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Autonomous Tissue Retraction in Robotic Assisted

Minimally Invasive Surgery – A Feasibility Study

Aleks Attanasio,1 Bruno Scaglioni1, Matteo Leonetti2, Alejandro F. Frangi2,

William Cross3, Chandra Shekhar Biyani3, Pietro Valdastri1

Abstract—In this work, we describe a novel framework for
planning and executing semi-autonomous tissue retraction in
minimally invasive robotic surgery. The approach is aimed at
removing tissue flaps or connective tissue from the surgical
area autonomously, thus exposing the underlying anatomical
structures. First, a deep neural network is used to analyse the
endoscopic image and detect candidate tissue flaps obstructing
the surgical field. A procedural algorithm for planning and
executing the retraction gesture is then developed from extended
discussions with clinicians. Experimental validation, carried out
on a DaVinci Research Kit, shows an average 25% increase
of the visible background after retraction. Another significant
contribution of this paper is a dataset containing 1,080 labelled
surgical stereo images and the associated depth maps, represent-
ing tissue flaps in different scenarios. The work described in this
paper is a fundamental step towards the autonomous execution
of tissue retraction, and the first example of simultaneous use of
deep learning and procedural algorithms. The same framework
could be applied to a wide range of autonomous tasks, such as
debridement and placement of laparoscopic clips.

Index Terms—Medical Robots and Systems; Surgical Robotics:
Laparoscopy; Computer Vision for Medical Robotics

I. INTRODUCTION

M INIMALLY Invasive Surgery (MIS) presents several

benefits for patients compared to open surgery, such as

reduced trauma to the anatomical structures, shorter recovery

time, and reduced blood loss [1]. A significant portion of

each MIS procedure is devoted to Tissue Retraction (TR),

which is conducted to access the area of interest (e.g. tumour)

[2]. Exposing the surgical area is therefore a crucial task in

MIS, as surgeons rely mainly on visual information, given

that tactile feedback is absent or extremely limited. This is
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Fig. 1. DVRK setup composed of a PSM and a stereo endoscope. A phantom
and a printed laparoscopic background have been used to validate the semi-
retraction approach.

especially problematic in urology, where access to the bladder

and prostate is obstructed by bowels and connective tissue [2].

In this clinical practice, robotic MIS is nowadays a common

approach, with platforms such as the DaVinci Surgical System

(DVSS) from Intuitive Surgical widely used worldwide. The

DVSS is a master-slave teleoperated system, i.e. the move-

ments of the surgeon on two Master Tool Manipulators (MTM)

are replicated on the tip of laparoscopic instruments by means

of three Patient Side Manipulators (PSM). During a typical

robotic MIS procedure, the surgeon temporarily assigns one

of the MTMs to the third PSM to perform tissue retraction, or

requires the support of an assistant to carry out the task with

an additional manual instrument. Retraction often involves

manipulation of connective tissues or organs (e.g., liver or

bowel). Switching robotic arms, or instructing an assistant

on the desired retraction motion, significantly increases the

surgeon’s cognitive load [3] and raises severe risks with

potentially catastrophic consequences [4]. TR can also be

challenging in the context of manual laparoscopy, where the

lack of coordination between surgeon and assistant can lead

to hazardous situations, such as instruments collisions, tissue

damage or unintentional tearing [5]. To tackle these issues,

this paper presents a semi-autonomous system for TR that

can be applied to surgical procedures using a robot-controlled

instrument (i.e., full robotic MIS or hybrid manual-robotic

procedures).

Our approach focuses on detecting tissue flaps obstructing
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the surgical field by using U-Net [6], a particular convolutional

neural network structure, widely adopted in the segmentation

of medical images. The network (henceforth: U-Net), fed

with the endoscopic video stream, is trained via a dataset

of surgical images recorded during procedures performed on

Thiel-embalmed cadavers (i.e. an embalming technique that

preserves the softness of human tissues [7]), and subsequently

labelled manually. An algorithm is developed to identify the

retraction grasping point and direction based on the size and

shape of the detected flaps. This enables the TR to be planned

and then planned and performed autonomously.

This methodology was validated on a DaVinci Research Kit

(DVRK) [8] and experiments were performed on a benchtop

platform. However, the proposed approach could be applied to

any other surgical MIS platform fitted with stereo vision and

at least one instrument manipulated by a robot [9].

Research in surgical robotics has recently focused on in-

creasing the level of robots’ autonomy, with examples of

automating tasks such as suturing [10], and resection [11].

The research on task autonomy aims at relieving the surgeon

of manual and repetitive tasks in a collaborative framework,

rather than substituting the human action completely [12],

[13]. Research in autonomous suturing and related sub-tasks,

discussed in [14], [15] has been greatly facilitated by the avail-

ability of datasets dedicated to the analysis and automation

of surgical gestures (JIGSAWS [16]). The use of automation

for 3D tissue debridement of soft tissues presented in [17] is

particularly interesting. In order to provide an accurate 3D

mapping from the surgical scene, the method proposed in

on stereoscopic imaging is proposed in [18] is capable of

identifying the tool by means of marker and the tissue by the

3D reconstruction of the stereo pairs. The literature on TR is

limited, despite this task being repeatedly performed during all

typical procedures. In [19] a simulation framework to perform

a grasp-and-retract task is presented along with a path planning

method for retraction in the presence of an obstacle is reported.

More recently, advanced approaches have been proposed in

[20], where retraction is controlled by an image-based system,

and in [21], [22], where three different approaches based on

proportional control, hidden Markov models and fuzzy logic

are developed. In these works, the start and end points of

the retraction are manually indicated by the surgeon thus

entailing no autonomous planning. Concerning the use of deep

learning algorithms in the context of surgical data, the U-

Net neural network has been developed for segmentation of

biomedical images [6], and subsequently widely adopted in

various surgical scenarios such as brain tumour detection [23],

liver tumour tracking [24], and surgical tool detection [25]. In

[26], segmentation is performed on MRI images, aiming at

localising tumours by means of 3D reconstruction. However,

U-net has not yet been applied to the detection of tissue flaps

for the automation of retraction.

The main contribution of this work is a framework for semi-

autonomous tissue retraction, including endoscopic image

analysis and gesture planning. This contribution advances the

field of robotic-assisted MIS, laying the foundations for future

developments in the field of autonomous surgical assistance.

Compared to other works in soft tissue retraction, such as

Fig. 2. Tissue retraction pipeline: a U-Net is trained using manually labelled
disparity maps evaluated from stereo images of a cadaveric lobectomy.
Subsequently, 2D features such as grasping point, background and tissue
centroids are identified on the tissue mask output by the network. Finally,
the features are projected in the 3D space by means of epipolar geometry,
allowing the DVRK controller to plan and perform the retraction.

[20] and [21], we increase the level of autonomy by providing

autonomous tissue segmentation and gesture planning abilities

directly on the endoscopic video sequence. Our system is

capable of automatically extracting start and end points for

tissue retraction, thus reducing the input required from the

surgeon in defining task specifications. Other works, such as

[27], adopt a similar workflow but focus on a different task (i.e.

debridement) and therefore develop algorithms specifically

dedicated to debris detection. Another major contribution of

the present work is the introduction of FlapNet, a dataset

of labelled surgical images dedicated to retraction, available

at https://github.com/Stormlabuk/FlapNet. The dataset offers a

valuable resource for research in the field of anatomy naviga-

tion. The approach described here leverages both deep learning

techniques, well-suited to image analysis, and procedural algo-

rithms, which offer the advantage of predictable behaviour and

repeatability. The same approach can be adopted to perform

other semi-autonomous tasks such as ablation, placement of

laparoscopic clips, and debridement.

II. MATERIALS AND METHODS

In Figure 2, a schematic diagram of the proposed method

is represented. The approach is composed of three main ele-

ments: Tissue flaps detection (Fig. 2-a), extraction of relevant

features (Fig. 2-b), and gesture planning and execution (Fig.

2-c). The output of each stage corresponds to the input of the

following stage. In this work, a “detect-plan-execute” approach

is adopted to allow the surgeon to maintain control over the

execution of the gestures. The system is designed to plan the

retraction and subsequently show the surgeon the grasping

point, the retraction direction and the final position of the

tool. The surgeon can acknowledge the execution by means of

a pedal or voice control. The retraction gesture is performed

for as long as the surgeon maintains pressure on the pedal. To

avoid loss of visual control on the instrument, the camera field

of view is mapped on the workspace, and motion of the tool is

limited within the image’s boundaries, whereby the boundaries

correspond to the full-size image cropped by 5%.
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Fig. 3. Detailed structure architecture of the U-Net model used for tissue
segmentation.

A. Tissue Flap Detection

The initial stage of the retraction process is the detection

of the tissue flap to be retracted. This feature is provided by

a U-Net developed in the Tensorflow [28] framework. The

network is characterised by 5 encoder and decoder blocks.

Each encoder, composed of 2 convolutional layers with batch

normalisation and a Rectified Linear Unit (ReLU) acting as

activation function, outputs into a max pooling layer with pool

size 2. The decoder is composed of 3 convolutional layers

with batch normalisation and ReLU activation function and

the feature map is expanded by a factor of 2. The output is

a convolutional layer with sigmoid activation function and 1

neuron. In order to avoid overfitting, dropout is applied to the

3 encoders and decoders closer to the centre of the network.

Starting from the first encoder, which includes 32 units, the

following encoders are characterised by an increasing number

of neurons (i.e. double at every step), to reach a maximum of

1,024 at the centre of the network. Conversely, the number of

units per encoder is decreased by a factor of 2 moving from the

centre to the output layer. In order to enhance robustness with

respect to different anatomical structures and colours, RGB

depth maps (DM) are adopted as input for the neural network.

DMs are images [29] in which the intensity of every pixel is

associated to a defined distance from the camera lens. In this

work, DMs are created base on the disparity between left and

right images produced by the DVSS stereo camera. For this

reason, they are robust to changes in lighting conditions and

tissue reflections. Moreover, DMs are colour-blind, thus not

varying based on the colour of different organs and tissues.

As the goal of the U-Net is to detect the candidate flaps for

retraction, a grayscale mask of the same size of the input DM

is chosen as output, where the value of each pixel, from 0 to

1, describes the likelihood of a tissue flap appearing in that

pixel. An example is shown in Figure 4.

B. Dataset Collection

In order to create a training dataset for the U-Net, video

streams of surgical procedures (lobectomy) performed on a

single Thiel-embalmed cadaver by experienced surgeons using

a DaVinci Xi have been collected. Starting from stereo image

pairs (i.e., left and right cameras), DMs are generated by

Fig. 4. Example of tool, tissue and background labelling. The coloured DM
is manually labelled to highlight the areas containing either a tool (gray) or a
candidate tissue flap (white). Note that when the tool touches any anatomical
structure, it disappears from the depth map and merges with the background.

means of the stereo_img_proc ROS package, which is

based on a modified version of the Semi-Global Matching al-

gorithm [30], available in OpenCV [31]. Under the assumption

of consecutive images being very similar, as the movement of

the camera is slow and discontinuous, a three-steps approach

is adopted to maximise the variability between images before

manual labelling.

• The 356 minutes long video file of the procedure is

reduced manually to 62 minutes by selecting the most

relevant parts of the procedure where one or more retrac-

tion is performed.

• One pair of images is sampled every second, resulting in

a set of 3,720 pairs.

• The structural similarity index [32] is evaluated and stereo

pairs with a similarity higher than 70% are discarded, thus

leading to a dataset containing 368 pairs.

Cameras, with baseline b = 5 mm and focal length fc = 863
px, are calibrated by the camera_calibration ROS pack-

age which uses the OpenCV calibration function, based on

[33]. Subsequently, DMs are created for every pair of RGB

images using the stereo_img_proc package in which

rectification is addressed as detailed in [34]. To validate the

calibration process, nine calibrations are evaluated and the re-

projection error of 0.44±0.06 px is estimated in the projection

of the checkerboard points on the image plane. Subsequently,

a checkerboard is used to detect four different points showing

an error of 7.8± 4.4 mm in the 3D estimation.

DMs are manually labelled by means of the MATLAB

2017b Ground Truth Labeler. For a human user, DMs can be

difficult to read and understand; therefore, during the labelling

process, the user is shown both left and right images in

addition to the DM. In every image, two separate labels are

created: one representing the tissue flap to be retracted and

one representing the DVSS instruments, visible in the scene.

Figure 4 shows a sample of endoscopic image (on the left),

a DM (in the centre) and a label (on the right). While the

purpose of the flap label is to generate the training dataset for

the U-Net network, the tool labels are only used to augment

the dataset, as described in the following section. The tools’

labels are not included in the U-net training set.

C. Dataset Augmentation

The presence of tools in laparoscopic images can obstruct

the view and detection of tissue flaps. Moreover, tools intro-

duce a significant disturbance in DMs. In order to enhance

the robustness of the U-Net against disturbances generated
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by tools in the DM, such disturbances must be represented

sufficiently in the dataset. An augmentation technique is

Fig. 5. Augmentation algorithm pipeline. The tool depth map is extracted
from the scene (on the left) and superimposed on a depth map where no tools
are present or visible (centre). The result is a new image (on the right) which
is added to the dataset.

adopted to improve the network performances. Initially, ar-

tificial DMs are generated by extracting the DMs of tools

from previously labelled images. Subsequently, portions of the

DMs corresponding to the tools are overlapped on images in

which no tools were originally present, as shown in Figure 5.

With this technique, the dataset initially containing 368 images

is increased to 1,080 images. In addition to this technique,

random rotation, flipping and zooming are also applied to the

dataset using the Keras library [35], thus obtaining a final

dataset of 2,160 images.

D. Model Training

The resolution required to identify flaps is lower than the

original RGB images produced by the endoscope. Moreover,

high resolution images would unnecessarily increase the time

required to train the U-Net. Consequently, size of input and

target images are reduced from 506x466 (DM valid window)

to 64x64, thus allowing for faster training. The network is

trained for 200 epochs with a learning rate of 0.001 and a

batch size of 30 images. The Dice loss function [36] is adopted

to compute accuracy and the Adam optimiser [37] is used to

update the neurons’ weights at every epoch.

The augmented dataset is split into a training set (90%)

and a test set (10%). In order to assess the robustness of the

U-Net against data variability, a training approach based on

K-fold [38] cross-validation is adopted. The training process

is repeated K = 10 times using different subsets of the dataset

as training and validation sets.

In Figure 6, the performance of the network over the entire

training process is shown for the worst (K=1), average (K=2)

and best (K=3) performing model. The network accuracy,

defined as the pixel-wise difference between the ground truth

and the network prediction, is 80.9%±1.3% over the K repe-

titions during the validation phase. The model performance is

computed by means of the precision P, defined as P = TP
TP+FP

Fig. 6. Accuracy during testing of the K=10 models considered for K-Fold
cross-validation. To simplify the data visualisation, only the worst (K=1), the
average (K=2) and the best (K=3) cases are shown.

where TP and FP are the true and false positives over the

test set respectively. At the end of the training phase, an

experimental value of P = 72.6% ± 1.9% is obtained. The

network is fed with 64x64 colour depth maps and it outputs

64x64 grayscale masks, with an inference time lower than 42

ms (24 FPS), as measured during the experimental validation

phase. The pixel values in the output masks represent the

confidence (between 0 and 1) used by the network to identify

either the background (0) or the tissue (1). Among the possible

detection errors that can affect the U-Net, false positives

present the highest risk. In order to reduce the number of

false positives, pixels with a confidence value below 80% are

classified as background by setting their value to 0 in the tissue

mask. The output mask is thus binarised, reducing the noise

in the prediction.

E. Gesture execution and planning

After a candidate flap of tissue is identified, the retraction

must be planned and subsequently executed. In order to

reproduce the gesture, interviews on the standard best practice

were conducted with ten experienced clinicians (4 urologists,

3 colorectal surgeons, 2 thoracic surgeons, 1 Ear, Nose and

Throat (ENT) surgeon). All clinicians had performed more

than 100 robotic surgeries.

From the interviews, the following guidelines emerged:

• The tissue is not grasped; rather,it is mobilised by using

the rounded side of the instrument in order to minimise

the risk of tissues damage and bleeding.

• The area of interest is the centre of the endoscopic image;

therefore, retraction aims to clear the central area from

obstructing tissue.

• Instruments approach the surgical area following the

direction of the endoscopic view, so to avoid unintentional

contact with tissues.

• A suitable point where the instruments approach the tis-

sue is the most central part of the flap, and the retraction

is usually performed within the visible area by moving

the tissue towards the border of the image.

These guidelines are formalised in the pseudocode reported

in Algorithm 1. Based on the labels generated by the U-Net, a
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Algorithm 1 Retraction planning and execution

1: if tissue not detected then return

2: else

3: (CT,CB, tissueBorder) = readFromImage();
4: (sl, inter) = computeLine(CT,CB);
5: GP = intersection(tissueBorder, sl, inter);
6: GP = get3DProjection(GP )
7: (X,Y ) = findIntermediatePoint(GP,CB, 25%)
8: Z = getQuote(CT ) ∗ 1.1
9: moveTo(X,Y, Z)

10: align(Z)
11: OpenGripper()
12: Z = getQuote(CB)
13: moveTo(X,Y, Z)
14: while toolV isible() ∨ commandPressed() do

15: moveAlong(slope)

Fig. 7. Representation of the endoscope frame: the X-Y plane of the camera
is parallel to the image frame, while the Z axis represent the distance from
the origin of the camera frame.

set of geometric features is defined (readFromImage()). Subse-

quently, the retraction trajectory is generated (computeLine(),

findIntermedatePoint(). The cartesian coordinates, shown in

Figure 7, are assumed to be in the camera frame - X and

Y correspond to the width and height of the image, while the

Z coordinate is the depth of the scene based on the direction

of the endoscopic view. On the X-Y plane, the centroid of

the background (CB, red) and the centroid of the tissue flap

(CT, blue) are computed on the b/w image generated by the

U-Net, as shown in Figure 8. The grasping point (GP, green)

is computed as the intersection between the line connecting

the centroids and the border of the tissue (instersection()).

The 3D position of the aforementioned points is computed

by projecting their 2D values on the depth map by applying

Z = fc·b
d

, where Z is the distance from the camera frame, d is

the disparity value of the point, while fc and b are the camera

focal length and baseline respectively (get3DProjection()).

Initially, the tool is positioned as follows:

• On the X-Y plane, the tool is positioned in an intermedi-

ate position between GP and CB, namely at 25% of the

distance in the direction of the GP.

• On Z, the tool pose is set to a z-coordinate evaluated

as 0.9 times the distance between zCT and the camera

Fig. 8. Feature extracted from the output mask of the U-Net. The tissue (CT)
and background point (CB) are estimated as centroids of the areas representing
the two classes: tissue flap (white) and background (black). The intersection
between the line connecting CT to CB and the edges of the tissue defines the
grasping point (GP).

Fig. 9. Examples of initial conditions in the three retraction cases: from the
left (a), right (b) and bottom (c). The region of interest (ROI) are highlighted
in green.

frame origin, in such a way that it avoids contact with

the tissue.

• The tool is aligned along Z.

Subsequently, the tool is moved along Z to the depth of

the background and, then, along the direction defined by the

line connecting CT to CB. The gesture terminates whether

the surgeon releases the pedal or if the tool approaches the

boundaries of the image.

III. EXPERIMENTAL VALIDATION

A. Experimental Platform

In order to test the approach described above, an exper-

imental platform is used, consisting of the simplified setup

shown in Figure 1. A silicone phantom representing a colon

is extracted from a training platform for colonoscopy (Kyoto

Kagaku M40). A section of the phantom is superimposed on a

background image representing the surgical scene, simulating

the presence of a tissue flap (i.e. the large bowel) obstructing

the surgical view. The network is fed with DMs. Hence, the

difference between the surgical images of the training set

and the experimental scene has a minimal impact in terms

of tissue detection. The platform is placed into a plastic box

(36 × 26.5 × 11 cm) to simulate the restricted area available

in the abdominal cavity.

Three different scenarios where the bowel segment is placed

on the left (Figure 9a), right (Figure 9b) and bottom (Figure

9c) of the scene are investigated to validate the robustness of

the flaps detection system as well as the trajectory computa-

tion. Every test is repeated 5 times.

The goal of the retraction is to remove tissues obstructing

the scene of interest. Hence, a quantitative approach to assess

the quality of retraction consists of measuring the area of

background image visible after the action is executed. In
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order to validate the proposed approach, a green checkerboard

is superimposed on an endoscopic image of the abdominal

cavity, as represented in Fig. 9. The number of visible green

background pixels before and after the retraction is evaluated

by adopting a Hue Saturation Value (HSV) filter, used as a

metric to assess the quality of the procedure. The test is then

repeated for a sixth time with the background image without

the green checkerboard (i.e. Fig. 9a) to verify that results are

comparable. The number of visible pixels is then compared to

the number of pixels of an image where no tissue occludes

the scene. The same tests are repeated with a background

image representing a laparoscopic view, to demonstrate that

the algorithm relying on depth maps is affected neither by the

presence of the checkerboard, nor by the background.

Fig. 10. Different backgrounds used during the tests. The original endoscopic
image of abdominal organs (a) and a version with a superimposed green
checkerboard (b), used to quantify the amount of background visible before
and after the retraction.

The hardware setup is composed of a single PSM and

a stereo endoscope, as shown in Figure 1. Regarding the

computing nodes, a Robot Operating System (ROS)-based

network of two computers is used.

The DVRK low level controller, including joint control

loops, is installed on a Linux PC (Control PC in Fig. 11)

with a ROS interface. This machine is equipped with an

Intel Core i5-6400 (2.70 GHz) CPU, HD Graphics 530 and

16GB DD4 (2666 MHz). The computation of the disparity

map, the tissue detection U-Net, the feature extraction and the

gesture controller are deployed on independent ROS nodes

running on a separate machine (Graphics PC in Fig. 11),

to prevent instability of the computer running the real-time

DVRK controller. The calculator is equipped with an Intel

Xeon Gold 6140 (2.30 GHz) CPU, an Nvidia Quadro P1000

GPU, and 128 GB DDR4 2666 MHz RAM. The Da Vinci

endoscope used during the tests, calibrated via the procedure

detailed in Section II-B, is different from the Da Vinci Xi

endoscope used for data collection. The U-Net model used

in the detection phase was previously trained on a separate

hardware, using the TensorFlow framework.

The surgeon’s attention is usually focused on the centre of

the surgical scene. For this reason, a region of interest (ROI)

is defined as a rectangle placed at the image centre with width

and height of half the entire frame. The percentage of visible

background is computed for the entire area and for the central

ROI.

B. Experimental Results

Numerical results are summarised in Figure 12. Before

the retraction, the visible area is 47.7% ± 4.9%, increasing

Graphics PC (Linux)

Gesture 

Planning

U-Net

Feature
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Graphics PC (Linux)Control PC (Linux)
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Fig. 11. Experimental setup: DMs are evaluated from endoscopic stereo
images and input to the U-Net which estimates the candidate flaps for
retraction. Subsequently, features are extracted from the network outputs in
order to plan the retraction gesture. Through a DVRK controller installed on
a second machine the control is applied to the PSM which performs retraction
on the phantom.

Fig. 12. Field of view enhancement on the entire endoscopic scene expressed
in percentage of visible background before and after retraction, accounting
for the entire background and the ROI. The performance is calculated as the
means over 5 repetition of the three different retraction cases.

to 83.4% ± 3.3% after the action takes place. On the other

hand, the right retraction presents slightly lower performance,

increasing from 54.2%±3.4% to 79.6%±3.3%. This different

performance can be explained considering that the PSM is po-

sitioned on the left side of the surgical scene, thus performing

opposite movements in the two different scenarios. This result

suggests that, despite the great dexterity of the DVSS arms, the

placement of the PSM with respect to the scene may influence

the effectiveness of the retraction.

The worst performance is displayed by the bottom re-

traction, going from 41.1% ± 3.0% to 55% ± 2.8%. This

performance decrease is due to the positioning of the arm,

which, similarly to the right retraction case, is subject to

a constrained motion. Moreover, the orientation of the arm

does not allow the instrument shaft to mobilise the tissue,

thus reducing the portion of tool capable of exerting force to

the tool tip. The results show that this approach can lead to

significant and replicable results. Since the proposed method
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is new, our results are not comparable with other studies.

The trajectories executed by the DaVinci instrument in the

left and right retractions are reported in Figure 13. The solid

blue and dashed red lines represent the experiments with and

without the checkerboard used as background (Figure 10b

and 10a), respectively. The start and end points are shown in

green and cyan respectively. The red and blue trajectories are

very similar, confirming that background does not significantly

affect the task execution. In the trajectories, the different

stages of the gesture execution are clearly visible.Although

the retraction is planned and executed in separate steps, the

last sections of all the trajectories (towards the cyan dot) are

very similar and grouped in space, demonstrating that the

approach is stable against disturbances and small variations

between repetitions. All reported experiments were terminated

when the tool reached the edge of the image. Moreover, the

different start points (green dots) influence the initial part

of the trajectory, before the contact between the tool and

tissue takes place. It should be noted that the accuracy of the

trajectory execution is completely dependent on the low-level

control of the DVRK and is therefore beyond the scope of this

work.

IV. CONCLUSIONS

A novel framework for the semi-autonomous planning and

execution of tissue retraction is proposed. The combined

adoption of deep neural network techniques for image analysis

and procedural algorithms for gesture planning is shown as a

feasible approach for the execution of autonomous tasks in

robotic MIS. Planning and execution of the surgical gesture in

the proposed approach can lead to satisfactory and replicable

results. The dependability and accuracy of the robot motions

offered by this approach can positively impact efficiency,

safety and overall user acceptance. Experimental results show

an average increase in the visible area of 25% on the whole

image and of 42.9% on the ROI. In order to conduct the flap

detection stage using a deep learning algorithm, a novel dataset

of labelled endoscopic images is developed and released to the

community.

To ease the requirement for extensive manual labelling,

future developments will concern the adoption of weak la-

belling [39], unsupervised learning [40] or generative adver-

sarial networks [41] for image segmentation. Improvements in

tissue detection may also include procedure-specific detection

of organs and the extension of our dataset to images not

containing any candidate tissue for retraction. With minor

modifications, this will allow to identify when retractable

tissue is present in the scene. Detection of large bowel in

prostatectomy and liver in cholecystectomy may be beneficial

to adjust the parameters of the retraction. Advancements to the

procedural algorithm for gesture planning and execution will

involve validation on ex-vivo cadaveric models performed by

expert surgeons. In addition, further developments to provide

a smoother interaction will involve real-time update for the

gesture trajectory. The system has been designed in such a way

that a clinical DVSS, including the left and right MTMs and

two PSMs, can be controlled independently by the surgeon,

Start

End

Start

Start

End

End

Fig. 13. Tool trajectories during the left (a) right (b) and bottom (c) tissue
retraction. The tool starts retracting the phantom tissue from a random position
(green). The retraction ends when the tool reaches the edges of the field of
view (cyan). Trajectories obtained using the checkerboard background (Fig.
10b) are plotted in blue, while the control experiments performed with the
endoscopic background (Fig. 10a) are plotted with a dashed red line.

while the third PSM can be connected to the DVRK control

system. As a result, the system can be integrated into a cadaver

test for further validation. The system could be combined with

a manual laparoscopic procedure or other robotic platforms,

where a robotic arm could be used to perform the gesture

while the surgeon is operating with conventional instruments.

The main focus of this work is the removal of obstructing

tissues in a static scene, which is a simplifying assumption

in a realistic scenario. Consequently, future developments

should address maintaining the visibility of the surgical area

in a dynamic scene and achieving a more accurate depth

estimation, possibly by integrating additional sensors and pre-

operative analysis. In particular, the on-line evaluation of the

visible area is a promising development and will provide
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an additional step towards its adoption in realistic scenarios.

Although the approach described here is developed to reduce

interaction with the surgeon, the user interface ergonomics

should be considered in the future. A simple yet effective

method for displaying the flap and retraction direction is

especially required, in conjunction with a robust method for

receiving the surgeon’s acknowledgement.
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