHAIN

Obviously, the PIR signals in (20) and (21) do not lend

themselves to analysis, due to the sensor filtering effect and

noise. So, a block diagram illustrating the localization and

tracking algorithm is shown in Fig. 2, part of which deals

with the relevant aspects of deconvolution and denoising.

A. Signal Deconvolution

The PIR sensor impulse response (h(t)) can be obtained

from the sensor’s data sheet such as [25]. Given this informa-

tion, a deconvolution filter can be used to reverse the effect

of the PIR sensor to retrieve the original flux signal in (19).

However, simply inverting the transfer function will not yield a

causal filter2. To circumvent this problem, the inverted transfer

function Hinv(s) is composed of two steps. The first step

(Hinv,1) is the reciprocal of H(s) divided by s, which is given

as follows:

Hinv,1(s) =
(1 + τThs) (1 + τEs)

s2
. (22)

Then, the second step is taking the derivative of the output

of the transfer function Hinv,1(s). This is accomplished by

setting the second stage to Hinv,2 = s. Thus, the full

deconvoluation stage is given by

Hinv(s) = Hinv,1(s)Hinv,2(s)

which is actually the reciprocal of H(s) leading to canceling

the convolution step (i.e., deconvolving the PIR signal output).

Then, Hinv(s) is discretized via the bilinear transformation

[26] to provide the digital deconvolution filter hinv[n]. Even-

tually, the deconvolved signal is

φ̂d[n] = hinv[n] ∗ p[n] (23)

where this signal still contains a noisy version of the flux

signal.

B. Signal Denoising

In order to clean the flux signal and reduce the corrupting

noise, we use a two-step denoising process. The first one

utilizes the discrete wavelet transform based denoising (i.e.,

the wavelet coefficients are thresholded) where the Daubechies

wavelet is used in conjunction with James-Stein block thresh-

olding3 [27], [28]. Note that the Daubechies wavelet is chosen

2For causality, H(s) must be proper (i.e., the degree of the numerator must
not exceed that of the denominator).

3This is readily available in the MATLAB Wavelet Toolbox.
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Fig. 2: Block diagram for the proposed localization and tracking
algorithm.

since it can handle ”jumps” in the received signal (when the

intruder enters or leaves the FOV).

To discuss the second denoising step it is worth mentioning

that the flux is a smooth piece-wise linear signal. Thus, we

should look for a smooth signal that best fits the noisy one.

This can be done via regression with a smoothing regulariza-

tion. Fortunately, this amounts to solving the following convex

optimization problem [29]:

min
φ̂

‖φ̂dd − φ̂‖2 + λ‖Dφ̂‖1 (24)

where φ̂dd is the output vector of the first denoising step and

φ̂ is the final output vector of the smoothed flux signal. Also,

λ is a regularization factor, ‖ · ‖2 is the l2 norm, ‖ · ‖1 is the

l1 norm and D is the difference ((N − 1)×N) matrix used

to enforce the smoothing condition and is defined as

D =




−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1



. (25)

Note that the l1 norm is used above in the smoothing

regularization term to preserve the piece-wise nature of the

flux signal. In contrast to using the l2-norm in the second

term in (24) (also known as Tikhonov regularization), the use

of the l1-norm preserves the large variation inherent in the

PIR signal. But Tikhonov regularization penalizes any large

variation, so if used it will distort the output signal.

IV. INTRUDER LOCALIZATION AND TRACKING METHOD

In this section we will illustrate the localization and tracking

algorithm using the geometry of the PIR sensor’s FOVs. In

order to simplify the discussion we will first assume that

φ0 in (17) is known and derive the localization and tracking

method. Then we will extend it to the general case where φ0
is unknown.

A. Localization with pre-knowledge of φ0

Consider the geometry in Fig. 3, which shows the intruder

trajectory in a single FOV of the PIR sensor (for sake of

illustration). Let the PIR sensor be located at the origin (0, 0).
Having the (denoised) heat flux at hand and knowledge of φ0
together with the fact that the signature flux in (19) reduces

to φ0/R
2
−1 where R−1 is the distance between the sensor and

the entry point (x−1, y−1) then

y−1 = R−1 cos γ (26)

where γ is the half FOV angle as shown in Fig. 3. Conse-

quently, it can be shown that

x−1 = −y−1 tan γ . (27)

Similarly, given the flux value at the exit point (x1, y1), one

can deduce that

y1 = R1 cos γ (28)

x1 = y1 tan γ (29)

where R1 is the distance between the exit point and the sensor.

The same procedure can be followed to find the transition

point (x0, y0) which is the point between the positive and

negative FOVs. Note that x0 = 0 (from Fig 3). Also, one can

easily deduce that y0 = R0 where R0 is the distance between

the transition point and the sensor.

Once the coordinates (x−1, y−1), (0, y0) and (x1, y1) are

calculated, one can deduce the distances traveled by the

intruder in the two halves of the FOV as shown in Fig. 3,

i.e., d+j and d−j . Thus, we can track the intruder trajectory.

The same process can be applied for each FOV to get the

full track of the intruder. To generalize to the case of multiple

FOVs the relation between the intruder track coordinates in all

FOVs can be written in terms of R0 (which is shown in Fig. 4)

and the angle Ψ, which is the angle at which the intruder is

passing with respect to the horizon (x-axis). According to the

geometry in Fig. 4, the coordinates at which the intruder passes

through the FOVs are given by

xi = Ri sin(ui) (30)

where i = ...,−1, 0, 1, ..., and

yi = Ri cos(ui) (31)

where

ui = sgn(i)

(
|i| − ⌊

|i|+ 1

3
⌋

)
γ + sgn(i)⌊

|i|+ 1

3
⌋θ (32)

and

Ri =
R0

cos(ui)− tan(Ψ) sin(ui)
(33)

and where sgn is the sign function and ⌊.⌋ is the floor operator.

B. Localization without pre-knowledge of φ0

To localize the intruder without knowing the value of φ0,

we utilize the signals received by two sensors (as shown in

Fig. 5). Without loss of generality we will assume that the

locations of the first and second sensors are (0, 0) and (B, 0),
respectively. The intruder passes through the FOVs of the

first and second sensors at an angle Ψ as illustrated in Fig. 5.

In this figure we show the principal FOV only in each sensor

for the sake of clarity of explanation. However, the proposed

method applies for the general case of multiple FOVs.

In order to find the coordinates of the intruder we need to

estimate φ0. Once, it is estimated, the method in the previous

subsection can be readily applied. According to Fig. 5, the

angle Ψ is constant throughout the path. Given the signal
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Fig. 3: Geometry for a single FOV.

strengths at the FOVs exit points extracted by the denoising

process in Section III.B, one can state that

tanΨ =
y1 − y−1

x1 − x−1

=

y1
√

φ0

− y
−1

√

φ0

x1√

φ0

− x
−1

√

φ0

(34)

=
cy,1 − cy,−1

cx,1 − cx,−1

(35)

where cy,i =
yi

√

φ0

and cx,i =
xi√

φ0

are the square roots of the

reciprocals of the extracted signal strength. Thus, the angle Ψ
can be estimated since the right-hand-side of equation (35) is

known.

Furthermore, at the first sensor we have

tanΨ =
y1

x1 +A
=

cy,1

cx,1 + Ã
(36)

where Ã = A
√

φ0

and A is the distance between the first sensor

and the intersection point between the x-axis and the extension

of the intruder path (note here that without loss of generality

the two sensors are located on the x-axis).

Now, since Ψ has been estimated, the unknown quantity Ã
can be found as well.

Similarly, given that B is the distance between the first and

second sensors, it is easily shown that
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Fig. 4: Geometry for three FOVs.

tanΨ =
ȳ1

x̄1 +A+B
=

c̄y,1

c̄x,1 + Ã+ B̃
(37)

where c̄y,i =
ȳi

√

φ0

, c̄x,i =
x̄i√

φ0

and B̃ = B
√

φ0

. So, rearranging

(37) yields

B̃ = c̄y,1 cotΨ− c̄x,1 − Ã . (38)

Now given the recently estimated values, Ψ and Ã and the

already known B, it can be shown that

φ0 =

(
B

B̃

)2

. (39)

Once φ0 is estimated, then all the coordinates (xi, yi) and

(x̄i, ȳi) for i = −1, 0, 1 can be calculated. Thus, the intruder

can be tracked without pre-knowledge of φ0 as required.

Due to noise, the estimated coordinates (xi, yi) cease to

be collinear and so do the variables (cx,i, cy,i). Thus, Ψ̂ is

estimated using the least squares method as follows:

Ψ̂ = arctan

(
Np

∑
i cx,icy,i −

∑
i cx,i

∑
i cy,i

Np

∑
i cx,icx,i −

∑
i c

2
x,i

)
(40)

where Np is the total number of points considered which are

indexed by i, i.e., for example Np = 9 for the case shown in

Fig. 4.
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Fig. 5: Geometry for the proposed localization method.

Also, Ã in (36) is estimated for each variable pair (cx,i, cy,i)
together with using Ψ̂ and is given the notation Ãi. Then, we

take the average value of Ãi for all i to find Â which is the

estimated value for Ã.

Accordingly, the estimated value of B̃ in (38) is given the

notation B̂ and calculated by using the average values of c̄x,i
and c̄y,i instead of c̄x,1 and c̄y,1, respectively. Also, Ψ and Ã
are replaced with Ψ̂ and Â, respectively. Thus,

φ̂0 =

(
B

B̂

)2

. (41)

Now, this estimated variable φ̂0 is used to find all the coordi-

nates (xi, yi) and (x̄i, ȳi) for i = −1, 0, 1 to locate and track

the intruder.

V. SIMULATION RESULTS

In this section, we present simulation results for tracking of

a human intruder via the use of an array of two PIR sensors.

The first sensor is located at the origin and the second sensor

is located at (4m,0m). Each sensor has F = 6 FOVs and a

half FOV angle of γ = 7.5o, as shown in Fig. 6. The sensor

area is As = 20µm2 with emissivity of ε = 1 at environment

temperature Te = 20oC. The PIR sensor has a gain of K =
103, with thermal and electrical time constants of τTh = 4.2
sec and τE = 1 sec, respectively. The sensor’s thermal noise

standard deviation is σ = 0.5mV (which results in normalized

SNR of 23.9dB at R0 = 1m). The intruder, on the other hand,

has a temperature of Tint = 37oC and a surface area of Aint =
0.7m2. It moves with a constant speed of v = 1 km/hour in a

straight line making angle with the x-axis of Ψ = 100.

In Fig. 7 we show the received heat flux signal of the in-

truder. The dashed lines represent the envelope of the thermal

received flux. Due to the intruder’s movement, the distance to
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Fig. 6: FOVs with the intruder track.

the PIR sensor changes, which in turn changes the received

heat flux amplitude (envelope) accordingly. The solid line on

the other hand, represents the modulated received thermal flux

due to having positive and negative elements in the PIR sensor.

Fig. 8 illustrates the noisy PIR sensor output voltage signal

resulting from the input heat flux shown in Fig. 7.

The corresponding deconvolved and denoised signal are shown

in Fig. 9 where the first denoising step was performed using

the James-Stein block algorithm with the first Daubechies

wavelet type and 5 levels. As for the second denoising step,

the regularization parameter in (24) is λ = 0.15. We instru-

mented the CVX MATLAB package [30] to solve the convex

optimization problem in (24). Figs. 10, 11 and 12 illustrate

the mean squared error (MSE) estimates of φ0, R0 and Ψ,

respectively. The proposed algorithm performs extremely well

in estimating φ0 and Ψ in the range of 10−10 and 10−2,

respectively4. Notably, the localization error is in the sub-meter

range, even at distances as far as 12m.

As expected, the MSE increases as the distance R0 and

noise standard deviation increase. In general, the results in-

dicate that our proposed algorithm estimated the intruder

trajectory parameters with a high accuracy.

VI. CONCLUSION

In this paper we propose a mathematical model describing

the heat flux signature generated by a moving intruder and

a corresponding PIR output signal. This model was used to

develop a localization and tracking algorithm using two PIR

sensors with the geometry of their FOVs and without any

knowledge of the intruder parameters. The algorithm retrieves

the original heat flux signature via equalizing the PIR sensor

4Please note that φ0 is in the range of 10−4 Watt.m2 and the estimation
error is less than 10−5 Watt.m2 causing the MSE in φ0 to be in the range
of 10−10Watt2.m4.
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Fig. 7: Fresnel lens modulated signal (solid line) and the positive and
negative input flux signal (dashed line) for Ψ = 10

o, σ = 0.5mV
(normalized SNR=23.9dB) and R0 = 14m.
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Fig. 8: PIR output signal Ψ = 10
o, σ = 0.5mV (normalized

SNR=23.9dB) and R0 = 14m.

effect through deconvolution and denoising steps, which is

then used for localization.

The proposed algorithm shows remarkable performance in

estimating the intruder’s parameters. The intruder heat flux

was accurately estimated even at large separation distances.

Moreover, the intruder path angle was estimated accurately as

well. Finally, the intruder’s location was estimated and tracked

with sub-meter error for large separation distances.
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