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A B S T R A C T   

The geological and geophysical characterization of hydrocarbon-bearing sandstones of fluvial origin is a chal-
lenging task. Channel sandbodies occurring at different stratigraphic levels (i.e., in a reservoir interval of interest 
as well as in overlying and underlying stratigraphic intervals) but overlapping in planview usually cause sig-
nificant seismic interference due to limitations in seismic resolution: this can produce significant error in the 
prediction of sand location and thickness using seismic attributes. To mitigate the effect of seismic interferences 
by zones neighboring a target reservoir interval, a new method is proposed that combines multiple seismic at-
tributes of the target interval and of its interfering neighboring zones, implemented by a supervised machine 
learning algorithm using support vector regression (SVR). Since the thickness of neighboring intervals causing 
seismic interference has a constant value of a quarter of a wavelength (1/4 λ), the stratal slice corresponding with 
the top horizon of the target interval is taken as the base of a window of 1/4 λ to calculate seismic attributes for 
the overlying zone; similarly, the stratal slice corresponding with the bottom horizon is taken as the top of a 
window of 1/4 λ to calculate seismic attributes for the underlying zone. The proposed method was applied to a 
subsurface dataset (including a 3D seismic dataset and 255 wells) of the Chengdao oilfield, in the Bohai Bay Basin 
(China). The interval of interest is located in the Neogene Guantao Formation, whose successions are interpreted 
as fluvial in origin. This application demonstrates how the proposed method results in remarkably improved 
sandstone thickness prediction, and how consideration of multiple attributes further improves the accuracy of 
predicted values of sandstone thickness.   

1. Introduction 

Fluvial successions, which commonly host hydrocarbon reservoirs 
(McHargue et al., 2011; Miall, 2002), tend to be highly heterogeneous 
(Colombera et al., 2015; Miall, 1985; Nicholas, 2013), and usually carry 
a high drilling risk (Carter, 2003). Hence, prediction of sedimentary 
heterogeneity in fluvial reservoirs is a common but important task for 
petroleum geologists and geophysicists (McArdle et al., 2014; Zeng, 
2018). 

In the oil and gas industry, seismic attributes extracted from 3D 
seismic datasets are commonly employed to reveal details of reservoir 
architectures (Chopra and Marfurt, 2005; Mukerji et al., 2001; Zeng, 

2018). To improve the accuracy of seismic attributes as tools for pre-
dicting reservoir distribution, efforts have concentrated on developing 
new attributes (Gersztenkorn and Marfurt, 1999; Mahob and Castagna, 
2003) and on exploring integrated workflows for the effective combi-
nation of multiple attributes (Carrillat et al., 2008, 2005; Coléou et al., 
2003; De Rooij and Tingdahl, 2002). In the past three decades, hundreds 
of seismic attributes have been developed, and some of them, such as 
those related to amplitude, frequency, phase and seismic texture, are 
ordinarily applied in reservoir characterization (Carrillat et al., 2005; 
Gersztenkorn and Marfurt, 1999; Mahob and Castagna, 2003; Zeng, 
2010). However, only a limited number of recently developed seismic 
attributes determined a significant improvement in sandbody 
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prediction, compared with predictions based on established attributes 
(e.g., root mean square, sweetness, average peak frequency attributes) 
(Chopra and Marfurt, 2005; Gao, 2011; McArdle et al., 2014). Hence, 
some of the current research efforts are directed towards the exploration 
of new workflows with which to enable a more effective combination of 
multiple seismic attributes. For example, combinations of multiple at-
tributes with statistical regression techniques (Carrillat et al., 2005; 
Gholami and Ansari, 2017), via a red-green-blue blending model 
(Henderson et al., 2007; McArdle and Ackers, 2012; Partyka et al., 1999, 
Li et al., 2019b), and using machine learning (Carrillat et al., 2008; 
Coléou et al., 2003; Li et al., 2019a; Veeken et al., 2009) have been 
widely employed in recent years. Although these integrated workflows 
result in improved reservoir prediction, especially in application to thin 
reservoir-forming sandbodies, a difficulty remains in accurately imaging 
sandbodies that are stacked in a way whereby they are vertically close to 
– though not necessarily in contact with – each other; this problem exists 
even when the sandbody thickness is equal to or even larger than the 
seismic resolution. For example, with reference to the idealized example 
in Fig. 1, it is difficult to map channel sandbodies contained in the 
middle stratigraphic interval (‘layer 2’ in Fig. 1) using seismic attributes, 
even though their thicknesses are close to or larger than a quarter of the 
seismic wavelength (1/4 λ), due to strong interference by the response of 
other sandbodies from underlying and overlying intervals (Fig. 1b) 
(Armitage and Stright, 2010; Bakke et al., 2013; Li et al., 2020). This is a 
significant problem for fluvial reservoirs composed of channel sand-
bodies that vary in orientation and that occur at different stratigraphic 
levels, but overlap in planform through their stratigraphy (Colombera 
et al., 2104, 2017; Ghazi and Mountney, 2009; Miall, 1988). Hence, it is 
imperative to develop new methods for the application of seismic at-
tributes to better discriminate sandbodies in hydrocarbon reservoirs of 
fluvial origin. 

Li et al. (2020) have proposed a method that for the first time applies 
machine learning to seismic data to mitigate the effect of seismic 
interference from stratigraphic intervals neighboring a zone of interest 
on sand-thickness prediction. The proposed method was tested by 
applying it to a forward seismic model of a 3D synthetic stratigraphy, 
whose results proved the effectiveness of considering seismic attributes 

of the neighboring intervals to reduce their interference and improve 
predictions (Li et al., 2020). Nonetheless, two limitations inherent in this 
method still need to be addressed, as follows: 1) only one seismic 
attribute was used in the original implementation of the method; 2) 
because seismic interference is determined by zones located above and 
below the target interval (‘neighboring zones’, hereafter) each having 
thickness of 1/4 λ (see below, section 3), employing the surface attri-
butes of these zones leads to inaccurate results when their thickness is 
not equal to 1/4 λ. The aim of this paper is to demonstrate how these 
problems can be addressed. To this end, an improved workflow is pro-
posed that combines multiple seismic attributes of the target interval 
and of its interference zones using machine learning with a support 
vector regression (SVR) algorithm. 

2. Geological setting and dataset 

The Bohai Bay Basin is a giant hydrocarbon province in north-eastern 
China, covering an area of approximately 180,000 km2 (Fig. 2a). It 
mainly consists of 7 sub-basins (i.e., from east to west, the Liaohe, 
Liaodong Bay, Bozhong, Huanghua, Jiyang, Jizhong, and Linqing sub- 
basins), which have mainly formed during the Mesozoic to Cenozoic 
(Hou et al., 2001). The Chengning Uplift, a major positive structure in 
the middle Bohai Bay Basin, is flanked by the Bozhong sub-basin to the 
northeast, the Jiyang Sub-basin to the southeast, and the Huanghua 
Sub-basin to the northwest (Fig. 2a). To the northeast of the Chengning 
Uplift is the Chengbei Salient, which is surrounded by three depressions 
(the Chengbei, Shanan and Bozhong depressions) within which source 
rocks have accumulated. 

The Chengdao oilfield is situated on the southeast edge of the 
Chengbei Salient (Fig. 2b). The study area is located in a proximal part of 
the central Chengdao oilfield, covering an area of approximately 80 
km2. The target depositional unit is the upper member of the Neogene 
Guantao Formation (24.6–12.0 Ma) (Fig. 2c), which has been inter-
preted as a fluvial succession (Li et al., 2019a, 2019b; Yue et al., 2018). 
Channel sandbodies contained in stratigraphic intervals referred to as 
‘depositional layers’, and vertically separated by typically thicker (over 
5 m on average) shales, were accurately imaged by Li et al. (2019a, 

Fig. 1. (a) Lithological model used for forward seismic modelling, showing the geometry and distribution of channel sandbodies. Velocities of sandstone and 
mudstone are 2450 m/s and 2650 m/s, respectively. (b) The resulting synthetic seismic-reflection model, shown in a normal polarity display. The dominant fre-
quency of the synthetic model is 38 Hz (Modified from Li et al., 2020). 
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2019b) using seismic attributes. However, in other intervals where im-
aging of channel sandbodies is hindered by interference by sandbodies 
contained in stratigraphically adjacent intervals, the distribution of 
sandbodies could not be imaged clearly using the same seismic attri-
butes and workflow; an example of such intervals is ‘layer 4’ in Fig. 2c. 

The dataset that was used to predict the sandbody distribution in-
cludes 255 wells and a 3D seismic dataset. Well data comprise of 
different types of wireline logs, including sonic (DT), spontaneous po-
tential (SP), gamma ray (GR), laterolog deep resistivity (LLD), and lat-
erolog shallow resistivity (LLS); approximately half of the wells also 
have density (DEN) logs. In addition, seven of the wells were cored in the 
Neogene Guantao Formation, which is the unit of interest. The used 

seismic survey is a post-stack seismic dataset with a normal polarity 
display (Fig. 3a), covering an area of approximately 70 km2. The 
dominant frequency of this post-stack seismic data is 38 Hz, and its 
effective bandwidth is 18–58 Hz (Fig. 3b). Spacing of both inlines and 
crosslines is 25 m, and the vertical sample interval is 2 ms. Statistics 
from the sonic logs indicate that the velocity for the successions of the 
Guantao Formation mainly ranges from 2350 m/s to 2700 m/s. 

3. Definition of the neighboring zone and neighboring attribute 
slice 

To better understand the interference of seismic responses and to 

Fig. 2. (a) Location and tectonic divisions of the Bohai Bay Basin. (b) Detailed structural features of the central Bohai Bay Basin (modified from Li et al., 2019a), 
whose location is indicated by the red frame in Fig. 2a. (c) Well-correlation panel showing the distribution of fluvial sandbodies in the Neogene Guantao Formation. 
Well ‘CW1’ was cored. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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devise a way on how best to handle these interferences for purposes of 
sandbody prediction, some forward seismic modelling was performed. 
To start, an idealized lithological model was created that incorporates 
sandstone bodies with rectangular and wedge geometries in cross- 
section, encased in mudstone (Fig. 4a). The tabular sandstone repre-
sents a unit thicker than 1/4 λ, with a constant thickness of 20 m, while 
the wedge-shaped (Colombera et al., 2014) sandstone (Colombera et al., 
2017) has thickness varying from 0 m to 30 m. A synthetic seismic model 
of this lithological configuration, obtained assuming 38-Hz Ricker 
wavelets, indicates that significant seismic responses associated with the 
sandbodies are observed outside of the sandstone volumes, within a 
distance that is up to 1/4 λ (a two-way travel time of 1/2 T) (Fig. 4b). 

The forward modelling is based on the concept of ‘wave front sweep 
velocity’ (Hilterman, 1975). In addition, the seismic response of the 
wedge-shaped unit outside of the sandstone volume is seen over a con-
stant vertical distance of 1/4 λ away from the sandstone top and bottom, 
regardless of the local thickness of the sandbody (Fig. 4b). As a result, 
reflections associated with the wedge-shaped unit determine interfer-
ence that will affect sandbody prediction in the upper (overlying) in-
terval. Similarly, the response of the rectangular unit will impact 
sandbody prediction in the lower (underlying) interval (Fig. 4b). 

For post-stack seismic data, the extent of seismic response of a 
reflection interface depends on wavelet waveform and length (Fig. 4b) 
(Armitage and Stright, 2010; Bakke et al., 2013). The wavelength of the 

Fig. 3. (a) Seismic section extracted from the 3D seismic dataset of the study area, with a normal polarity display. The zone between tops of layer 4 and layer 5 is the 
interval of interest. (b) Normalized spectrum of the seismic data of the Upper Guantao Formation in the study area, showing a bandwidth of 18–58 Hz and a dominant 
frequency of 38 Hz. 

Fig. 4. (a) Lithological model used for forward seismic modelling. Velocities of sandstone and mudstone are 2450 m/s and 2650 m/s, respectively; densities of 
mudstone and sandstone are 2.23 g/cm3 and 2.17 g/cm3, respectively. (b) Synthetic seismic-reflection model. This model was convolved using the Ricker wavelets 
with a dominant frequency of 38 Hz, shown in a normal polarity display. (c) Waveforms for four common, theoretical, seismic wavelets, and for a statistical wavelet 
extracted from the seismic data of the Chengdao oilfield. (d) Sketch defining the overlying and underlying interfering neighboring zones for a target interval, each 
having a window of 1/4 λ. 
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Ricker wavelet is about a time cycle (T), whereas for other common 
wavelets the wavelength might correspond to several cycles or even 
hundreds of milliseconds (Kallweit and Wood, 1982) (Fig. 4c). None-
theless, the first cycle shows stronger amplitude (energy) for most 
common wavelets (Fig. 4c). Seismic reflections (resulting from the first 
cycle) of a given geological unit will extend to the overlying and un-
derlying zones over domains with a uniform height of 1/4 λ (a two-way 
travel time of 1/2 T) each; these domains are defined as the ‘neighboring 
zones’ discussed in this paper (orange areas in Fig. 4d). 

As a consequence, seismic reflections in interfering neighboring 
zones may extend into a target interval. Hence, consideration of seismic 
responses of these neighboring zones (Fig. 4d) can help better under-
stand seismic responses in target intervals and can be used to mitigate 
the effect of these interferences. Since interfering neighboring zones 
take a uniform thickness of 1/4 λ along the top or bottom of a target 
interval (Fig. 4d), stratal slices with a window of 1/4 λ above (for the 
overlying neighboring zone) or below (for the underlying neighboring 
zone) that interval are appropriate for calculation of seismic attributes of 
the two neighboring zones. Therefore, for the overlying neighboring 
zone, an attribute slice was derived as the seismic attribute calculated 
along the top horizon of the target interval over a window of 1/4 λ above 
it; similarly, for the underlying neighboring zone, an attribute slice was 
derived as the seismic attribute calculated along the bottom horizon of 
the target interval over a window of 1/4 λ below it (Fig. 4d). 

4. Seismic-attribute selection using stepwise regression 

Firstly, 20 types of common surface attributes were extracted for the 
target interval, which were related to amplitude, frequency and phase. 
Secondly, correlation coefficients were calculated for relationships be-
tween these attributes in areas surrounding the wells (with diameter 
equal to 25 m) and values of sand thickness based on well-log in-
terpretations (Table 1). Thirdly, stepwise regression was performed 
between the sand thickness and the seismic attributes. During the pro-
cess of stepwise regression, seismic attributes were integrated in order of 
their correlation coefficients, from high to low. Lastly, the three types of 
attributes that contribute most to the result were selected, namely, 
maximum peak amplitude (MPA), total amplitude (TA), and average 
peak frequency (APF). Statistical analyses were performed using com-
mercial software. 

The stepwise regression returns the following equation: 

y= 0.374x1 + 0.352x2 − 0.159x3 (1)  

Where y is the normalized sand thickness, and x1, x2 and x3 are the 
normalized attributes MPA, TA and APF, respectively. The attributes 
MPA and TA positively correlate with sand thickness, while attribute 
APF shows a negative correlation with sand thickness (Table 1). Other 
attributes were excluded during the process of stepwise regression 
because they do not determine significant variation in the outcome 
relative to the three selected attributes (Table 2). Correlation analyses 
between seismic attributes indicate that the excluded attributes with 
correlation coefficients against sand thickness that are higher than that 
of APF (>0.5; Table 1) behave similarly to MPA or TA, as they show 
correlations with coefficients larger than 0.9 (Table 2). For this reason, 
consideration of these attributes does not result in significant variation 
in regression when MPA and TA are already considered. In part this 
reflects the fact that attributes MPA and TA are related to seismic 
amplitude, whereas attribute APF is related to seismic frequency. No 
seismic attributes related to seismic phase were selected because of their 
low correlation with sand thickness (Table 1), despite the utility of this 
type of attributes for imaging the margins of channel sandbodies (De 
Rooij and Tingdahl, 2002; Chopra and Marfurt, 2005; Li et al., 2019a). 

5. Fusion of surface attributes of target interval and interfering 
neighboring zones 

An integrated workflow is proposed that consists of five workflow 
elements, summarized in Fig. 5, and named A to D in temporal order of 
execution. Prior to the application of this workflow, wells have been tied 
to seismic data through synthetic seismograms and a selection of vertical 
seismic profiles. 

Workflow element A consists in the selection of suitable seismic at-
tributes, as detailed in section 4. In this step, seismic attributes of TA, 
MPA, and APF were selected from 20 common seismic attributes. 

Workflow element B is the calculation of seismic surface attributes 
and neighboring attribute slices (Fig. 5B). The selected surface attributes 
were calculated between the top and bottom horizons of the target in-
terval (‘layer 4’ in Fig. 2c). The upper and lower attribute stratal slices 
were calculated considering a window of 1/4 λ (equal to a two-way 
travel time of 1/2 T) parallel to the top and bottom horizons. For 
these stratal slices, the selected seismic attributes can be regarded as 
approximate surface attributes extracted along a horizon over a window 
of 1/4 λ (Fig. 5B). 

Workflow element C consists of supervised machine learning using a 
Support Vector Regression (SVR) algorithm (Fig. 5C). SVR is a common 
class of supervised learning algorithms, which was chosen to perform 
training between well data and seismic attributes for two main reasons, 
as follows: (i) the size of the training dataset is mainly limited by the 
number of wells (dozens to few hundreds), and SVR has been found to be 
an effective algorithm for training datasets that are limited in size 
(Chapell and Vapnik, 2000; Cortes and Vapnik, 1995; Vapnik et al., 
1997); (ii) the application of three common supervised machine 
learning algorithms, i.e., genetic-network, SVR and backpropagation 
(BP), was previously tested (Li et al., 2019a), indicating that SVR and 

Table 1 
Twenty seismic attributes and their Pearson’s correlation coefficient with sand 
thickness. R indicates the Pearson’s correlation coefficient. Attributes are ranked 
in order of decreasing strength in correlation. Correlations are considered sta-
tistically signification for P-values less than 0.01 (2-tailed).  

Names of 
seismic 
attributes 

R for 
attribute vs 
sand 
thickness 

P-value Names of 
seismic 
attributes 

R for 
attribute vs 
sand 
thickness 

P-value 

Max Peak 
Amplitude 
(MPA) 

0.628 <0.001 Sweetness 0.491 <0.001 

Total 
Amplitude 
(TA) 

0.626 <0.001 Average 
Instant 
Frequency 

− 0.475 <0.001 

Mean 
Amplitude 

0.618 <0.001 Total Energy 0.467 <0.001 

Average 
Peak 
Amplitude 

0.604 <0.001 Average 
Energy 

0.466 <0.001 

Root-Mean- 
Square 
Amplitude 

0.592 <0.001 Maximum 
Trough 
Amplitude 

0.463 <0.001 

Total 
Absolute 
Amplitude 

0.554 <0.001 Instant 
Frequency 
Slope 

0.444 <0.001 

Average 
Absolute 
Amplitude 

0.548 <0.001 Skew 
Amplitude 

0.438 <0.001 

Average 
Reflect 
Strength 

0.523 <0.001 Average 
Trough 
Amplitude 

0.372 <0.001 

Average 
Peak 
Frequency 
(APF) 

− 0.494 <0.001 Reflect 
Strength 
Slope 

− 0.304 <0.001 

Max 
Absolute 
Amplitude 

0.494 <0.001 Average 
Instant 
Phrase 

− 0.118 0.059  
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genetic-network both worked well, but SVR performed best. In this 
work, the radial basis function (RBF) is chosen as a kernel function (see 
Supporting material for chosen parameters). Values of sand thickness 
based on well logs and mean attribute values from domains centered on 
the wells and having a diameter of 25 m were input as training dataset, 
in which the sand thickness was the object of prediction (label). For 
training the machine learning algorithm, 70% of the well dataset was 
chosen randomly as input to the SVR. On this basis, a trained SVR model 
of seismic attributes and sand thickness was generated. The remaining 
30% of the well data were separated for purposes of validation (see 
below). 

Workflow element D is the last step, in which the multiple surface 
attributes and the neighboring attribute stratal slices were fused using 
the trained SVR model (Fig. 5D). The results of this step consist of the 

predicted sand thickness, which can be evaluated using the unused 30% 
of well data. This evaluation is based on the correlation coefficient be-
tween the values of sand thickness derived from the wireline logs and 
the corresponding sand thickness values predicted using the seismic 
attributes. 

6. Distribution of seismic attributes and predicted sand 
thickness 

6.1. Seismic attributes: characteristics, limitations and comparison with 
well logs 

As mentioned above, twenty types of common seismic attributes 
were calculated for the target interval. Correlation analyses between the 

Table 2 
Pearson’s correlation coefficient between different seismic attributes. All the seismic attributes were calculated between the top and bottom horizons of layer 4 shown 
in Fig. 2. Abbreviation: Ave – average, Abs – absolute, Amp – amplitude, Tot – Total, Str – strength, RMS – root mean square.   

Sand Thickness Ave Abs Amp Mean Amp RMS Amp Avg Peak Freq Avg Reflect Str Tot Amp Tot Abs Amp Max Abs Amp 

Sand Thickness 1.00         
Ave Abs Amp 0.55 1.00        
Mean Amp 0.62 0.76 1.00       
RMS Amp 0.59 0.91 0.90 1.00      
Avg Peak Freq − 0.49 − 0.58 − 0.57 − 0.50 1.00     
Avg Reflect Str 0.52 0.98 0.73 0.92 − 0.48 1.00    
Tot Amp 0.63 0.75 0.98 0.88 − 0.56 0.71 1.00   
Tot Abs Amp 0.55 0.99 0.77 0.92 − 0.58 0.99 0.75 1.00  
Max Abs Amp 0.49 0.95 0.69 0.90 − 0.43 0.99 0.67 0.97 1.00  

Fig. 5. Workflow diagram outlining the methodology for fusing seismic surface attributes and neighboring attribute slices. It consists of four workflow elements, 
labeled A to D (see text for details). 
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extracted seismic attributes and sand thickness indicate that MPA (Max 
Peak Amplitude) returned the highest Pearson’s correlation coefficient 
(Table 1); the attribute map for MPA in the interval of interest is shown 
in Fig. 6a. Attribute slices were also calculated along the top and bottom 
horizons within windows of 1/4 λ above and below them; stratal slices of 
MPA are shown for these in Fig. 6b and c. 

The areas showing higher attribute values in the target interval and 
in the neighboring zones delineate a wider elongated belt and several 
narrower ribbon-like features, and some of these high-value sectors 
appear to have the same location and shape across the three maps 
(Fig. 6). This similarity in the distribution of high-value areas suggests 
that the seismic attributes of the target interval likely suffer from 
interference from seismic reflections related to the overlying and un-
derlying neighboring zones. A comparison between the MPA attribute 
and well-log interpretations in the target interval indicates that the 
majority of wells intersecting channel sandbodies were located in areas 
with higher attribute values (cf. wells W1, W3, W4 and W6 in Fig. 2c). 

However, some of the wells that do not penetrate sandbodies, such as 
well W5 (see Fig. 2c), also show high values in MPA on the attribute map 
(see arrow in Fig. 6a). Well-log interpretation of W5 indicates that a 9.5- 
m channel sandbody lies below the target interval (in layer 5, Fig. 2c), in 
agreement with the fact that the area near W5 shows a high MPA value 
in the lower attribute slice (see arrow in Fig. 6c). Hence, the high values 
near W5 in the target intervals are thought to be due to seismic reflection 
of the underlying channel sandbody (channel sandbody intersected by 
W5 in layer 5, Fig. 2c). Where well control is lacking, however, it is not 
straightforward to determine whether high attribute values result from 
the target interval or from the neighboring zones, making it difficult to 
define sandbody boundaries solely on the basis of seismic attributes of 
the target interval. 

6.2. Sand-thickness prediction 

The MPA attributes in the target interval and neighboring stratal 

Fig. 6. (a) MPA attribute of the target interval. (b) Upper neighboring slice of MPA attribute, calculated along the top horizon of the target interval within a window 
of 1/4 λ above the horizon. (c) Lower neighboring slice of MPA attribute, calculated along the bottom horizon of the target interval within a window of 1/4 λ below 
the horizon. A well-to-well correlation panel through the labeled wells (CW1 to W6) is presented in Fig. 2c. 
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slices were combined and used to predict sand thickness using the SVR 
machine-learning algorithm, following the workflow shown in Fig. 5. 
Prediction results are shown in Fig. 7a. Generally, this approach based 
on MPA fusion returns a predicted distribution of sand thickness delin-
eating a principal larger channel sandbody and several narrower ones; 
the morphologies of these sandbodies are clearer than those imaged 
using seismic attributes alone (Figs. 6a and 7a). To use seismic data more 
fully, the three selected attributes (MPA, TA and APF) of the target in-
terval and neighboring zones were fused to obtain an alternative pre-
diction of sand thickness (Fig. 7b). Predictions based on MPA alone and 
based on fusion of the three selected attributes are similar in terms of 
overall trends, but with differences in local predicted values. 

7. Discussion 

7.1. Prediction improvements, method performance and advantages 

Qualitatively, a clearer map of the distribution of channel sandbodies 
is achieved by using the proposed method based on fused MPA attributes 
(Figs. 6a and 7a). A comparison of predictions against well data (well-to- 
well correlation panel in Fig. 2c, and Figs. 6 and 7) suggests that the 
proposed method can reduce interferences caused by sandbodies in 
neighboring zones. This is especially evident for the area around well 
W5, which shows a high value in MPA because of interference by the 
underlying zone (see section 6.1): the proposed method allows recog-
nizing the lack of channel sandbodies in the target interval around well 
W5. 

Quantitatively, values of predicted sand thickness using the proposed 
workflow yield much higher correlation with values of sand thickness as 
observed in the wells, in comparison with both the original seismic 
attribute alone and the predictions resulting from the application of the 
SVR algorithm without considering the neighboring zones (Table 3, 
Fig. 8a). Values of MPA attribute and sand thickness measured in well 
logs show positive correlation, with a Pearson’s correlation coefficient 
equal to 0.628 (Table 1, Fig. 8a). Fusion of the three selected seismic 
attributes using the SVR machine-learning algorithm slightly improved 
the predicted sand thickness, with a correlation coefficient of 0.717 
(Table 3). However, combining the MPA attribute of the target interval 
and of its neighboring zones remarkably improved the correlation 

between the predicted and actual sand thickness, with a correlation 
coefficient of 0.846 for the training wells and 0.828 for the validation 
wells (Table 3). In addition, the correlation coefficients for the training 
and validation data are similar, indicating that the trained SVR model is 
reasonable, and is not affected by overtraining (Table 3). Application of 
the same method with fusion of the three selected attributes in the target 
and neighboring zones further improved the accuracy of the predicted 
sand thickness, showing higher correlation coefficients of 0.852 
(Fig. 8b) for the training wells and 0.847 (Fig. 8c) for the validation 
wells (Table 3). 

To test the consistency of the proposed method, the workflow was 
performed ten times with the same parameters (see section 5) but using 
randomly chosen training wells (70 percent of all the wells, in total 183 
wells). The limited size of the training dataset (183 training points) 
makes it possible to train the SVR model in few seconds using a standard 
desktop computer. The process of combination of the two-dimensional 
seismic attributes by means of the trained model is also very rapid, 

Fig. 7. Predicted sand thickness by combining the seismic surface attributes and the neighboring attribute slices. (a) Prediction based on MPA attribute only. (b) 
Prediction based on fusion of three seismic attributes (MPA, TA and APF). A well cross-section through labeled wells (CW1 to W6) is presented in Fig. 2c. The arrow 
points out a region having high MPA values in correspondence with well W5 (cf. Fig. 6a). 

Table 3 
Predicted sand thickness and their Pearson’s correlation coefficients with the 
sand thickness based on well-log interpretations. R indicates the Pearson’s 
correlation coefficient; associated P-values report statistical significance of 
correlations. MPA, TA and APF are acronyms of maximum peak amplitude, total 
amplitude and average peak frequency, respectively.  

Predicted sand thickness with different 
methods 

R for predicted sand 
thickness vs actual sand 
thickness 

P-value 

Combination of MPA, TA and APF 
attributes in the target interval 

0.717 <0.001 

Combination of the MPA in the target 
interval and the neighboring zones 
(Training wells) 

0.846 <0.001 

Combination of the MPA in the target 
interval and the neighboring zones 
(Validated wells) 

0.828 <0.001 

Combination of MPA, TA and APF 
attributes in the target interval and the 
neighboring zones (Training wells) 

0.852 <0.001 

Combination of MPA, TA and APF 
attributes in the target interval and the 
neighboring zones (Validated wells) 

0.847 <0.001  
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and can usually be completed in less than 15 s, i.e. in a time that is the 
same order of magnitude as that required for calculation of a surface 
seismic attribute from the same seismic data (e.g., root mean square 
amplitude). The consistency of the method is demonstrated by predic-
tion results near all the wells (255 wells, including training and vali-
dation wells): the ten different outputs show similar distributions of 
predicted sand thickness (Fig. 9). 

In addition, for neighboring zones causing seismic interference, 
considering attribute slices for a window of 1/4 λ, instead of surface 
attributes, has two advantages. First, there is no need to interpret 
additional seismic horizons for the neighboring stratigraphic intervals, 
which reduces the workload and makes the application of the method 
feasible even where horizons in neighboring layers are not easily 
defined. Second, consideration of attribute slices for the neighboring 
zones improves accuracy, since considering surface attributes for strat-
igraphic intervals thicker than 1/4 λ leads to less accurate results. 

7.2. Limitations 

The combination of seismic surface attributes with neighboring 
attribute slices was obtained by supervised machine learning with an 
SVR algorithm; a necessary implication is that dozens of wells are 

necessary for providing a meaningful training dataset. A key factor is 
whether the selected wells are broadly representative of the geological 
features of interest, such as thickness of sandbodies and their spatial 
distribution in the target interval and neighboring zones. Considering 
the inherent variability of geological architectures of fluvial reservoirs, 
it is not possible to establish a specific number of wells that can be 
universally considered for the application of the proposed method. 
Nonetheless, for the example application presented herein, it has been 
possible to vary the number of wells used for training, through a process 
of random selection, to test the sensitivity of the outcome of the method 
to the number of wells employed (Table 4). These results provide a 
reference to other examples of fluvial reservoirs with comparable ar-
chitectures. The similar values of correlation coefficients between the 
training and validation datasets indicate that the impact of the number 
of wells on the results is limited when the training wells are more than 
75; employing 50 training wells also returns acceptable outcomes, as 
indicated by the high correlation shown in the validation dataset (0.816) 
(Table 4). For the smallest number of training wells considered (40 
wells; Table 4), the discrepancy in correlation between the training and 
the validation datasets is relatively large (0.879 vs 0.767), meaning that 
the outcome of the proposed method begins to be affected by the more 
limited size of the training dataset. This method is therefore suitable for 
reservoirs with extensive well control (such as 50 or more wells for 
complex fluvial successions, comparable to that considered in this 
research), and where wells are distributed over a wide area. 

0

500

1000

1500

2000

2500

0.0 5.0 10.0 15.0

0.0

3.0

6.0

9.0

12.0

0.0 3.0 6.0 9.0 12.0
0.0

3.0

6.0

9.0

12.0

15.0

0.0 5.0 10.0 15.0

N=255 (all wells) N=72 (validation wells)N=183 (training wells)

ba (c)

Sand thickness based on well logs (m) Sand thickness based on well logs (m) Sand thickness based on well logs (m)

M
PA

 a
ttr

ib
ut

e

Pr
ed

ic
te

d 
sa

nd
 th

ic
kn

es
s 

(m
)

Pr
ed

ic
te

d 
sa

nd
 th

ic
kn

es
s

R2 R4040= 2 R8270= 2 = 0.723

Fig. 8. Analyses of correlations. (a) Relationships between values of the MPA attribute and the sand thickness observed in well logs. (b–c) Relationships between 
values of sand thickness predicted by combining attributes of MPA, TA and APF and those based on well logs. (b) shows the relationship for training wells; (c) shows 
the relationship for validation wells. 

0

2

6

12

4

10

8

14

%57-
%52

M
in

.-
M

ax
.

Medium

Mean

1 732 4 8 0195 6
Run No.

P
re

di
ct

ed
 s

an
d 

th
ic

kn
es

s 
(m

)

Fig. 9. Comparison of box-plots showing the predicted thickness in the target 
interval (layer 4 in Fig. 2c) for ten alternative predictions. The ten results were 
produced by the proposed method; the parameter settings of the SVR algorithm 
were the same, but the set of randomly chosen wells used for training (70% of 
all wells in all cases) differed. 

Table 4 
Pearson’s correlation coefficients between the actual and predicted sand thick-
ness based on a variable number of randomly selected training wells. The pre-
dicted sand thicknesses were produced by the proposed method. R indicates the 
Pearson’s correlation coefficient; associated P-values report statistical signifi-
cance of correlations.  

Number of 
training wells 

Training dataset Validation dataset 

R for predicted vs 
actual sand 
thickness 

P-value R for predicted vs 
actual sand 
thickness 

P-value 

178 wells 
(70% of all 
wells) 

0.852 <0.001 0.843 <0.001 

150 wells 0.848 <0.001 0.846 <0.001 
100 wells 0.850 <0.001 0.842 <0.001 
75 wells 0.862 <0.001 0.841 <0.001 
50 wells 0.867 <0.001 0.816 <0.001 
40 wells 0.882 <0.001 0.767 <0.001  
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8. Conclusions 

For a stratigraphic interval of interest in a fluvial succession, seismic 
responses may be strongly interfered by responses produced by verti-
cally neighboring zones. Commonly, interference by overlying and 
underlyingstratigraphic intervals is important within a window of 1/4 λ. 
In order to mitigate the effects of seismic interference from these 
neighboring zones, a method has been proposed to combine seismic 
attributes of a target reservoir interval and of its stratigraphically 
overlying and underlying zones using supervised machine learning with 
an SVR algorithm. This method builds upon an existing approach to 
produce quantitative predictions of sand thickness in the target interval 
using seismic data from both the interval itself and its neighboring 
zones. Seismic attributes for the overlying zone are derived by produc-
ing stratal slices along the top horizon of the target interval assuming a 
window of 1/4 λ above its top. Similarly, seismic attributes for the un-
derlying zone are calculated by producing stratal slices along the bottom 
horizon with a window of 1/4 λ below its bottom. 

Application of the method to a dataset consisting of 255 wells and a 
3D seismic dataset proved that the combination of seismic attributes 
from the target layer and its neighboring zones can significantly improve 
the prediction of sand thickness, relative to equivalent predictions based 
solely on seismic attributes or on application of the SVR algorithm to the 
target interval alone. These improvements in prediction have been 
quantified by correlation coefficients between values of sand thickness 
predicted using the technique and sand-thickness measurements oper-
ated on well logs. This work demonstrates how this method enables the 
detailed mapping of the planform extent and geometry of multiple 
channel sandbodies. 
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