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Abstract

The closure cl(R) of a consistent set R of triples (rooted binary trees on three leaves) provides
essential information about tree-like relations that are shown by any supertree that displays all
triples in R. In this contribution, we are concerned with representative triple sets, that is, subsets
R′ of R with cl(R′) = cl(R). In this case, R′ still contains all information on the tree structure
implied by R, although R′ might be significantly smaller. We show that representative triple sets
that are minimal w.r.t. inclusion form the basis of a matroid. This in turn implies that minimal
representative triple sets also have minimum cardinality. In particular, the matroid structure
can be used to show that minimum representative triple sets can be computed in polynomial
time with a simple greedy approach. For a given triple set R that “identifies” a tree, we provide
an exact value for the cardinality of its minimum representative triple sets. In addition, we
utilize the latter results to provide a novel and efficient method to compute the closure cl(R) of
a consistent triple set R that improves the time complexity O(|R||LR|

4) of the currently fastest
known method proposed by Bryant and Steel (1995). In particular, if a minimum representative
triple set for R is given, it can be shown that the time complexity to compute cl(R) can be
improved by a factor up to |R||LR|. As it turns out, collections of quartets (unrooted binary
trees on four leaves) do not provide a matroid structure, in general.

Keywords: Rooted Triple, Closure, Matroid, Ahograph, BUILD, Greedy, Phylogeny, Quartet

1 Introduction

Inference of phylogenetic relationships between genes or species based on genomic sequence in-
formation is one of the main issues in phylogenomics [52]. The evolutionary history of genes
and species is usually represented as a tree. One of the possible building blocks for the re-
construction of the histories of both, genes and species, are provided by triples (rooted binary
trees on three leaves) [8, 16, 24, 28, 30, 32, 38, 42, 44, 56, 61]. Such triples can be obtained
directly from sequence data and are combined to a “supertree” that provides then the infor-
mation of the history of the respective genes or species [9–12, 21, 23, 29, 31, 39, 41, 43]. In
this contribution, we consider consistent sets R of triples, that is, all triples of R fit into a
common supertree, which enforces further tree-like relations to hold [6, 13, 25]. This allows one
to define a closure operation cl(R) for R that comprises all triples that are displayed by every
proper supertree for R. The closure of sets of rooted or unrooted trees has been extensively
studied in the last decades [4–6, 13, 15, 25, 34] and has various applications in phylogenomics
[19, 20, 31, 35, 46, 47, 53, 55, 62].

Here, we are particularly interested in the computation of the closure and representative
sets R′ for consistent triple sets R, that is, subsets R′ of R that satisfy cl(R′) = cl(R). Such
representative sets R′ are of particular interest, since on the one hand, they can reduce the space
complexity to store all information on the tree-like relationships that is also provided by R and,
on the other hand, will significantly improve the time complexity to compute the closure, as we
shall see later. Natural optimization problems within this context aim at finding representative
sets R′ that are minimal w.r.t. inclusion or have minimum size among all representative subsets
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of R. Grünewald, Steel and Swenson [25] established important results to the latter problems.
In particular, they characterized minimal representative triple sets R′ ⊆ R for the case that R
“identifies” a given tree T and gave lower bounds B(T ) on their cardinalities. Moreover, Mike
Steel showed that all minimal “tree-defining” sets of rooted triples must have the same size [58].
However, for an arbitrary consistent triple set R it is still unclear whether the (decision version
of the) problem of finding a representative subset R′ ⊆ R of minimum size is NP-complete or
polynomial-time solvable.

In this contribution, we show that minimum representative subset R′ ⊆ R can be computed
in polynomial time. To this end, we show that minimal representative sets R′ ⊆ R form the
basis of the matroid (R,FR) [40, 50]. Since all basis elements of a matroid have the same size and
since minimum representative sets are minimal, it turns out that minimum representative sets
can be computed with a simple greedy algorithm. We emphasize that there is a clear difference
between the closure operator cl(R) for rooted triple sets R and the respective matroid closure
operator, although cl(R) is used to define the matroid (R,FR), see [5] or Section 4 for further
details. We exploit the techniques we used to prove the matroid structure and provide a novel
algorithm to compute the closure cl(R) of a consistent set R of triples. Let LR denote the set
of leaves on which R is defined on. If R is large sized, that is, |R| = Θ(L3

R), then our algorithm
has the same asymptotic time complexity as the method proposed by Bryant and Steel which
runs in O(|R||LR|

4) ⊆ O(|R|5) time [6]. However, our algorithm has a time complexity of
O(|R|2|LR|) ⊆ O(|R|

3) and thus, significantly improves the computational effort for moderately
sized input triple sets R. Further runtime improvements (up to a factor of |R||LR|) can be
achieved whenever minimum representative subset R′ ⊆ R are used as input triple set. It
should be noted that Bryant and Steel established this algorithm in order to show that cl(R)
can be computed in polynomial-time rather than to be efficient. Nevertheless, they supposed
that “a far more efficient algorithm could be found”. However, over the last two decades no
such algorithm appeared in the literature. We wish to point out that the theory of matroids
has touched phylogenetics also in many other contexts, see e.g. [2, 3, 17, 22, 27, 48, 49, 51, 59].

This contribution is organized as follows: In Section 2, we present the basic and relevant
concepts used in this paper. In particular, we review important results for closure operations
on rooted triple sets established by Bryant and Steel [5, 6]. A key property that will play
a major role in this paper is provided by the graph representation of triple sets (Ahograph)
and its connected components. In Section 3, we are concerned with structural properties of
representative subsets R′ ⊆ R that are closely related to the structure of the Ahograph. The
latter results will be used in Section 4 to show that minimal representative sets R′ ⊆ R (and its
subsets) form a matroid (R,FR). In Section 5, we present a novel method to compute the closure
cl(R). Finally, we discuss in Section 6 further results. We give sufficient conditions that are
quite useful to check whether an arbitrary triple is contained in all minimal representative sets
and if R is already minimal. Moreover, we review and generalize some of the results established
for triple sets R that “identify” or “define” a tree. In addition, we address the problem of finding
minimal representative sets Q′ ⊆ Q of a collection Q of quartets (unrooted binary tree on four
leaves). As it turns out, such sets do not provide a matroid structure. We conclude with a short
discussion about the established results and open problems in Section 7.

2 Preliminaries

We consider undirected graphs G = (V,E) with non-empty vertex set V and edge set E. A
graph G = (V,E) is connected if for any two vertices x, y ∈ V there is a sequence of vertices
(x, v1, . . . , vn, y), called walk, such that the edges (x, v1), (vn, y) and (vi, vi+1), 1 ≤ i ≤ n− 1 are
contained in E. A walk (x, v1, . . . , vn, y) in which all vertices are pairwise distinct is called a
path and denoted by Pxy. A cycle is a walk (x, v1, . . . , vn, x) for which n ≥ 2 and (x, v1, . . . , vn)
is a path. A graph H = (W,F ) is a subgraph of G = (V,E), in symbols H ⊆ G, if W ⊆ V
and F ⊆ E. The subgraph H = (W,F ) is an induced subgraph of G = (V,E), if x, y ∈ W and
(x, y) ∈ E implies (x, y) ∈ F . If H = (W,F ) is an induced subgraph of G we write 〈W 〉G or
simply 〈W 〉 if there is no risk of confusion. A connected component of a graph G = (V,E) is a
subset W ⊆ V such that 〈W 〉G is connected and maximal w.r.t. inclusion.

A tree T = (V,E) is a connected graph that does not contain cycles. The leaf set L ⊆ V
of T comprises all vertices that have degree 1. The vertices that are contained in V 0 := V \ L
are called inner vertices. The set of inner edges E0 contains all edges (x, y) ∈ E for which
x, y ∈ V 0. A rooted tree T = (V,E) is a tree with one distinguished inner vertex ρT ∈ V called
root of T . If every inner vertex of an unrooted tree has degree 3, the tree is called binary. A
rooted tree is called binary if the degree of each inner vertex v 6= ρT is 3 and the degree of the

2



root ρT is 2. In what follows, we consider rooted trees T = (V,E) such that all inner vertices
that are distinct from the root have degree at least three. For every vertex v ∈ V we denote
by C(v) the leaf set of the subtree of T rooted at v and put C(T ) =

⋃

v∈V {C(v)}, called the
hierarchy of T . We say that a rooted tree T ′ refines T , in symbols T ≤ T ′, if C(T ) ⊆ C(T ′).

A triple ab|c is a binary rooted tree T on three leaves a, b and c such that the path from a
to b does not intersect the path from c to the root ρT . A rooted tree T with leaf set L displays
a triple ab|c, if a, b, c ∈ L and the path from a to b does not intersect the path from c to the
root ρT . Note, that no distinction is made between ab|c and ba|c. The set of all triples that
are displayed by the rooted tree T is denoted by R(T ). An arbitrary collection R of triples is
called triple set. A triple set R is consistent if there is a rooted tree T such that R ⊆ R(T ). In
the latter case, we say that T displays R. The set LR := ∪ab|c∈R{a, b, c} is the union of the leaf
set of each triple in R. A triple set R identifies a rooted tree T with leaf set LR, if T displays
R and any other tree that displays R refines T . A triple set R defines a rooted tree T with leaf
set LR, if T is the unique tree (up to isomorphism) that displays R.

There is a polynomial-time algorithm, which is customarily referred to as BUILD [57, 60],
that was established by Aho, Sagiv, Szymanski, and Ullman [1]. BUILD either constructs a
rooted tree T that displays R or recognizes that R is inconsistent [1]. The runtime of BUILD is
O(|LR||R|) [57]. Further practical implementations and improvements have been discussed in
[14, 33, 37, 54]. BUILD is a top-down, recursive algorithm [1, 6] that uses an auxiliary graph
that is also known as Ahograph [36], clustering graph [57] or cluster graph [18]. We will use the
term “Ahograph”. This graph is used to represent the structure of a collection of triples: For a
given triple set R and an arbitrary subset L ⊆ LR, the Ahograph [R,L] has vertex set L and
two vertices a, b ∈ L are linked by an edge, if there is a triple ab|c ∈ R with c ∈ L. Based
on connectedness properties of the graph [R,L] for particular subsets L ⊆ LR, the algorithm
BUILD determines whether R is consistent or not. In particular, this algorithm makes use of the
following well-known theorem.

Theorem 2.1 ([1, 6]). A set of triples R is consistent if and only if for each subset L ⊆ LR

with |L| > 1 the graph [R,L] is disconnected.

Since we will use the Ahograph and its key features as a frequent tool in upcoming proofs,
we now summarize some of its basic properties.

Lemma 2.2 ([6]). If R′ is a subset of the triple set R and L′ ⊆ L ⊆ LR, then [R′, L′] is a
subgraph of [R,L].

Lemma 2.3. Let R be a triple set and L ⊆ LR. Assume that A ⊆ LA ⊆ L and B ⊆ LB ⊆ L
such that the induced subgraphs 〈A〉[R,LA] and 〈B〉[R,LB ] in [R,LA] and [R,LB ], respectively,
are connected. If A ∩ B 6= ∅, then 〈A ∪ B〉G is connected in G, where G = [R,LA ∪ LB ] or
G = [R,L].

Proof. Let A ⊆ LA ⊆ L, B ⊆ LB ⊆ L and assume that the induced subgraphs 〈A〉 of [R,LA] and
〈B〉 of [R,LB ] are connected. By Lemma 2.2, [R,LA] and [R,LB ] are subgraphs of [R,LA∪LB ].
Let x ∈ A ∩ B. Thus, every vertex y ∈ A ∪ B is reachable from x by a walk in [R,LA ∪ LB ].
Hence, any two vertices y, y′ ∈ A ∪ B are reachable by a walk (over x) in [R,LA ∪ LB ] and
therefore, 〈A ∪ B〉[R,LA∪LB ] is a connected subgraph in [R,LA ∪ LB ]. Since LA,LB ⊆ L we
can apply Lemma 2.2 and conclude that [R,LA ∪ LB ] is a subgraph of [R,L] from what the
statement follows. �

The requirement that a set R of triples is consistent, and thus, that there is a tree displaying
all triples, allows to infer new triples from the trees that display R and to define a closure
operation for R. Let span(R) be the set of all rooted trees with leaf set LR that display R. The
closure of a consistent triple set R is defined as

cl(R) =
⋂

T∈span(R)

R(T ).

Hence, a triple r is contained in the closure cl(R) if all trees that display R also display r. This
operation satisfies the usual three properties of a closure operator [6], namely:

• R ⊆ cl(R),

• cl(cl(R)) = cl(R), and

• if R′ ⊆ R, then cl(R′) ⊆ cl(R).

There is a simple polynomial time algorithm to compute the closure that is based on the following
lemmas.
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Lemma 2.4 ([6, Prop. 9(1)]). Let R be a consistent triple set. If cl(R) does not contain
any triples with leaves {a, b, c}, then cl(R) ∪ {ab|c}, cl(R) ∪ {ac|b} and cl(R) ∪ {bc|a} are all
consistent.

Lemma 2.5. Let R be consistent. For all {a, b, c} ∈
(

LR

3

)

exactly one of R∪{ab|c}, R∪{ac|b}
and R ∪ {bc|a} is consistent (say R ∪ {ab|c}) if and only if ab|c ∈ cl(R).

Proof. Assume that only R∪{ab|c} is consistent while R∪{ac|b} and R∪{bc|a} are not. Since
the latter two sets are not consistent, there is no tree that displays R and, in addition, ac|b,
resp., bc|a. Thus, ac|b, bc|a /∈ cl(R). Assume for contradiction that additionally ab|c /∈ cl(R).
Hence, cl(R) does not contain any triples with the leaves {a, b, c}. Lemma 2.4 implies that
cl(R) ∪ {ac|b} is consistent. However, this implies that there is a tree T that display all triples
of cl(R) and the triple ac|b. Since R ⊆ cl(R) this tree T displays R ∪ {ac|b}; a contradiction.

Conversely, let ab|c ∈ cl(R). Thus, every tree that displays R must also display ab|c.
Therefore, any tree that displays R does not display ac|b and bc|a. Hence, there is no tree that
displays R and in addition, ac|b (resp. bc|a), which implies that R∪ {ac|b} and R∪ {bc|a} are
not consistent. �

Based on the latter result, the closure of a given consistent set R can be computed in
O(|R||LR|

4) time [6] as follows: For any three distinct leaves a, b, c ∈ LR test whether exactly
one of the sets R ∪ {ab|c}, R ∪ {ac|b}, R ∪ {bc|a} is consistent (e.g. with the O(|LR||R|)-time
algorithm BUILD), and if so, add the respective triple to the closure cl(R) of R. A further
characterization of the closure by means of the Ahograph is given by Bryant [5, Cor. 3.9].

Theorem 2.6. For a consistent triple set R we have ab|c ∈ cl(R) if and only if there is a subset
L ⊆ LR such that the Ahograph [R,L] has exactly two connected components, one containing a
and b and the other containing c.

We complete this section with a last result for later reference.

Lemma 2.7. Let R be consistent and R′ ⊆ R. Then R′ ⊆ cl(R \R′) if and only if cl(R \R′) =
cl(R). In particular, if cl(R \R′) = cl(R), then cl(R \ {r}) = cl(R) for any triple r ∈ R′.

Proof. If R′ ⊆ cl(R \ R′), then clearly cl(R \ R′) = cl(R \ R′) ∪ R′. Therefore, cl(R \ R′) =
cl(cl(R \R′)) = cl(cl(R \R′)∪R′). Theorem 3.1(8) in [5] states that cl(cl(A)∪B) = cl(A∪B).
Hence, cl(cl(R \ R′) ∪ R′) = cl((R \ R′) ∪ R′) = cl(R). Conversely, if cl(R \ R′) = cl(R), then
R′ ⊆ R ⊆ cl(R) implies that R′ ⊆ cl(R \R′).

Now let R′ ⊆ R, r ∈ R′ and assume that cl(R \R′) = cl(R). Since R \R′ ⊆ R \ {r}, we have
cl(R) = cl(R \R′) ⊆ cl(R \ {r}) ⊆ cl(R). Thus, cl(R \ {r}) = cl(R). �

3 Representative Triple Sets

The closure cl(R) provides all information of further triples that are implied by a consistent
triple set R. Nevertheless, there might be subsets R′ ⊆ R that provide the same information,
that is, cl(R′) = cl(R). See Figure 1 for an example.

Definition 3.1. Let R be a consistent triple set. A set R′ ⊆ R is representative for R if
cl(R) = cl(R′). The set sc(R)1 comprises all representative triple sets of R. Moreover, we put

min(sc(R)) := {R′ ∈ sc(R) : R′ is minimal w.r.t. inclusion }

and
MIN(sc(R)) := {R′ ∈ sc(R) : |R′| ≤ |R′′| for any R′′ ∈ sc(R)}.

It is easy to see that MIN(sc(R)) ⊆ min(sc(R)). As we shall see later, even MIN(sc(R)) =
min(sc(R)) is satisfied. In order to investigate the sets MIN(sc(R)) and min(sc(R)) in more
detail, we utilize the Ahograph and, in particular, Theorem 2.6. Note, Theorem 2.6 implies that
ab|c ∈ cl(R) if and only if there is a subset L ⊆ LR such that [R,L] has exactly two connected
components A and B, one containing a, b and the other c. These two connected components will
play a major role in the proof for matroid properties. Since there might be several subsets L of
LR that satisfy the properties of Theorem 2.6 for a given triple ab|c, we collect the respective
connected components A and B in the set Lab|c(R).

1
sc stands for “same closure”
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Figure 1: Given the set R = {ab|c, ac|d, bc|d}, there is only one tree T that displays R (shown left). Thus,
cl(R) = R(T ) = {ab|c, ac|d, bc|d, ab|d}. The subsets R1 = {ab|c, ac|d} and R2 = {ab|c, bc|d} are representative triple
sets for R. In particular, both R1 and R2 are minimal and have minimum size. However, not all subsets of R with size
two are representative. By way of example consider R3 = {ac|d, bc|d}. Although T displays R3, there are three further
trees T1, T2 and T3 that display R3 as well. Thus, cl(R3) = R(T )∩R(T1)∩R(T2)∩R(T3) = {ac|d, bc|d, ab|d} 6= cl(R).

Definition 3.2. Let R be a consistent triple set and ab|c a triple with a, b, c ∈ LR. The set

Lab|c(R)

comprises all sets {A,B} for which A,B ⊆ LR and [R,A ∪ B] has exactly two connected com-
ponents A and B, one containing a and b and the other containing c.

We emphasize that we do not assume that ab|c ∈ R in Definition 3.2. The following lemma
is an immediate consequence of Definition 3.2 and Theorem 2.6.

Lemma 3.3. Let R be a consistent triple set. Then,

Lab|c(R) 6= ∅ if and only if ab|c ∈ cl(R).

In what follows, we show that elements {A⋆, B⋆} ∈ Lab|c(R) with |A⋆ ∪B⋆| ≥ |A∪B| for all
{A,B} ∈ Lab|c(R) are unique in Lab|c(R) and that A must be a subset of A⋆ (resp. B⋆) while
B is a subset of B⋆ (resp. A⋆). In other words, the Ahograph [R,A ∪ B] must be a subgraph
of [R,A⋆ ∪B⋆], where one of the two connected components of [R,A ∪B] is entirely contained
in A⋆ and the other in B⋆. To this end, we start with the following lemma.

Lemma 3.4. Let R be a consistent triple set and ab|c, a′b′|c′ ∈ cl(R). Assume that {A,B} ∈
Lab|c(R) and {A′, B′} ∈ La′b′|c′(R). If A ∩ A′ 6= ∅ and B ∩ B′ 6= ∅, then {A ∪ A′, B ∪ B′} ∈
Lab|c(R) ∩ La′b′|c′(R).

Proof. Let R be consistent and ab|c, a′b′|c′ ∈ cl(R). By Lemma 3.3, there are {A,B} ∈ Lab|c(R)
and {A′, B′} ∈ La′b′|c′(R). Assume that A∩A′ 6= ∅ and B∩B′ 6= ∅ and let L′ = A∪A′∪B∪B′.

By Lemma 2.2, both [R,A ∪ B] and [R,A′ ∪ B′] are subgraphs of [R,L′]. Moreover, by
definition, [R,A ∪ B] and [R,A′ ∪ B′] have two connected components A,B, resp., A′, B′.
Furthermore, since A ∩ A′ 6= ∅ and B ∩ B′ 6= ∅ we can apply Lemma 2.3 and conclude that
the induced subgraphs 〈A ∪ A′〉[R,L′] and 〈B ∪ B′〉[R,L′] form connected subgraphs in [R,L′].
Moreover, since R is consistent, Theorem 2.1 implies that [R,L′] cannot be connected. Hence,
A ∪ A′ and B ∪ B′ must be the connected components in [R,L′], still one containing a and
b (resp. a′, b′) and the other c (resp. c′) and therefore, {A ∪ A′, B ∪ B′} ∈ Lab|c(R) (resp.
{A ∪A′, B ∪B′} ∈ La′b′|c′(R)). �

Lemma 3.5. Let R be a consistent triple set with ab|c ∈ cl(R). Let {A⋆, B⋆} ∈ Lab|c(R) such
that |A⋆∪B⋆| ≥ |A∪B| for all {A,B} ∈ Lab|c(R). Then, either A ⊆ A⋆ and B ⊆ B⋆ or B ⊆ A⋆

and A ⊆ B⋆.
Moreover, the element {A⋆, B⋆} in Lab|c(R) with |A⋆∪B⋆| ≥ |A∪B| for all {A,B} ∈ Lab|c(R)

is unique.

Proof. Let R be a consistent triple set and ab|c ∈ cl(R). By Lemma 3.3, the set Lab|c(R) is
not empty, and thus, there is an element {A⋆, B⋆} ∈ Lab|c(R) such that |A⋆ ∪ B⋆| ≥ |A ∪ B|
for all {A,B} ∈ Lab|c(R). W.l.o.g. assume that a, b ∈ A and c ∈ B for some {A,B} ∈ Lab|c(R).
There are two cases, either a, b ∈ A⋆ and c ∈ B⋆ or, c ∈ A⋆ and a, b ∈ B⋆. Let us first
assume that a, b ∈ A⋆ and c ∈ B⋆. Thus, A ∩ A⋆ 6= ∅ and B ∩ B⋆ 6= ∅. Lemma 3.4 implies
that {A ∪ A⋆, B ∪ B⋆} ∈ Lab|c(R) and, by choice of A⋆ and B⋆, |A⋆ ∪ B⋆| ≥ |L′| where
L′ = A⋆ ∪A ∪B⋆ ∪B.
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We continue to show that A ⊆ A⋆ and B ⊆ B⋆. Since {A ∪ A⋆, B ∪ B⋆} ∈ Lab|c(R) we
can conclude that (A ∪ A⋆) ∩ (B ∪ B⋆) = ∅. Now, assume for contradiction that A 6⊆ A⋆.
Thus, there is an x ∈ A \ (A⋆ ∪ B⋆) and therefore, A⋆ ∪ B⋆ ( (A ∪ A⋆) ∪ (B ∪ B⋆). Hence,
|(A ∪A⋆) ∪ (B ∪B⋆)| > |A⋆ ∪B⋆|; a contradiction. Analogously, B ⊆ B⋆.

The latter arguments immediately imply that for any {A⋆
1, B

⋆
1}, {A

⋆
2, B

⋆
2} ∈ Lab|c(R) with

|A⋆
1∪B

⋆
1 | = |A

⋆
2∪B

⋆
2 | ≥ |A∪B| for all {A,B} ∈ Lab|c(R) it must hold {A⋆

1, B
⋆
1} = {A

⋆
2, B

⋆
2}. �

For our results it will be convenient to explicitly name the unique element {A⋆, B⋆} that has
maximum cardinality |A⋆ ∪B⋆| in Lab|c(R) as defined next.

Definition 3.6. Let R be a consistent triple set with ab|c ∈ cl(R). Then,

ℓ⋆ab|c(R)

denotes the unique element {A⋆, B⋆} ∈ Lab|c(R) for which |A⋆ ∪B⋆| ≥ |A∪B| for all {A,B} ∈
Lab|c(R).

Moreover, for a subset R′ ⊆ cl(R) we set

L
⋆
R′(R) :=

⋃

ab|c∈R′

{ℓ⋆ab|c(R)}.

It is easy to verify that |L⋆
R(R)| ≤ |R|. In what follows, we will show that for any consistent

set R the sets L
⋆
R(R),L⋆

cl(R)(R) and L
⋆
cl(R)(cl(R)) are identical. This in turn is used to show

that L⋆
R(R) = L

⋆
R′(R′) whenever cl(R′) = cl(R) for some R′ ⊆ R. In particular, the elements in

L
⋆
R(R) and L

⋆
R′(R′) are identical w.r.t. to a given triple ab|c ∈ cl(R), that is, ℓ⋆

ab|c(R) = ℓ⋆
ab|c(R

′)

for any ab|c ∈ cl(R). Hence, if ℓ⋆
ab|c(R) = {A,B} and ℓ⋆

ab|c(R
′) = {A′, B′}, then [R,A ∪B] and

[R′, A′∪B′] have the same two connected components. Note, the latter does not imply that the
Ahographs [R,A ∪ B] and [R′, A′ ∪ B′] are isomorphic. We refer to Figure 2 for an illustrative
example. To establish these results we provide first the following lemma.

Lemma 3.7. Let R be a consistent triple set. Assume that there are distinct {A′, B′}, {A,B} ∈
L
⋆
R(R). If A′ ∩ (A ∪B) 6= ∅ and B′ ∩ (A ∪B) 6= ∅, then A′ ∪B′ ⊆ A or A′ ∪B′ ⊆ B.

Proof. If {A,B}, {A′, B′} are distinct elements of L⋆
R(R), then there are distinct triples ab|c and

a′b′|c′ in R such that ℓ⋆
ab|c(R) = {A,B} and ℓ⋆

a′b′|c′(R) = {A′, B′}. Assume that A′∩(A∪B) 6= ∅

and B′ ∩ (A ∪B) 6= ∅.
First consider the case A′ ∩ A 6= ∅ and A′ ∩ B 6= ∅. Lemma 2.3 implies that the induced

subgraph 〈A′ ∪ A ∪ B〉 of [R,A ∪ B ∪ A′ ∪ B′] is connected. Since B′ ∩ (A ∪ B) 6= ∅ and B′

is a connected component in [R,A′ ∪ B′], we can apply Lemma 2.2 and 2.3 and conclude that
[R,A ∪ B ∪ A′ ∪ B′] is a connected graph; a contradiction to Theorem 2.6. Hence, the case
A′ ∩A 6= ∅ and A′ ∩B 6= ∅ cannot occur. Similarly, B′ ∩A 6= ∅ and B′ ∩B 6= ∅ is not possible.
Thus, we have either A′ ∩A 6= ∅ or A′ ∩B 6= ∅ as well as, either B′ ∩A 6= ∅ or B′ ∩B 6= ∅.

First assume that A′ ∩ A 6= ∅ and B′ ∩ B 6= ∅. By Lemma 3.4, {A ∪ A′, B ∪ B′} ∈
Lab|c(R)∩La′b′|c′(R). Thus, by Lemma 3.5 we have, on the one hand, A∪A′ ⊆ A and B∪B′ ⊆ B
and, one the other hand, A ∪ A′ ⊆ A′ and B ∪ B′ ⊆ B′. Hence, A = A′ and B = B′; a
contradiction since we assumed that {A,B} and {A′, B′} are distinct. Thus, the case A′∩A 6= ∅
and B′ ∩B 6= ∅ cannot occur. Similarly, the case B′ ∩A 6= ∅ and A′ ∩B 6= ∅ is impossible.

Therefore, we are left with two exclusive cases: (1) A′ ∩ A 6= ∅ and B′ ∩ A 6= ∅ or (2)
A′ ∩ B 6= ∅ and B′ ∩ B 6= ∅. Let us assume case (1) A′ ∩ A 6= ∅ and B′ ∩ A 6= ∅. Repeated
application of Lemma 2.3 shows that the induced subgraph 〈A∪A′ ∪B′〉 of [R,A∪B ∪A′ ∪B′]
is connected. Since R is consistent, Theorem 2.6 implies that the graph [R,A ∪ B ∪ A′ ∪ B′]
must be disconnected. Hence, [R,A ∪ B ∪ A′ ∪ B′] has as connected components A ∪ A′ ∪ B′

and B. Therefore, {A∪A′∪B′, B} ∈ Lab|c(R). Now it must hold that A′∪B′ ⊆ A as otherwise
|A ∪ A′ ∪ B′ ∪ B| > |A ∪ B| = ℓ⋆

ab|c(R) would yield a contradiction. In case (2) it is shown

analogously that A′ ∪B′ ⊆ B. �

Lemma 3.7 immediately implies the following

Corollary 3.8. Let R be a consistent triple set. Assume that there are distinct
{A,B}, {A′, B′} ∈ L

⋆
R(R). If A ∩A′ 6= ∅, then B ∩B′ = ∅.

Proof. Assume that A∩A′ 6= ∅ and B ∩B′ 6= ∅. Hence, A′ ∩ (A∪B) 6= ∅ and B′ ∩ (A∪B) 6= ∅.
Lemma 3.7 implies that A′ ∪ B′ ⊆ A or A′ ∪ B′ ⊆ B. W.l.o.g. assume that A′ ∪ B′ ⊆ A.
Analogously, Lemma 3.7 implies that A ∪ B ⊆ A′ or A ∪ B ⊆ B′. Now, A′ ∪ B′ ⊆ A and
A ∪ B ⊆ A′ would imply that B′ ⊆ A′; a contradiction. Furthermore, if A ∪ B ⊆ B′, then
A′ ∪B′ ⊆ A would imply that B ⊆ A; again a contradiction. �
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Figure 2: Consider the triple set R = {ab|d, ab|h, ac|e, ag|h, bc|f, bc|i, bd|i, be|i, bf|i, bg|h} and let R′ = R \
{bc|i, bg|h}. In this example, LR′ = LR. Clearly, any tree that display R′ and thus, {bc|f, bf|i}, resp., {ab|h, ag|h},
must also display bc|i, resp., bg|h [13]. Thus, {bc|i, bg|h} ⊆ cl(R′) = cl(R \ {bc|i, bg|h}). Lemma 2.7 implies that
cl(R′) = cl(R) and therefore, R′ ∈ sc(R). The Ahograph [R′, LR′ ] and a tree T that displays R′ is shown on the
top of this figure. In [R′, LR′ ] each edge (x, y) is labeled with z that corresponds to the respective triple xy|z that
supports the edge (x, y).
Since R ⊆ cl(R) = cl(R′), the tree T also displays R. The respective maximal elements ℓ⋆xy|z(R

′) = {A,B} ∈ L
⋆

R′(R′)
with corresponding Ahographs [R′, A∪B] are depicted below. It is easy to verify that each triple xy|z ∈ R′ is a bridge in
the respective Ahograph [R′, A∪B] and hence, R′ is minimal (cf. Lemma 4.6). By Theorem 4.8, R′ has also minimum
cardinality. Note, cl(R′) = cl(R) and Theorem 3.9 imply that L

⋆

R′(R′) = L
⋆

cl(R)(cl(R)) = L
⋆

R(R). In this example,

L
⋆

R(R) =
{{

{a, b}, {d}
}

,
{

{a, c}, {e}
}

,
{

{b, c}, {f}
}

,
{

{a, b, c, d, e, f}, {i}
}

,
{

{a, b, g}, {h}
}}

. In order to determine
cl(R) it suffices to add for each {A,B} ∈ L

⋆

R(R) all triples xy|z with x, y ∈ A, z ∈ B or z ∈ A, x, y ∈ B to cl(R) (cf.
Thm. 5.1). Finally, application of Theorem 6.4 shows that R′ does not identify T , since 9 = B(T ) > |R′| = 8 and
thus, cl(R′) 6= R(T ). Moreover, since cl(R) = cl(R′) neither R identifies T .

Theorem 3.9. For any consistent triple set R it holds that

L
⋆
R(R) = L

⋆
cl(R)(R) = L

⋆
cl(R)(cl(R)).

Proof. We start with showing L
⋆
R(R) = L

⋆
cl(R)(R). Since R ⊆ cl(R), we also have L

⋆
R(R) ⊆

L
⋆
cl(R)(R).

To see that L⋆
cl(R)(R) ⊆ L

⋆
R(R), let {A,B} ∈ L

⋆
cl(R)(R). Hence, there is a triple ab|c ∈ cl(R)

with ℓ⋆
ab|c(R) = {A,B} ∈ Lab|c(R). By definition, [R,A ∪ B] has two connected components

and at least one contains 2 or more vertices. First, assume for contradiction that there is no
triple a′b′|c′ ∈ R with {A,B} ∈ La′b′|c′(R). Since |A| > 1 or |B| > 1 and A,B are connected
components in [R,A ∪ B], all edges (x, y) within 〈A〉[R,A∪B] and 〈B〉[R,A∪B] are, therefore,
provided by triples xy|z ∈ R such that either x, y, z ∈ A or x, y, z ∈ B. But then [R,A] or
[R,B] is connected; contradicting Theorem 2.1. Thus, there must be a triple a′b′|c′ ∈ R with
{A,B} ∈ La′b′|c′(R). We continue with showing that ℓ⋆

a′b′|c′(R) = {A,B}. If this was not the

case, then there is an ℓ⋆
a′b′|c′(R) = {A⋆, B⋆} with |A⋆∪B⋆| > |A∪B|. Since ℓ⋆

ab|c(R) = {A,B} ∈

Lab|c(R), one of A and B is containing a, b and the other c. Moreover, Lemma 3.5 implies that
A ⊆ A⋆ and B ⊆ B⋆ or B ⊆ A⋆ and A ⊆ B⋆. Taken the latter two arguments together, one of
A⋆ and B⋆ is containing a, b and the other c. Therefore, {A⋆, B⋆} ∈ Lab|c(R). However, since
|A⋆ ∪ B⋆| > |A ∪ B|, we have ℓ⋆

ab|c(R) 6= {A,B}; a contradiction to the assumption ℓ⋆
ab|c(R) =

{A,B}. Therefore, ℓ⋆
a′b′|c′(R) = {A,B} and thus, {A,B} ∈ L

⋆
R(R). Hence, L⋆

R(R) = L
⋆
cl(R)(R).

Now we show that L
⋆
cl(R)(R) = L

⋆
cl(R)(cl(R)). Let {A,B} = ℓ⋆

ab|c(R) ∈ L
⋆
cl(R)(R). Since

R ⊆ cl(R) and by Lemma 2.2, [R,A∪B] is a subgraph of [cl(R), A∪B]. Since {A,B} = ℓ⋆
ab|c(R),

the graph [R,A∪B] has exactly two connected components A and B. Thus, [cl(R), A∪B] has
at most two connected components. Still, the induced subgraphs 〈A〉 and 〈B〉 of [cl(R), A ∪B]
are connected. However, since cl(R) is consistent we can apply Theorem 2.1 and conclude that

7



[cl(R), A∪B] must be disconnected, and thus, has as connected components A and B. Therefore,
{A,B} ∈ Lab|c(cl(R)). Assume now for contradiction that ℓ⋆

ab|c(cl(R)) = {A⋆, B⋆} 6= {A,B}.

By Lemma 3.5, |A⋆ ∪ B⋆| > |A ∪ B| and either A ⊆ A⋆ and B ⊆ B⋆ or B ⊆ A⋆ and A ⊆ B⋆.
W.l.o.g. assume that A ⊆ A⋆ and B ⊆ B⋆ and a, b ∈ A, c ∈ B. Hence, there is a vertex
d ∈ (A⋆ ∪ B⋆) \ (A ∪ B). If d ∈ A⋆, then Theorem 2.6 and a ∈ A⋆, c ∈ B⋆ imply that
ad|c ∈ cl(cl(R)) = cl(R). Again, Theorem 2.6 implies that there is a subset L ⊆ LR such
that [R,L] has exactly two connected components A′, B′ with a, d ∈ A′ and c ∈ B′. Thus,
{A′, B′} ∈ Lad|c(R). Recap that {A,B} ∈ Lab|c(R). Since A ∩ A′ 6= ∅ and B ∩ B′ 6= ∅ we can
apply Lemma 3.4 and conclude that {A ∪ A′, B ∪ B′} ∈ Lab|c(R). However, since d ∈ A′ \ A
it holds that |A ∪ A′ ∪ B ∪ B′| > |A ∪ B|; a contradiction to {A,B} = ℓ⋆

ab|c(R). By similar

arguments one derives a contradiction if d ∈ B⋆. Thus, ℓ⋆
ab|c(cl(R)) = {A⋆, B⋆} = {A,B} and

therefore, {A,B} ∈ L
⋆
cl(R)(cl(R)). Hence, L⋆

cl(R)(R) ⊆ L
⋆
cl(R)(cl(R)).

Finally, let {A,B} = ℓ⋆
ab|c(cl(R)) ∈ L

⋆
cl(R)(cl(R)). By Lemma 3.3 and since ab|c ∈ cl(R),

we have Lab|c(R) 6= ∅. Thus, there is a maximal element ℓ⋆
ab|c(R) = {A⋆, B⋆} ∈ L

⋆
cl(R)(R) ⊆

L
⋆
cl(R)(cl(R)). Assume that {A,B} and {A⋆, B⋆} are distinct. Since both {A,B} and {A⋆, B⋆}

are contained in L
⋆
cl(R)(cl(R)) and A∩(A⋆∪B⋆) 6= ∅, B∩(A⋆∪B⋆) 6= ∅ we can apply Lemma 3.7

and conclude that A∪B ⊆ A⋆ or A∪B ⊆ B⋆. If A∪B ⊆ A⋆, then a, b, c ∈ A⋆; a contradiction,
since one of A⋆ and B⋆ contains a, b and the other c. Analogously, A ∪ B ⊆ B⋆ cannot occur.
Hence, {A,B} and {A⋆, B⋆} must be equal and therefore, ℓ⋆

ab|c(R) = ℓ⋆
ab|c(cl(R)) = {A,B} ∈

L
⋆
cl(R)(R). Thus, L⋆

cl(R)(R) = L
⋆
cl(R)(cl(R)). �

Theorem 3.10. Let R be a consistent triple set. If R′ ∈ sc(R), then L
⋆
R(R) = L

⋆
R′(R′). In

particular, for every ab|c ∈ cl(R) and R′ ∈ sc(R), it holds that ℓ⋆
ab|c(R

′) = ℓ⋆
ab|c(R).

Proof. Let R′ ∈ sc(R) and thus, cl(R′) = cl(R). Therefore,

L
⋆
R(R)

Thm. 3.9
= L

⋆
cl(R)(cl(R)) = L

⋆
cl(R′)(cl(R

′))
Thm. 3.9

= L
⋆
R′(R′).

Now let ℓ⋆
ab|c(R) = {A⋆, B⋆} ∈ L

⋆
cl(R)(R). Note, Theorem 3.9 implies that L

⋆
cl(R)(R) = L

⋆
R(R)

and therefore, {A⋆, B⋆} ∈ L
⋆
R(R) = L

⋆
R′(R′). Since ab|c ∈ cl(R) = cl(R′) we can apply

Lemma 3.3 and conclude that Lab|c(R
′) 6= ∅. Let ℓ⋆

ab|c(R
′) = {A,B} ∈ L

⋆
cl(R′)(R

′)
Thm. 3.9

=

L
⋆
R′(R′). Thus, both {A⋆, B⋆} and {A,B} are contained in L

⋆
R′(R′) and A ∩ (A⋆ ∪ B⋆) 6= ∅,

B ∩ (A⋆ ∪ B⋆) 6= ∅. Now we can argue analogously as in the last part of the proof of Theorem
3.3 to conclude that {A,B} = {A⋆, B⋆} which implies that ℓ⋆

ab|c(R
′) = ℓ⋆

ab|c(R). �

4 The Matroid Structure of Minimal and Minimum Rep-

resentative Triple Sets

By definition, R′ ∈ min(sc(R)) if and only if there is no subset R′′ ( R′ with cl(R′′) = cl(R).
Furthermore, since any minimum representative triple set is, in particular, minimal, we have
MIN(sc(R)) ⊆ min(sc(R)). The computation of a minimal representative set R′ of R can be
done in combination with the O(|R||LR|

4) method to compute the closure [6] in polynomial
time as follows: Set R′ = R and as long as there is a triple r ∈ cl(R′ \ r) remove r from R′. By
Lemma 2.7, removal of r from R′ still preserves cl(R) = cl(R′). However, the computational
complexity of finding a minimum representative set R′ of R is still an open problem. We show
that one can determine minimum representative sets in polynomial time. To this end, we give
the following

Definition 4.1. A matroid is an ordered pair (E,FE) consisting of a finite set E and a collection
FE of subsets of E having the following three properties:

(I1) ∅ ∈ FE;

(I2) If I ∈ FE and I ′ ⊆ I, then I ′ ∈ FE;

(I3) If I1, I2 ∈ FE and |I1| < |I2|, then there is an element x ∈ I2 \ I1 such that I1 ∪ {x} ∈ FE.

The elements in FE are called independent in (E,FE). Maximal independent elements of a
matroid are called a basis of (E,FE). Every matroid (E,FE) is determined by its collection of
its bases. We refer the reader to [40, 50] for more detailed background on matroid theory.

In what follows, we show that min(sc(R)) forms the collection of bases of a matroid. In this
case, MIN(sc(R)) = min(sc(R)) since all basis elements of a matroid have the same cardinality
[40, 50]. A useful characterization is given by the next result.
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Lemma 4.2 ([50, Cor. 1.2.5]). Let B be a collection of subsets of E. Then B is the collection
of bases of a matroid (E,FE) if and only if it has the following properties:

(B1) B 6= ∅;

(B2) If B1, B2 ∈ B and x ∈ B1\B2, then there is an element y ∈ B2\B1 such (B1\{x})∪{y} ∈
B.

Definition 4.3. In what follows, (R,FR) denotes the ordered pair where

1. R is a consistent triple set and

2. FR = {R′′ ⊆ R′ : R′ ∈ min(sc(R))} is the collection of all subsets of the minimal represen-
tative sets of R.

It is easy to see that (R,FR) is an independent system, that is, it satisfies Conditions (I1)
and (I2). Moreover, the collection of bases of (R,FR) is the set min(sc(R)). We will utilize
Lemma 4.2 to show B = min(sc(R)) satisfies (B1) and (B2). To this end, we give the notion of
“bridges” in the Ahograph, that is, triples ab|c for which the Ahograph [R\{ab|c},L] has more
connected components than [R,L] . As it turns out, elements R′ ∈ min(sc(R)) are characterized
by the bridge-property of triples ab|c ∈ R′. We first give the following result.

Lemma 4.4. Let R be a consistent triple set and R′ ∈ sc(R). Then R′ ∈ min(sc(R)) if and
only if cl(R′) 6= cl(R′ \ {r}) for all r ∈ R′.

Proof. Let R be a consistent triple set and R′ ∈ sc(R) and thus, cl(R′) = cl(R). Clearly, if
cl(R) = cl(R′) = cl(R′ \ {r}) for any r ∈ R′, then R′ /∈ min(sc(R)). Conversely, if R′ /∈
min(sc(R)), then there is a subset R′′ ( R′ with cl(R′′) = cl(R). Since R′ ∈ sc(R), it also
holds that cl(R′) = cl(R) = cl(R′′). Let r ∈ R′ \ R′′. Since R′′ ⊆ R′ \ {r} ( R′, we have
cl(R′′) ⊆ cl(R′ \ {r}) ⊆ cl(R′) = cl(R′′) and therefore, cl(R′ \ {r}) = cl(R′). �

Definition 4.5. Let R be a consistent triple set, ab|c ∈ R and L ⊆ LR such that a, b, c ∈ L. The
triple ab|c is called bridge in [R,L] if a, b are in different connected components of [R\{ab|c},L].

Lemma 4.6. Let R be a consistent triple set and R′ ∈ sc(R). Then, R′ ∈ min(sc(R)) if
and only if every ab|c ∈ R′ is a bridge in [R′, A ∪ B] with {A,B} = ℓ⋆

ab|c(R
′). In particular,

[R′ \ {ab|c}, A ∪B] must have three connected components α, β, γ with a ∈ α, b ∈ β and c ∈ γ,
that is, either A = α ∪ β and B = γ or B = α ∪ β and A = γ.

Proof. Let R′ ∈ min(sc(R)), ab|c ∈ R′ and ℓ⋆
ab|c(R

′) = {A,B}. By definition, [R′, A ∪ B] has
exactly two connected components, one containing a, b and the other c. Assume for contradiction
that ab|c is not a bridge in [R′, A ∪ B]. Thus, a and b are still connected by a walk in [R′ \
{ab|c}, A∪B]. Note, by Lemma 2.2 the Ahograph [R′\{ab|c}, A∪B] is a subgraph of [R′, A∪B]
that differs from [R′, A∪B] only by the edge (a, b). Therefore, [R′ \ {ab|c}, A∪B] still consists
of the two connected components A and B, one containing a, b and the other c. Theorem 2.6
implies that {ab|c} ∈ cl(R′ \ {ab|c}). Lemma 2.7 implies that cl(R′ \ {ab|c}) = cl(R′) = cl(R);
a contradiction to R′ ∈ min(sc(R)).

Conversely, assume that R′ 6∈ min(sc(R)). Thus, there is some triple ab|c ∈ R′ such that
cl(R′ \ {ab|c}) = cl(R). Since R′ ∈ sc(R), we can apply Theorem 3.10 and conclude that
ℓ⋆
ab|c(R

′\{ab|c}) = ℓ⋆
ab|c(R

′) = {A,B}. Thus, [R′\{ab|c}, A∪B] has two connected components

A and B. Therefore, ab|c is not a bridge in [R′, A ∪B].
For the last statement, observe that R′ ∈ min(sc(R)) and {A,B} = ℓ⋆

ab|c(R
′) implies that

the graph [R′, A ∪ B] has exactly two connected components, one containing a, b (say A) and
the other (B) contains c. Since ab|c ∈ R′ is a bridge in [R′, A ∪ B], a and b are in distinct
connected components α and β of [R′ \ {ab|c}, A ∪ B], respectively. However, since only the
edge (a, b) has been removed from [R′, A ∪B] to obtain [R′ \ {ab|c}, A ∪B] it is clear that the
set A decomposes into these connected components α, β, i.e., A = α∪β. Besides the edge (a, b)
no other edge has been removed or added to [R′ \ {ab|c}, A ∪ B] and thus, B = γ is still a
connected component in [R′ \ {ab|c}, A ∪B] with c ∈ γ. �

We are now in the position to show that is a matroid.

Theorem 4.7. If R is a consistent triple set, then (R,FR) is a matroid.

Proof. In order to show that (R,FR) is a matroid, we show that its collection of bases
B = min(sc(R)) satisfies the Conditions (B1) and (B2) of Lemma 4.2. Recall that (R,FR)
is an independent system with collection of bases B = min(sc(R)) and min(sc(R)) 6= ∅. Thus,
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Condition (B1) is trivially satisfied. The proof of Condition (B2) consists of several steps (Claim
1 - 5).

We fix the notion as follows: We assume that R1, R2 ∈ B, ab|c ∈ R1 \ R2 and ℓ⋆
ab|c(R1) =

{A,B} ∈ L
⋆
R1

(R1). Moreover, we will frequently make use of L⋆
R1

(R1) = L
⋆
R(R) = L

⋆
R2

(R2),
which is because of cl(R1) = cl(R) = cl(R2) and Theorem 3.10. Furthermore, Lemma 4.6 implies
that ab|c is a bridge in [R1, A∪B] and that [R1 \ {ab|c}, A∪B] decomposes into the connected
components α, β, γ with a ∈ α, b ∈ β and c ∈ γ. W.l.o.g. we will assume that a, b ∈ A, c ∈ B
and thus, A = α ∪ β and B = γ.

Claim 1: There exists a triple a′b′|c′ ∈ R2 with a′ ∈ α, b′ ∈ β and c′ ∈ γ.

Proof of Claim 1. We begin by showing that there is a triple a′b′|c′ ∈ R2 such that a′ ∈ α,
b′ ∈ β and c′ ∈ A ∪B and then show that c′ ∈ γ.

Assume for contradiction that there is no triple a′b′|c′ ∈ R2 such that a′ ∈ α, b′ ∈ β
and c′ ∈ A ∪ B. Hence, there is no edge (x, y) in [R2, A ∪ B] for any x ∈ α and y ∈ β,
that is, 〈A〉 is disconnected in [R2, A ∪ B]. But then {A,B} /∈ L

⋆
R2

(R2); contradicting
L
⋆
R1

(R1) = L
⋆
R2

(R2). Thus there is a triple a′b′|c′ ∈ R2 such that a′ ∈ α, b′ ∈ β and
c′ ∈ A ∪B.

We continue to show that c′ ∈ γ. Assume for contradiction that c′ /∈ γ. Since γ = B, we
have c′ ∈ A. Let ℓ⋆

a′b′|c′(R2) = {A
′, B′} ∈ L

⋆
R2

(R2). Note, since L
⋆
R1

(R1) = L
⋆
R2

(R2) we

also have {A′, B′} ∈ L
⋆
R1

(R1) and hence, the graph [R1, A
′ ∪ B′] has the two connected

components A′ and B′, one containing a′, b′ and the other c′. Furthermore, since a′, b′, c′ ∈
A we have A ∩ A′ 6= ∅ and A ∩ B′ 6= ∅. Hence, A′ ∩ (A ∪ B) 6= ∅ and B′ ∩ (A ∪ B) 6= ∅,
and we can apply Lemma 3.7 to conclude that A′ ∪ B′ ⊆ A. Therefore, Lemma 2.2
implies that [R1, A

′ ∪ B′] ⊆ [R1, A ∪ B]. In particular, both 〈A′〉 ⊆ 〈A〉 and 〈B′〉 ⊆ 〈A〉
are connected subgraphs in [R1, A ∪ B]. Since c /∈ A we have c /∈ A′ ∪ B′ and thus,
[R1 \ {ab|c}, A

′ ∪B′}] = [R1, A
′ ∪B′]. Hence, 〈A′〉 and 〈B′〉 remain connected subgraphs

in [R1 \ {ab|c}, A ∪ B}]. Since ℓ⋆
a′b′|c′(R2) = {A

′, B′} it holds that either a′, b′ ∈ A′ and

c′ ∈ B′ or a′, b′ ∈ B′ and c′ ∈ A′. Assume that a′, b′ ∈ A′. By choice of a′b′|c′ ∈ R2 we have
a′ ∈ α and b′ ∈ β. Since A′, α and β induce a connected subgraph in [R1 \{ab|c}, A∪B}],
respectively, and since a′ ∈ A′ ∩ α and b′ ∈ A′ ∩ β, the induced subgraph 〈A′ ∪ α ∪ β〉 is
connected in [R1 \{ab|c}, A∪B}]. However, since a ∈ α and b ∈ β, the triple ab|c is not a
bridge in [R1, A∪B]; a contradiction to Lemma 4.6. By analogous arguments one obtains
a contradiction if a′, b′ ∈ B′. Therefore, there is a triple a′b′|c′ ∈ R2 such that a′ ∈ α,
b′ ∈ β and c′ ∈ γ.

– End Proof Claim 1 –

In what follows, let a′b′|c′ ∈ R2 be chosen such that a′ ∈ α, b′ ∈ β and c′ ∈ γ.

Claim 2: It holds that a′b′|c′ ∈ R2 \R1.

Proof of Claim 2. Recall that ab|c ∈ R1 \ R2 and thus, the triples ab|c and a′b′|c′ must
be distinct. Assume for contradiction that a′b′|c′ ∈ R1. In this case, one can easily verify
that there are either two edges (a, b) and (a′, b′) in [R1, A ∪ B] connecting α and β or, if
(a, b) = (a′, b′), then the edge (a, b) is supported by two triples. In either case, ab|c is not
a bridge in [R1, A ∪B]; a contradiction to Lemma 4.6. – End Proof Claim 2 –

In what follows, we set Rnew := (R1 \ {ab|c}) ∪ {a
′b′|c′}.

Claim 3: It holds that Rnew ∈ sc(R).

Proof of Claim 3. Clearly, Rnew ⊆ R. Hence, in order to show that Rnew ∈ sc(R) it
remains to show that cl(Rnew) = cl(R). To this end, recap that [R1 \ {ab|c}, A ∪ B] has
the connected components α, β, γ with a, a′ ∈ α, b, b′ ∈ β and c, c′ ∈ γ. Moreover, Lemma
2.2 implies that [R1 \ {ab|c}, A ∪ B] is a subgraph of [Rnew, A ∪ B] and thus, 〈α〉 and
〈β〉 remain connected subgraphs in [Rnew, A ∪ B]. However, since a′, b′, c′ ∈ A ∪ B and
a′b′|c′ ∈ Rnew we have an additional edge in [Rnew, A ∪ B] that connects 〈α〉 and 〈β〉
by the edge (a′, b′). Hence, A = α ∪ β induces a connected subgraph in [Rnew, A ∪ B],
while 〈B〉 = 〈γ〉 remains unchanged and thus still provides a connected component in
[Rnew, A ∪B]. In summary, [Rnew, A ∪B] has two connected components, where a, b ∈ A
and c ∈ B. Theorem 2.6 implies that ab|c ∈ cl(Rnew). Application of Lemma 2.7 yields
cl(Rnew) = cl(R1 \ {ab|c}) ∪ {a

′b′|c′}) = cl(R1 ∪ {a
′b′|c′}). Moreover, it holds that

cl(R) = cl(R1) ⊆ cl(R1 ∪ {a
′b′|c′}) = cl(Rnew) ⊆ cl(R) and therefore, cl(R) = cl(Rnew).

Thus, Rnew ∈ sc(R). – End Proof Claim 3 –
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In what follows, we want to show that all triples xy|z ∈ Rnew are bridges in [Rnew, A
′′ ∪ B′′]

where ℓ⋆
xy|z(Rnew) = {A

′′, B′′} (see Claim 5). In this case, Lemma 4.6 would imply that Rnew ∈

min(sc(R)). To this end, however, we first need to prove Claim 4.

Claim 4: Assume there is a triple xy|z ∈ Rnew which is not a bridge in [Rnew, A
′′∪B′′] where

ℓ⋆
xy|z(Rnew) = {A

′′, B′′}. Then, xy|z 6= a′b′|c′; a′, b′, c′ ∈ A′′ ∪ B′′; x and y are connected

by a path in in [Rnew \ {xy|z}, A
′′ ∪ B′′] and every path Pxy in [Rnew \ {xy|z}, A

′′ ∪ B′′]
contains the edge (a′, b′); and {A′′, B′′} 6= {A,B}.

Proof of Claim 4. Assume that xy|z ∈ Rnew is not a bridge in [Rnew, A
′′ ∪ B′′]. First,

we show that xy|z 6= a′b′|c′. Assume for contradiction that xy|z = a′b′|c′. Now, we
show that in this case {A′′, B′′} = {A,B}. Note, since ℓ⋆

a′b′|c′(Rnew) = {A′′, B′′} and

Rnew ∈ sc(R), we can apply Theorem 3.10 and conclude that {A′′, B′′} = ℓ⋆
a′b′|c′(R). Since

ℓ⋆
ab|c(R) = {A,B}, we have {A,B}, {A′′, B′′} ∈ L

⋆
R(R). Moreover, since by construction

a, b, a′, b′ ∈ A and c′ ∈ B, we have A ∩ (A′′ ∪ B′′) 6= ∅ and B ∩ (A′′ ∪ B′′) 6= ∅. Hence,
we can argue analogously as in the last part of the proof of Theorem 3.3 to conclude
that {A,B} = {A′′, B′′}. Now, since xy|z = a′b′|c′, the triple a′b′|c′ is not a bridge
in [Rnew, A

′′ ∪ B′′]. Thus, there is a path Pa′b′ in [Rnew \ {a
′b′|c′}, A′′ ∪ B′′] = [Rnew \

{a′b′|c′}, A ∪ B] = [R1 \ {ab|c}, A ∪ B]. However, this implies that Pa′b′ connects a
′ ∈ α

and b′ ∈ β in [R1 \ {ab|c}, A ∪ B] and therefore, ab|c is not a bridge in [R1, A ∪ B]; a
contradiction to R1 ∈ min(sc(R)) and Lemma 4.6. Hence xy|z 6= a′b′|c′.

We continue to show that every path Pxy in [Rnew \ {xy|z}, A
′′ ∪ B′′] contains the edge

(a′, b′). Since xy|z ∈ Rnew is not a bridge in [Rnew, A
′′ ∪ B′′] there must be a path Pxy

in [Rnew \ {xy|z}, A
′′ ∪B′′]. Assume for contradiction that Pxy does not contain the edge

(a′, b′). Hence, Pxy still connects x and y in [Rnew \ {xy|z, a
′b′|c′}, A′′ ∪B′′]. Since Rnew \

{xy|z, a′b′|c′} ⊆ R1 \{xy|z} and by Lemma 2.2, the graph [Rnew \{xy|z, a
′b′|c′}, A′′∪B′′]

is a subgraph of [R1 \ {xy|z}, A
′′ ∪ B′′]. Therefore, the path Pxy connects x and y in

[R1 \ {xy|z}, A
′′ ∪ B′′]. Note, Theorem 3.10 implies that ℓ⋆

xy|z(R1) = {A′′, B′′}. Since

a′b′|c′ 6= xy|z ∈ Rnew, we have xy|z ∈ R1. But then xy|z is not a bridge in [R1, A
′′ ∪B′′];

a contradiction to Lemma 4.6.

The latter, in particular, implies that a′, b′ ∈ A′′ ∪ B′′. Now, assume for contradiction
that c′ /∈ A′′ ∪ B′′. Hence, [Rnew \ {xy|z, a

′b′|c′}, A′′ ∪ B′′] = [Rnew \ {xy|z}, A
′′ ∪ B′′].

By the preceding arguments, every path Pxy in [Rnew \ {xy|z}, A
′′ ∪B′′] contains the edge

(a′, b′). Again, since [Rnew \{xy|z, a
′b′|c′}, A′′∪B′′] is a subgraph of [R1 \{xy|z}, A

′′∪B′′]
this path is also contained in [R1 \ {xy|z}, A

′′ ∪B′′] and the triple xy|z is not a bridge in
[R1, A

′′∪B′′]; a contradiction to Lemma 4.6 and ℓ⋆
xy|z(R1) = {A

′′, B′′}. Thus, c′ ∈ A′′∪B′′

Finally, we show that {A′′, B′′} 6= {A,B}. Assume for contradiction that {A′′, B′′} =
{A,B}. W.l.o.g. let A′′ = A = α ∪ β and B′′ = B = γ. First, we show that neither
x ∈ γ nor y ∈ γ. Assume w.l.o.g. that x ∈ γ. Note the path Pxy with edge (a′, b′)
in [Rnew \ {xy|z}, A

′′ ∪ B′′] is also contained [Rnew, A
′′ ∪ B′′]. However, since a′, b′ ∈

A′′ and x ∈ γ = B′′ this path Pxy connects the two connected components A′′, B′′ in
[Rnew, A

′′ ∪B′′]; a contradiction.
We continue to show that neither x, y ∈ α nor x, y ∈ β. Assume for contradiction that
x, y ∈ α. Since [Rnew \{xy|z}, A

′′∪B′′] contains a path Pxy with edge (a′, b′), and x, y ∈ α
there must be a second edge (a′′, b′′) distinct from (a′, b′) in Pxy where a′′ ∈ α, b′′ ∈ β.
Since Rnew \ {xy|z} = (R1 \ {ab|c, xy|z}) ∪ {a

′b′|c′}, {A′′, B′′} = {A,B} and removal of
{a′b′|c′} would still preserve the edge (a′′, b′′), this edge (a′′, b′′) must also be contained in
[R1\{ab|c, xy|z}, A∪B]. Since [R1\{ab|c, xy|z}, A∪B] is a subgraph of [R1\{ab|c}, A∪B],
the latter graph contains the edge (a′′, b′′) that connects the components α and β. But
then ab|c is not a bridge in [R1, A ∪ B]; a contradiction to R1 ∈ min(sc(R)) and Lemma
4.6. Hence, x and y cannot be both in α, and by similar arguments, not both in β.
Thus, there are only two cases left: x ∈ α and y ∈ β, or y ∈ α and x ∈ β. Assume
w.l.o.g. that x ∈ α and y ∈ β. Since xy|z ∈ R1 \ {ab|c}, there must be the edge (x, y) in
[R1 \ {ab|c}, A ∪ B], in which case α and β form a connected component. Again, ab|c is
not a bridge in [R1, A∪B] and we obtain a contradiction to R1 ∈ min(sc(R)) and Lemma
4.6.
Therefore, if {A′′, B′′} = {A,B}, then x, y /∈ α∪β∪γ = A′′∪B′′; a contradiction since we
assumed that ℓ⋆

xy|z(Rnew) = {A
′′, B′′} and hence, x, y ∈ A′′ ∪B′′. – End Proof Claim 4 –

Claim 5: Rnew ∈ min(sc(R)).

Proof of Claim 5. In order to show that Rnew ∈ min(sc(R)) we use Lemma 4.6 and show
that each triple xy|z ∈ Rnew must be a bridge in [Rnew, A

′′ ∪ B′′] where ℓ⋆
xy|z(Rnew) =
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{A′′, B′′}.

Assume for contradiction, that there is a triple xy|z ∈ Rnew that is not a bridge
in [Rnew, A

′′ ∪ B′′]. Claim 4. implies that xy|z 6= a′b′|c′ and thus, in particular,
xy|z ∈ R1 \ {ab|c}. Moreover, a′, b′, c′ ∈ A′′ ∪ B′′, {A′′, B′′} 6= {A,B} and every path
Pxy in [Rnew \ {xy|z}, A

′′ ∪ B′′] contains the edge (a′, b′). Recap that a, a′ ∈ α, b, b′ ∈ β,
c, c′ ∈ γ, A = α ∪ β and B = γ.

Recap that ℓ⋆
ab|c(R1) = {A,B} ∈ L

⋆
R1

(R1). Claim 3 implies that Rnew ∈ sc(R). Thus, we

can apply Theorem 3.10 and conclude that {A′′, B′′} = ℓ⋆
xy|z(Rnew) = ℓ⋆

xy|z(R) = ℓ⋆
xy|z(R1).

Hence, {A′′, B′′} ∈ L
⋆
R1

(R1). Moreover, since a′, b′, c′ ∈ A′′ ∪ B′′ as well as a′, b′ ∈ A and
c′ ∈ B it holds that A∩ (A′′∪B′′) 6= ∅ and B∩ (A′′∪B′′) 6= ∅. Thus, we can apply Lemma
3.7 and conclude that A ∪B ⊆ A′′ or A ∪B ⊆ B′′. W.l.o.g. assume A ∪B ⊆ A′′.

Denote one of the paths in [Rnew \ {xy|z}, A
′′ ∪ B′′] that connect x and y by Pxy. Claim

4 implies that Pxy contains the edge (a′, b′). Since a′, b′ ∈ A′′ it must hold that x, y ∈ A′′

as otherwise Pxy would connect A′′ and B′′ in [Rnew, A
′′ ∪ B′′]. Therefore, z ∈ B′′ and

hence z /∈ A ∪ B. Since Pxy contains the edge (a′, b′), it can be decomposed into the
paths Pxa′ and Pb′y (resp. Pxb′ and Pya′) and the edge (a′, b′). W.l.o.g. assume that
Pxy is composed of Pxa′ , (a′, b′) and Pb′y. Note, since neither Pxa′ nor Pb′y contains the
edge (a′, b′), we can conclude that both paths are contained in [Rnew \ {xy|z, a

′b′|c′}, A′′ ∪
B′′] = [R1 \ {xy|z, ab|c}, A

′′ ∪ B′′] ⊆ [R1 \ {xy|z}, A
′′ ∪ B′′]. Furthermore, since α and

β induce connected subgraphs in [R1 \ ab|c, A ∪ B] and a, a′ ∈ α, b, b′ ∈ β, there are
paths Paa′ and Pbb′ in [R1 \ {ab|c}, A ∪ B]. Since z /∈ A ∪ B and A ∪ B ⊆ A′′, we have
[R1 \{ab|c}, A∪B] = [R1 \{ab|c, xy|z}, A∪B] ⊆ [R1 \{xy|z}, A

′′∪B′′]. Hence, the paths
Paa′ and Pbb′ are also contained in [R1\{xy|z}, A

′′∪B′′]. In summary, [R1\{xy|z}, A
′′∪B′′]

contains the paths Paa′ , Pbb′ , Pxa′ and Pb′y but also the edge (a, b), since ab|c ∈ R1\{xy|z}
and a, b, c ∈ A ∪ B ⊆ A′′. Hence, we can combine the four paths and the edge (a, b) to a
walk in [R1 \ {xy|z}, A

′′ ∪ B′′] that connects x and y. However, this implies that xy|z is
not a bridge in [R1, A

′′ ∪B′′]; a contradiction to ℓ⋆
xy|z(R1) = {A

′′, B′′} and Lemma 4.6.

In summary, for all cases for which there is a triple xy|z ∈ Rnew that is not a bridge
in [Rnew, A

′′ ∪ B′′] we obtain a contradiction. Hence, each triple xy|z ∈ Rnew must be a
bridge in [Rnew, A

′′∪B′′] and we can apply Lemma 4.6 to conclude that Rnew ∈ min(sc(R)).

– End Proof Claim 5 –

We have shown that for any R1, R2 ∈ B = min(sc(R)) and ab|c ∈ R1 \ R2 there is a triple
a′b′|c′ ∈ R2 \R1 such that Rnew = (R1 \ {ab|c}) ∪ {a

′b′|c′} ∈ B. Hence, we can apply Lemma
4.2 to conclude that (R,FR) is a matroid. �

In order to avoid confusion, we emphasize that the closure operator cl(R) for rooted triple
sets R defined here is not a matroid closure operator clM [40, 50]. Note, since M = (R,FR) is
a matroid, the following property must be satisfied for clM , cf. [50, Lemma 1.4.3]:

X ⊆ R, r ∈ R and r′ ∈ clM (X ∪ {r}) \ clM (X) =⇒ r ∈ clM (X ∪ {r′}).

To see that cl(R) does not fulfill this property in general, consider the example in Figure 1. To
recap, R1 = {ab|c, ac|d}, R3 = {ac|d, bc|d} and cl(R1) = cl(R) = {ab|c, ac|d, bc|d, ab|d}, but
cl(R3) = cl(R)\ab|c. Now, putX = {ac|d} and r = ab|c. Thus, r′ = bc|d ∈ cl(X∪{r})\cl(X) =
cl(R1) \ {ab|c}. However, r = ab|c /∈ cl(X ∪ {r′}) = cl(R3). The latter result has already been
observed by David Bryant [5], however, the matroid structure of (R,FR) was not discovered.

Note, each minimum representative set R′ ∈ MIN(sc(R)) is also minimal. Thus,
MIN(sc(R)) ⊆ min(sc(R)). However, since (R,FR) is a matroid with collection of bases
min(sc(R)), all elements in min(sc(R)) have the same cardinality [50]. Therefore, all basis
elements of the matroid (R,FR) are of minimum size. We summarize this observation in the
following

Theorem 4.8. If R is a consistent triple set, then min(sc(R)) = MIN(sc(R)).

In order to find a minimum representative set R′ of R one can apply a simple greedy algo-
rithm. Algorithm 1 computes a basis element of the matroid (R,FR) and can easily be adapted
to find maximum weighted bases, an issue that might be important for applications in phyloge-
netics, where the weight of a rooted triple corresponds to a statistical confidence value or any
other measure associated with the underlying triples.

Lemma 4.9. Algorithm 1 computes a subset R′ ⊆ R with cl(R′) = cl(R) of minimum size in
O(|R|2|LR|).
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Algorithm 1 GREEDY for Minimal/Minimum Representative Triple Sets

Input: Consistent triple set R;
Output: Minimal Representative Triple set Rmin;
1: Rtmp ← ∅;
2: for all ab|c ∈ R do

3: R′ ← R \Rtmp;
4: if R′ \ {ab|c} ∪ {bc|a} and R′ \ {ab|c} ∪ {ac|b} are not consistent then ⊲ Thus,

ab|c ∈ cl(R \ (Rtmp ∪ {ab|c}))
5: Rtmp ← Rtmp ∪ {ab|c};

6: return Rmin ← R \Rtmp;

Proof. By Lemma 2.5, it suffices to decide whether a triple ab|c is contained in cl(R \ (Rtmp ∪
{ab|c})) by the two consistency checks in the IF-condition.

Let Rtmp = {r1, . . . , rk} where the indices of the triples are chosen w.r.t. the order in which
they are added to Rtmp. By construction, ri ∈ Rtmp if ri ∈ cl(R \ {r1, . . . , ri}). Lemma 2.7
implies that for the first triple r1 ∈ cl(R \ {r1}) it holds that cl(R \ {r1}) = cl(R). Next, r2
is added to Rtmp that is, r2 ∈ cl(R \ {r1, r2}) and again by Lemma 2.7, cl(R \ {r1, r2}) =
cl(R \ {r1}) = cl(R). Inductively, when rk is chosen we have rk ∈ cl(R \ Rtmp}) = cl(R \
{r1, . . . , rk−1}) = · · · = cl(R \ {r1}) = cl(R). Since by construction, Rmin = R \ Rtmp, it holds
that cl(Rmin) = cl(R \Rtmp) = cl(R).

We continue to show that Rmin ∈ min(sc(R)). Assume for contradiction that there is a
subset R′′ ( Rmin with cl(R′′) = cl(R). Note, R′′ = Rmin \ R

′ for some non-empty subset
R′ ⊆ Rmin. Thus, cl(Rmin \ R

′) = cl(R) = cl(Rmin). Lemma 2.7 implies that there is a triple
r ∈ R′ such that cl(Rmin \ {r}) = cl(Rmin). Note, since r ∈ R′ ⊆ Rmin = R \Rtmp it holds that
r /∈ Rtmp.

Consider the step when r is chosen in Alg. 1. If Rtmp = ∅ before this step, we would have
r /∈ cl(R \ {r}), since r is not added to Rtmp. However, since r ∈ Rmin and Rmin \ {r} ⊆ R \ {r}
and it must hold that r ∈ cl(Rmin) = cl(Rmin \ {r}) ⊆ cl(R \ {r}); a contradiction. If Rtmp

is not empty and thus, Rtmp = {r1, . . . , ri} before the step when r is chosen in Alg. 1, we
would have r /∈ cl(R \ {r1, . . . , ri, r}), since r is not added to Rtmp. However, since r ∈ Rmin

and Rmin \ {r} = R \ {r1, . . . , rk, r} ⊆ R \ {r1, . . . , ri, r} it must hold that r ∈ cl(Rmin) =
cl(Rmin \ {r}) ⊆ cl(R \ {r1, . . . , ri, r}); a contradiction. Therefore, Rmin is minimal and we can
apply Theorem 4.8 to conclude that Rmin is of minimum size.

Concerning the time complexity, observe that the for-loop runs |R| times. In each step of
the for-loop, we have to check for consistency which can be done with BUILD in O(|R||LR|) time.
Thus, we end in an overall time complexity O(|R|2|LR|). �

As a consequence, we obtain the following result:

Theorem 4.10. Let R1, R2 be consistent triple sets such that cl(R1) = cl(R2). For each R′
1 ∈

min(sc(R1)) and R′
2 ∈ min(sc(R2)) it holds that |R′

1| = |R
′
2|.

Proof. Let R1 and R2 be consistent triple sets such that cl(R1) = cl(R2). Set R = cl(R1) and
apply the greedy method with input R. Since cl(R1) = cl(R) and since the choice of the triples
assigned to Rtmp is arbitrary as long as cl(R \ Rtmp) = cl(R), it is possible to obtain greedily
a set Rtmp for which R′ = R1 = R \ Rtmp ⊆ R (in Step 3 of Alg. 1). Now Alg. 1 continues
with R1 in order to find a subset R′ ⊆ R1 such that R′ ∈ min(sc(R)) = min(sc(cl(R1))).
Note, R′ ∈ min(sc(R1)) as otherwise there would be a subset R′′ ( R′ ⊆ R1 ⊆ cl(R1) such
that cl(R′′) = cl(R1); a contradiction to R′ ∈ min(sc(cl(R1))) and the correctness of Alg. 1.
Hence, for any R′

1 ∈ min(sc(cl(R1))) with R′
1 ⊆ R1 we also have R′

1 ∈ min(sc(R1)). The same
applies to R2, that is, R′

2 ∈ min(sc(R2)) for any R′
2 ∈ min(sc(cl(R2))) with R′

2 ⊆ R2. Since
cl(R1) = cl(R2), it holds that min(sc(cl(R1))) = min(sc(cl(R2))). The latter together with
Theorem 4.8 implies that |R′

1| = |R
′
2|. �

5 Computing the Closure

The currently fastest algorithm to determine the closure has a time complexity of O(|R||LR|
4)

and was proposed by Bryant and Steel [6]. In this section, we provide a novel and efficient
algorithm to compute the closure. This method is based on the techniques we used to prove the
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matroid structure. In particular, the proposed algorithm will rely on computing the set L⋆
R(R)

and usage of the following theorem.

Theorem 5.1. Let R be a consistent triple set and define RA,B = {ab|c : a, b ∈ A, c ∈
B or a, b ∈ B, c ∈ A} for any A,B ⊆ LR. Then,

cl(R) =
⋃

{A,B}∈L⋆

R
(R)

RA,B .

Moreover, for any distinct {A,B}, {A′, B′} ∈ L
⋆
R(R) it holds that RA,B ∩ RA′,B′ = ∅. In

particular,
∑

{A,B}∈L⋆

R
(R)

|RA,B | ≤ |LR|
3.

Proof. Theorem 2.6 immediately implies that
⋃

{A,B}∈L⋆

R
(R)RA,B ⊆ cl(R). Thus, it remains to

show that cl(R) ⊆
⋃

{A,B}∈L⋆

R
(R)RA,B . Let ab|c ∈ cl(R). Lemma 3.3 implies that Lab|c(R) 6= ∅.

Thus, there is also a maximal element ℓ⋆
ab|c(R) = {A,B} ∈ L

⋆
cl(R)(R). Theorem 3.9 implies that

L
⋆
cl(R)(R) = L

⋆
R(R) and hence, it particularly holds that {A,B} ∈ L

⋆
R(R) for which ab|c ∈ RA,B .

Therefore, ab|c ∈
⋃

{A,B}∈L⋆

R
(R)RA,B and thus, cl(R) =

⋃

{A,B}∈L⋆

R
(R)RA,B .

We continue by showing that for any distinct {A,B}, {A′, B′} ∈ L
⋆
R(R) we have RA,B ∩

RA′,B′ = ∅. Assume for contradiction that ab|c ∈ RA,B ∩ RA′,B′ for some distinct
{A,B}, {A′, B′} ∈ L

⋆
R(R). Thus, A ∩ (A′ ∪ B′) 6= ∅ and B ∩ (A′ ∪ B′) 6= ∅, as well as

A′ ∩ (A ∪ B) 6= ∅ and B′ ∩ (A ∪ B) 6= ∅. Lemma 3.7 implies that either A ∪ B ⊆ A′ or
A ∪ B ⊆ B′ and either A′ ∪ B′ ⊆ A or A′ ∪ B′ ⊆ B. W.l.o.g. assume that A′ ∪ B′ ⊆ A and
therefore, A′, B′ ⊆ A. If A ∪ B ⊆ A′ (resp. A ∪ B ⊆ B′), then B′ ⊆ A′ (resp. A′ ⊆ B′); a
contradiction to the disjointedness of A′, B′. Hence, RA,B ∩RA′,B′ = ∅.

Finally, since RA,B ∩ RA′,B′ = ∅ are disjoint for distinct {A,B}, {A′, B′} ∈ L
⋆
R(R),

the closure cl(R) is the disjoint union ⊎{A,B}∈L⋆

R
(R)RA,B and therefore, | cl(R)| =

∑

{A,B}∈L⋆

R
(R) |RA,B |. Since cl(R) can have at most |LR|

3 triples, that is, one triple for each of

three-element subsets of LR, the assertion follows. �

Lemma 5.2. Let R be a consistent triple set and ab|c ∈ R. Moreover, assume that there is a
subset L ⊆ LR with a, b, c ∈ L such that a, b are contained together in some connected component
Ca,b of [R,L]. Let Cc denote the connected component in [R,L] that contains c. Note, we don’t
claim that Ca,b 6= Cc.

Then, L′ ⊆ Ca,b ∪ Cc for all L′ ⊆ L for which [R,L′] has exactly two connected components,
one containing a, b and the other c.

Proof. Assume for contradiction that there is a subset L′ = A ∪ B ⊆ L such that [R,L′] has
exactly two connected components A and B with a, b ∈ A and c ∈ B, but L′ 6⊆ Ca,b ∪ Cc. Thus,
there is a vertex d ∈ L′ \ (Ca,b ∪Cc). Therefore, d is either contained in A or in B, that is, there
is either a path Pda or Pdc in [R,L′]. Since [R,L′] is a subgraph of [R,L] these paths are also
contained in [R,L]. But then, d ∈ Ca,b or d ∈ Cc; a contradiction. �

The latter lemma immediately offers a way to compute L
⋆
R(R) that is summarized in Al-

gorithm 2. For each triple ab|c ∈ R start with [R,LR]. If [R,LR] has already two connected
components A and B, one containing a, b and the other c, then LR = A ∪B clearly maximizes
|A ∪ B|. Thus, {A,B} = ℓ⋆

ab|c(R) ∈ L
⋆
R(R). If [R,LR] does not have these two connected

components A and B, it is, however, still disconnected (cf. Theorem 2.1). Hence, [R,LR] has
two or more connected components. Nevertheless, a, b must be in one connected component
Ca,b due to the edge (a, b) implied by ab|c ∈ R. Moreover, there is a connected component Cc
that contains c. Note, Ca,b = Cc might be possible. Now set C = Ca,b ∪ Cc ( LR. By Lemma 5.2
it holds L′ ⊆ C for all L′ ⊆ LR for which [R,L′] satisfies the conditions of Theorem 2.6 when
applied to ab|c ∈ R. Hence, we stepwisely look at these components C until we have found
one C such that for the particular subset C∗ = Ca,b ∪ Cc ( C, the Ahograph [R, C∗] has two
connected components A and B, one containing a, b and the other c. Hence, C∗ = A∪B. Since
this is the first occurrence of such a set C∗ ⊆ LR and any further L′ ⊆ L for which [R,L′] has
exactly two connected components, one containing a, b and the other c, must be contained in
C∗, C∗ = A ∪ B maximizes |A ∪ B|. Thus, {A,B} = ℓ⋆

ab|c(R) ∈ L
⋆
R(R). By Theorem 2.6 and

since ab|c ∈ R ⊆ cl(R), there is indeed a subset [R,L′] that satisfies the conditions of Theorem
2.6 when applied to ab|c ∈ R. The latter arguments show that Algorithm 2 is correct.
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Algorithm 2 Compute L
⋆
R(R)

Input: A consistent triple set R;
Output: L

⋆
R(R);

1: L
⋆
R(R)← ∅;

2: for all ab|c ∈ R do

3: C ← LR;
4: while [R, C] does not have exactly two connected components A,B, one containing a, b and

the other c do

5: Ca,b ← connected component in [R, C] that contains a, b;
6: Cc ← connected component in [R, C] that contains c;
7: C ← Ca,b ∪ Cc;

8: L
⋆
R(R)← L

⋆
R(R) ∪ {A,B};

9: return L
⋆
R(R)← L

⋆
R(R);

Algorithm 3 Compute Closure cl(R)

Input: A consistent triple set R;
Output: cl(R);
1: Compute L

⋆
R(R) with Algorithm 2;

2: cl(R)← ∅;
3: for all {A,B} ∈ L

⋆
R(R) do

4: Compute RA,B (cf. Theorem 5.1);
5: cl(R)← cl(R) ∪RA,B;

6: return cl(R);

Lemma 5.3. Let R be a consistent triple set. Algorithm 2 computes L
⋆
R(R) in O(|R|2|LR|)

time.

Proof. The correctness of the Algorithms follows from Lemma 5.2 and the discussion above.
The FOR-loop runs O(|R|) times. The WHILE-condition is repeated at most |LR| times,

since C will in each step have at least one vertex less as otherwise [R, C] will be connected; a
contradiction to Theorem 2.1. For each call of the WHILE-condition we have to construct [R, C]
and keep track of the connected components Ca,b and Cc. The latter task can be done while
constructing [R, C]. Thus, both tasks take O(|LR| + |R|) time. Since |LR| ≤ 3|R|, we have
O(|LR|+ |R|) = O(|R|). Thus, we end in an overall time complexity O(|R|2|LR|)). �

Lemma 5.4. Algorithm 3 computes the closure cl(R) of a consistent triple set R in O(|R|2|LR|)
time.

Proof. Given a consistent triple set R, the set L
⋆
R(R) is computed. For each {A,B} ∈ L

⋆
R(R)

the respective set RA,B is constructed and attached to cl(R). By Theorem 5.1, cl(R) is correctly
computed.

Concerning the time complexity, first observe that Algorithm 2 runs in O(|R|2|LR|) time.
Furthermore, Theorem 5.1 implies thatRA,B∩RA′,B′ = ∅ for distinct {A,B}, {A′, B′} ∈ L

⋆
R(R).

That is, each triple of cl(R) is computed exactly once in the entire run of the FOR-loop. Since
cl(R) can have at most |LR|

3 triples, the FOR-loop has a time complexity of O(|LR|
3). Thus,

we end in an overall time complexity O(|R|2|LR|+ |LR|
3). Since |LR| ≤ 3|R|, we have therefore

O(|R|2|LR|+ |LR|
3) = O(|R|2|LR|). �

The overall time complexity to compute the closure for a given triple set R is O(|R|2|LR|). In
a worst case, |R| is close to

(

LR

3

)

= O(|LR|
3), in which we end in O(|LR|

7) time. In this case, the
time complexity of our approach is the same as the complexity O(|R||LR|

4) = O(|LR|
7) of the

method proposed by Bryant and Steel [6]. In a best case, however, we have O(|R|) = O(|LR|)
and then we obtain O(|R|2|LR|) = O(|LR|

3), while the method of Bryant and Steel has a time
complexity of O(|R||LR|

4) = O(|LR|
5). Thus, although the time complexities are asymptotically

the same whenever |R| is close to
(

LR

3

)

, our methods outperforms the approach of Bryant and
Steel [6] for moderately sized R. In particular, since |LR| ≤ 3|R|, our method has always
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time complexity O(|R|2|LR|) ⊆ O(|R|
3), while the method of Bryant and Steel has complexity

O(|R||LR|
4) ⊆ O(|R|5).

For the sake of time complexity one can apply Algorithm 2 and 3 directly on an arbitrary
given set R′ ∈ MIN(sc(R)), since L

⋆
R(R) = L

⋆
R′(R′) (cf. Thm. 3.10). Note, in many cases R′ ∈

MIN(sc(R)) will have cardinality strictly less than |R|. By way of example, consider the set of all
rooted triplesR(T ) that are displayed by a binary rooted tree T . In this case, R(T ) is closed and
defines T and for any R′ ∈ min(sc(R(T ))) we have |R′| = |LR|−2 [25, 58]. Hence, for any subset
R ⊆ R(T ) that contains R′ the cardinality can vary between |LR| − 2 and

(

LR

3

)

∈ O(|LR|
3).

Note, cl(R(T )) = cl(R′) ⊆ cl(R) ⊆ cl(R(T )) = R(T ) and thus, cl(R′) = cl(R) = R(T ) and
R′ ∈ min(sc(R)). Therefore, for any such set R ⊆ R(T ) there is a minimal representative
set R′ that can have cardinality significantly less compared to |R|, while R′ still contains all
information of the tree structure T that is also provided by R and R(T ). On the one hand,
this strongly reduces the space complexity to store the information that is needed to recover T .
On the other hand, the closure can be computed in the latter case in O(|R′|2|LR|) = O(|LR|

3)
time, whenever R′ is given, which improves the time complexity O(|R||LR|

4) to compute cl(R)
by a factor of |R||LR|. A similar argument applies to the set of all triples R(T ) that are
displayed by a non-binary rooted tree T . In this case, R(T ) identifies T . Still, R(T ) can be
close to

(

LR

3

)

∈ O(|LR|
3), while for any R′ ∈ min(sc(R(T ))) the cardinality is bounded by

B(T ) ∈ O(|LR|
2), cf. Cor. 6.5.

6 Further Results

6.1 Sufficient Conditions for Minimum Representative Triple Sets

We provide in this subsection easy verifiable conditions that are quite useful to identify triples
in R that must be contained in every representative set of R and to check whether R is already
a minimal representative of R. In particular, these conditions helped us to construct many
(counter)examples when we wrote this paper. For instance, the sets R′

1 and R′
2 in Figure 3 are

easily verified to be minimal representatives by using the following results.

Lemma 6.1. Let R be a consistent triple set and ab|c ∈ R. Furthermore, let Ca,b (resp. Cc) be
the connected component in [R,LR] that contains a and b (resp. c). Note, Ca,b = Cc is possible.
Then,

ab|c ∈
⋂

R′∈min(sc(R))

R′

whenever the following two conditions are satisfied:

(S1) [R,LR] does not contain cycles.

(S2) If ab|d ∈ R with c 6= d, then d /∈ Ca,b ∪ Cc.

Moreover, it holds that
⋂

R′∈min(sc(R))

R′ =
⋂

R′∈sc(R)

R′.

Proof. Assume that Conditions S1 and S2 are satisfied, but that there exists a triple set R′ ∈
min(sc(R)) such that ab|c /∈ R′. Let {A,B} = ℓ⋆

ab|c(R
′) and assume w.l.o.g. that a, b ∈ A and

c ∈ B. Lemma 5.2 implies that A ∪ B ⊆ Ca,b ∪ Cc. Lemma 2.2 implies that [R′, A ∪ B] is a
subgraph of [R,LR].

Since a, b ∈ A there is a path Pab from a to b in [R′, A∪B]. Note, this path must be the edge
(a, b), otherwise [R,LR] would contain a cycle. Thus, there must be another triple ab|d ∈ R′

with c 6= d and d ∈ A∪B ⊆ Ca,b∪Cc that supports the edge (a, b) in [R′, A∪B]; a contradiction
to Condition S2.

To verify the last equation, we set M =
⋂

R′∈min(sc(R)) R
′ and N =

⋂

R′∈sc(R) R
′. Observe

first that min(sc(R)) ⊆ sc(R) implies that N ⊆ M . Now assume that there is a triple r ∈ R
such r /∈ N . Thus, there is a triple set R′ ∈ sc(R) with r /∈ R′. Therefore, r /∈ R′′ for all
R′′ ∈ min(sc(R′)). Since R′′ is already minimal and cl(R′′) = cl(R′) = cl(R), we have r /∈ M .
Hence, M ⊆ N and thus, M = N . �

Corollary 6.2. Let R be a consistent triple set. Then, min(sc(R)) = {R} whenever Condition
S1 and S2 in Lemma 6.1 are satisfied for all triples in R.

Note, the example in Figure 2 shows that the Conditions S1 and S2 are not necessary for
minimal representatives.
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Figure 3: Shown is a tree T on the leaf set {a, b, c, d, e, f}. Let R2 = R(T ) and R1 = {ab|d, ab|e, ab|f, bc|e, bc|f}.
Although R1 ⊆ R2, we can observe that for the minimal representative sets R′

1 = R1 ∈ min(sc(R1)) and R′
2 =

{ab|d, bc|d, cd|e, de|f} ∈ min(sc(R2)) it holds that |R
′
1| > |R′

2|.

6.2 Triple Sets that Define and Identify a Tree

Here, we are concerned with results established in [58] and [25]. First recall, a triple set R
identifies a rooted tree T with leaf set LR, if T displays R and any other tree that displays R
refines T .

In [25] a tight lower bound for the cardinality of triple sets that identify a rooted tree was
given. To this end, let c(v) denote the number of children of a vertex v in T = (V,E) and set

B(T ) =
∑

(u,v)∈E0

(c(u)− 1)(c(v)− 1).

Theorem 6.3 ([25]). Let R be a consistent triple set. The following properties are satisfied:

1. cl(R) = R(T ) if and only if R identifies T .

2. If R identifies T , then |R| ≥ B(T ).

3. For every rooted tree T , there is a triple set R such that R identifies T and |R| = B(T ).

These results allow us to give an exact value and an upper bound for the cardinality of
minimal representative triple sets that identify a tree.

Theorem 6.4. Let T be a tree with maximum degree ∆. Any minimal (and thus, minimum)
consistent triple set R that identifies T has cardinality B(T ) ∈ O(∆ · |LR|) ⊆ O(|LR|

2).

Proof. Let R be a minimal consistent triple set R that identifies T . Theorem 6.3(1) implies that
R ∈ min(sc(R(T ))). Theorem 4.8 implies that R has minimum cardinality. Combining Theorem
6.3(2,3) and Theorem 4.8 implies that each R ∈ min(sc(R(T ))) has cardinality |R| = B(T ).

We continue to show that |B(T )| ∈ O(|LR|
2). We will use that |V 0| ≤ |LR| − 1, cf. [31,

Lemma 1]. Note ∆ ≤ |LR|. Moreover, the notation for edges (u, v) is chosen such that u is
closer to the root than v.

B(T ) =
∑

(u,v)∈E0

(c(u)− 1)(c(v)− 1) ≤
∑

(u,v)∈E0

deg(u)(c(v)− 1) ≤ ∆ ·
∑

v∈V 0

(c(v)− 1)

= ∆ ·
(

− |V 0|+
∑

v∈V 0

c(v)
)

= ∆ · (−|V 0|+ |E|)

= ∆ · (−|V 0|+ |V 0|+ |LR| − 1) = ∆ · (|LR| − 1) ∈ O(|LR|
2).

�

Corollary 6.5. Let R be a triple set that identifies the tree T . Then, for any R′ ∈ min(sc(R))
we have |R′| = B(T ) ∈ O(|LR|

2).

Proof. Note, R(T ) is closed and therefore, cl(R(T )) = R(T ). Theorem 6.3 implies that cl(R) =
R(T ). Now, if R′ ∈ min(sc(R)) and R′′ ∈ min(sc(R(T ))), then cl(R′) = cl(R′′). Hence, we can
apply Theorem 6.4 and 4.10 to conclude that |R′| = |R′′| = B(T ). �

Note, for a rooted binary tree T on LR and thus, c(u) = 2 for each interior vertex, we obtain
B(T ) = |LR| − 2. Moreover, B(T ) = |LR| − 2 shows that B(T ) ∈ O(|LR|) is possible. On the
other hand, if T is tree for which the root ρ has c(ρ) = n children and each child of ρ is adjacent
to exactly two leaves (and hence, |E0| = n and |LR| = 2n), then we have B(T ) = n(n− 1) and
therefore, indeed B(T ) ∈ Θ(|LR|

2) and thus, B(T ) 6∈ O(|LR|) is possible.
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c da b e c da b e

Figure 4: Shown are two trees T1 (left) and T2 (right) that display R = {ab|e, cd|e}. None of the trees is a
refinement of the other one. Hence, R neither identifies T1 nor T2. Nevertheless, C(R) = C(T2) and therefore,
contains all information to uniquely recover T2. This example also shows that the converse of Statement (2) in
Lemma 6.8 is not satisfied.

We conjecture that for an arbitrary triple set R and R′ ∈ min(sc(R)) it always holds that R′

is bounded above by O(|LR|
2). However, a main difficulty in proving this is the following fact:

R1 ⊆ R2 and R′
i ∈ min(sc(Ri)) with i = 1, 2 does not imply that |R′

1| ≤ |R
′
2|; see Figure 3.

Now consider triple sets R that define a rooted tree T with leaf set LR, that is, T is the unique
tree (up to isomorphism) that displays R and thus, T must be binary and span(R) = {T}. In
[58] it was shown that Theorem 4.8 is always satisfied for triple sets that define a tree.

Theorem 6.6 ([58, Cor. on Page 111]). If R is a triple set that defines the rooted tree T = (V,E)
with leaf set L, then |R′| = |L| − 2 for any R′ ∈ min(sc(R)).

Note, every triple set R that defines a tree T also identifies T and, by the discussion above
and Corollary 6.5, we can conclude that every minimal triple set R that defines T must have
cardinality |R| = B(T ) = |LR|−2. Thus, Theorem 6.6 is an immediate consequence of Theorem
4.8 and Corollary 6.5.

A further interesting result is given by Semple [56] and Grünewald et at. [25]:

Lemma 6.7. For any subset R of R(T ), cl(R) = R(T ) if and only if R identifies T .
Furthermore, let AR denote the unique tree obtained from BUILD with input R. For two sets

R1 and R2 with cl(R1) = cl(R2) we have AR1
= AR2

. Moreover, if R identifies T , then AR = T .

The latter result left us with the question if the set L
⋆
R(R) can be used to obtain similar

results. In particular, the question arises under which conditions L
⋆
R(R) provides the essential

information of a hierarchy C(T ) of T . Let

C(R) :=
⋃

{A,B}∈L⋆

R
(R)

{A,B} ∪ LR ∪
{

{x} : x ∈ LR

}

.

There are many examples that show C(R) = C(T ) for some tree T , in which case C(R)
provides already all information to re-build T . As a simple example consider the set R1 = {ab|c}
where C(T ) = C(R1) = {{a, b}, {c}}∪LR1

∪{{a}, {b}, {c}} provides the hierarchy of the unique
tree AR1

= ab|c that displays R1. A further example is given in Figure 4. Contrary, for
R2 = {ab|d, bc|e} the tree obtained with BUILD is AR2

= ((a, b, c), d, e) (given in Newick format).
However, the set C(R2) does not contain the element {a, b, c}. Moreover, C(R2) contains the
elements {a, b} and {b, c}. Hence, C(R2) is not a hierarchy. The difference between R1 and R2

is simple: R1 identifies AR1
and R2 does not identify AR2

. The latter observation leads us to
the following result.

Lemma 6.8. Let R be a consistent triple set and T ∈ span(R). Two vertices u, v ∈ V (T ) form a
pair of siblings {u, v}, if u and v have a common adjacent vertex w such that C(u), C(v) ( C(w)
and |C(u) ∪ C(v)| > 2, i.e., w is closer to the root than u and v and at least one of u and v is
an inner vertex. We denote with S(T ) the set of all such pairs of siblings in T . The following
statements are satisfied:

1. R identifies T if and only if L⋆
R(R) =

⋃

{u,v}∈S(T ){{C(u), C(v)}}

2. If R identifies T , then C(R) = C(T ).

Proof. Let R be a consistent triple set and T ∈ span(R). By Lemma 6.7, R identifies T if and
only if cl(R) = R(T ).

We prove first Item (1). Assume that R identifies T . Let ℓ⋆
ab|c(R) = {A,B} ∈ L

⋆
R(R).

W.l.o.g. assume that a, b ∈ A and c ∈ B. By construction of L⋆
R(R) and Theorem 2.6, we have
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ab|c ∈ cl(R). Note, ab|c ∈ cl(R) = R(T ) if and only if there is a pair of siblings {u, v} ∈ S(T )
such that a, b ∈ C(u) and c ∈ C(v).

In what follows, we show that A = C(u) and B = C(v). Assume for contradiction that
A 6⊆ C(u). Hence, there is an element x ∈ A \ C(u). By definition of ℓ⋆

ab|c(R) = {A,B} and

Theorem 2.6, ax|c ∈ cl(R) = R(T ). But this immediately implies that x ∈ C(u); a contradiction.
Hence, A ⊆ C(u) and, analogously, B ⊆ C(v). Assume for contradiction that A ( C(u). Again,
there is an element x ∈ C(u) \ A, which implies that ax|c ∈ R(T ) = cl(R). Thus, Lemma
3.5 implies that there exists a unique element ℓ⋆

ax|c(R) = {A′, B′} ∈ L
⋆
R(R) such that w.l.o.g.

a, x ∈ A′ and c ∈ B′. Thus, A 6= A′ as otherwise, x ∈ A. Note, c ∈ B ∩B′. However, Corollary
3.8 implies that B ∩B′ must be empty, since A ∩A′ 6= ∅; a contradiction. Therefore, A = C(u)
and, analogously, B = C(v). In summary, L⋆

R(R) ⊆
⋃

{u,v}∈S(T ){{C(u), C(v)}}

Now, let {u, v} ∈ S(T ). Since, |C(u) ∪ C(v)| > 2 we can assume that at least one of C(u)
or C(v) contains at least two elements, say C(u). Thus, there are a, b ∈ C(u) and c ∈ C(v),
which implies that ab|c ∈ R(T ) = cl(R). Lemma 3.5 implies that there exists a unique element
ℓ⋆
ab|c(R) = {A,B} ∈ L

⋆
R(R). Now we can re-use exactly the same arguments as before to

show that C(u) = A and C(v) = B. Thus,
⋃

{u,v}∈S(T ){{C(u), C(v)}} ⊆ L
⋆
R(R) and therefore,

⋃

{u,v}∈S(T ){{C(u), C(v)}} = L
⋆
R(R)

Conversely, assume that L
⋆
R(R) =

⋃

{u,v}∈S(T ){{C(u), C(v)}}. Let ab|c ∈ R(T ). Again,

there must be a pair of siblings {u, v} ∈ S(T ) such that a, b ∈ C(u) and c ∈ C(v). Hence,
{C(u), C(v)} ∈ L

⋆
R(R). Since ℓ⋆

ab|c(R) ∈ Lab|c(R), we can apply Lemma 3.3 to conclude that

ab|c ∈ cl(R) and hence, R(T ) ⊆ cl(R). Moreover, T ∈ span(R) implies that cl(R) ⊆ R(T ) and
therefore, R(T ) = cl(R). Lemma 6.7 implies that R identifies T .

We continue to prove Item (2). Assume that R identifies T . Hence, L
⋆
R(R) =

⋃

{u,v}∈S(T ){{C(u), C(v)}}. Now it is easy to see that C∗ :=
⋃

v∈V 0\{ρT }{C(v)} =
⋃

{u,v}∈S(T ){C(u), C(v)}. Since LT = LR we obtain C(T ) = C∗∪LT∪{{x} : x ∈ LT } = C(R). �

Note, the converse of Statement (2) in Lemma 6.8 is not satisfied in general, see Figure 4.

6.3 Quartets

Here, we consider unrooted trees in which every inner vertex has degree at least 3. Splits and
quartets (unrooted binary trees on four leaves) serve as building blocks for unrooted trees. To
be more precise, each edge e ∈ E(T ) of an unrooted tree T gives rise to a split A|B, that is, if
one removes e from T one obtains two distinct trees T1 and T2 with leaf sets A = L(T1) and
B = L(T2). A tree can be reconstructed in linear time from its set of splits [7, 26, 45]

If there is a split A|B in T such that a, a′ ∈ A and b, b′ ∈ B, we say that the quartet aa′|bb′

is displayed in T . Equivalently, the quartet aa′|bb′ is displayed in T , if a, a′, b, b′ ∈ L(T ) and the
path from a to a′ does not intersect the path from b to b′ in T . If Q contains all quartets that are
displayed in an unrooted tree T , then T is uniquely determined by Q and can be reconstructed
in polynomial time [19]. An arbitrary set of quartets Q is called consistent, if there is a tree that
displays each quartet in Q, see [57, 60] for further details. Determining whether an arbitrary
set of quartets is consistent is an NP-complete problem [58].

Analogously as for rooted triples, we can define the set span(Q), the closure cl(Q) and the two
sets min(sc(Q)) and MIN(sc(Q)). Now, consider the ordered pair (Q,FQ) where Q is a consistent
set of quartets and FQ = {Q′′ ⊆ Q′ : Q′ ∈ min(sc(Q))}. Of course, one might ask whether
(Q,FQ) is a matroid as well and thus, whether minimal representative sets Q′ ∈ min(sc(Q))
have all the same cardinality.

A counterexample, which we recall here for the sake of completeness, is given in [58]: Let
Q(T ) be the set of all quartets that are displayed in a binary unrooted tree T with leaf set
L. Thus, span(Q(T )) = {T}. Proposition 2(3) in [58] implies that there is a minimal subset
Q′ ⊆ Q(T ) of size |Q′| = |L|− 3 such that span(Q′) = {T} and hence, cl(Q(T )) = cl(Q′). Thus,
for the tree T in Figure 5 there is a minimal representative quartet set of size 4. However, the set
Q′ = {57|24, 15|67, 12|35, 47|13, 34|56} is also a minimal representative quartet set of Q(T ), but
has size 5. Thus, the basis elements of (Q,FQ) don’t have the same size, in general. Therefore,
(Q,FQ) is not a matroid.

7 Conclusion and Outlook

In this contribution, we were concerned with minimum representative triple sets, that is, subsets
R′ ⊆ R that have minimum cardinality and for which cl(R′) = cl(R). We have shown that it is
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Figure 5: Shown is a binary unrooted tree T with leaf set L = {1, 2, . . . , 7}.

possible to compute minimum representative triple sets in polynomial time via a simple greedy
approach. To prove the correctness of this method, we showed that minimal representative
sets (and its subsets) form a matroid (R,FR). Minimal representative sets contain minimum
representative sets and since they form the basis of the matroid (R,FR), they all must have the
same cardinality. The techniques we used to show the matroid structure have been utilized to
provide a novel and efficient method to compute the closure cl(R) of a consistent triple set R. For
this algorithm, minimum representative triple sets R′ ∈ min(sc(R)) can be used as input, which
significantly improves the runtime of the closure computation. Hence, a particular problem
that might be addressed in future work is the design of a more efficient algorithm to compute
R′ ∈ min(sc(R)). Furthermore, the size of R′ ∈ min(sc(R)) is not known a priori. Boundaries
for such sets R′ have not been established so-far, except for some rare examples as “defining” or
“identifying” triple sets [25, 58]. Thus, in order to understand minimal representative triple sets
in more detail, a more thorough analysis of the structure of the matroid (R,FR), its collection
of bases min(sc(R)) or its dual (R,FR)

∗ is needed.
We also assume that the runtime of Algorithm 2 can be improved, which would immediately

lead to a faster method to compute cl(R).
An interesting starting point for future research might be the investigation of the sets L⋆

R(R)
in more detail and finding a characterization for sets R where C(R) provides a hierarchy C(T )
of some tree T .

Moreover, generalizations of the established results would be of interest, for instance, is there
still a matroid structure if one does not insist that for the subset R′ of R we have cl(R′) = cl(R)?
What can be said about the structure of representative sets for non-consistent triple sets, see
e.g. [25]? Although minimal representative sets of quartets do not provide a matroid structure,
it might be useful to figure out which of the other established result are satisfied for quartets as
well.
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