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Abstract 

Transitive preference, i.e., if you prefer apples to bananas and bananas to cherries, you also 

prefer apples to cherries, is a basic property of some influential rational choice models. Contrary 

to this, Tversky, in his seminal 1969 article, presented evidence of intransitive preferences in two 

contexts, one of which involved choices between simple monetary lotteries. Whilst early 

replications corroborated his findings, more recent research cast doubt on the strength of 

evidence of intransitive preferences in this task. Here, from Tversky’s extended additive 

difference model we develop a simplified additive difference (SAD) model which corresponds to 

alternative dimensional processing strategies. This predicts transitive or intransitive preferences, 

depending on its parameter values. We review six replications of Tversky’s lottery task and fit 

variants of the model to the choice data. We estimate the SAD model’s parameters for each 

individual data set using maximum likelihood estimation, examine the goodness of fit of the 

model and use likelihood ratio tests to evaluate specific variants. The model has a very good fit 

to most individual choice data sets reviewed, with many predictably violating weak stochastic 

transitivity. We also find that many transitive patterns correspond to the application of simple, 

one-dimensional ‘take the best’ heuristics. The findings support the view that human decision 

making is often based on dimensional processing in such a way that evaluations of decision 

alternatives are relative to the set under consideration, resulting in intransitivity of preferences. 

 

Keywords:  Risky choice; intransitivity; transitivity; dimensional processing; additive difference 

model 
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Intransitivity and Transitivity of Preferences: Dimensional Processing in Decision Making 

Suppose someone prefers apples to bananas and bananas to cherries. Their preferences 

will be transitive if they also prefer apples to cherries, but intransitive if they prefer cherries to 

apples. δet us represent the strict preference relation “is preferred to” by the symbol ظ and the 

above alternatives by their first letter. With this notation, a transitive cycle of preferences is one 

in which a ظ b and b ظ c implies a ظ c, while the intransitive cycle concludes with the opposite, 

i.e., a ظ b and b ظ c but c ظ a. In order to include indifference, such as liking apples and bananas 

equally, preferences are more usually described in terms of the relation “is preferred or 

indifferent to”, denoted by a غ b. Transitivity is thus formally defined algebraically as follows. 

(1) For all a, b, c in a set of alternatives, a غ b and b غ c implies a غ c. 

 Testing the transitivity of preferences is important, not least because it is a necessary 

condition for the validity of utility theory as a description of human preference, even at an 

ordinal level (Edwards, 1954; von Neumann & Morgenstern, 1947). However, there are some 

basic aspects of preference that make its empirical testing a tricky problem; notably, preferences 

change over time or with context. Furthermore, even within a short time frame and in a fixed 

context, preferential choices can be inconsistent. That is, even if someone has a broad preference 

for apples over bananas, he or she will sometimes choose a banana over an apple. This kind of 

variability is conventionally accommodated by characterizing choice as probabilistic (or 

stochastic), with the probability of choosing a over b denoted by p(a,b). 

 In his landmark investigation, Intransitivity of Preferences, Tversky (1969) minimized 

the potential for changes in preference by investigating people’s choices within a relatively short 

time frame in experiments that, as far as possible, controlled the context. In addition, he 

accommodated inconsistency by substituting the algebraic relation, a غ b, with the probabilistic 
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relation, p(a,b) ≥ .5. He then investigated the following property, known as weak stochastic 

transitivity (WST). 

(2) For all a, b, c from a set of alternatives,  

   p(a,b) ≥ .5 and p(b,c) ≥ .5 implies p(a,c) ≥ .5.  

Regenwetter, Dana and Davis-Stober (2010, p. 6) explain that WST is equivalent to the weak 

utility model (Block and Marschak, 1960; Luce and Suppes, 1965), whereby choice probability is 

related to a utility function, U, as follows: 

   U(a) ≥ U(b)  ļ  p(a,b) ≥ .5  ļ  a غ b.  

Testing WST seems to be a most elegant formulation of the research question of whether 

decision makers’ preferences are transitive or intransitive. After all, if preferential choice fails to 

satisfy even this weakest of probabilistic realizations of the transitivity principle, then surely this 

calls into question the descriptive validity of any decision theory that assumes it, including utility 

theories. In fact, Tversky’s main empirical finding was that across two experiments the choice 

patterns of several individuals did significantly violate WST. 

 More recently, Regenwetter, Dana and Davis-Stober (2010, 2011) developed an 

alternative stochastic specification of transitive preferences, the mixture model, which requires 

the following alternative restriction on choice probabilities, known as the triangle inequalities 

(TI) condition.   

(3) For all a, b, c from a set of alternatives,  

  p(a,b) + p(b,c) – p(a,c) ≤ 1.  

Regenwetter et al. (2010) explain that their mixture model is equivalent to the random utility 

model (Block & Marschak, 1960) and argue that testing the TI condition is an acceptable 

alternative test of transitive preferences. Based on their tests of TI with previously collected data, 
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as well as on new data that they presented, Regenwetter et al. (2011) concluded that 

“unambiguous evidence is currently lacking” of “empirical evidence of intransitivity by 

individual decision makers” (p. 42). In this paper we aim to shed light on this issue, which is at 

the core of human decision making, by further exploring Tversky’s theoretical insights, which 

were based on the notion of dimensional processing.  

 Tversky’s (1969) important theoretical contribution was the development of two 

plausible decision models that predict intransitive choice in some circumstances: the additive 

difference model and the lexicographic semiorder (LS) heuristic. Both are based on dimensional 

processing: the comparison of advantages and disadvantages across choice alternatives within 

the various dimensions on which alternatives differ. If people do make decisions in such ways, 

the implications for the psychology of decision making are fundamental. On the one hand, the 

classes of theories related to utility theory, including prospect theory (Kahneman & Tversky, 

1979), assume that each alternative is evaluated independently of the others in the available 

choice set. In contrast, dimensional processing models such as Tversky’s assume that the 

evaluation of the each alternative is relative, and depends on which other alternatives are under 

consideration. Such relative evaluative processes would constitute a basic aspect of bounded 

rationality (Simon, 1956). 

 The analysis and review we present here aims to build on Tversky’s (1969) pioneering 

work in ways that have previously been neglected. As well as adopting a process perspective, our 

treatment has several distinctive features, compared to previous treatments (e.g., Cavagnaro & 

Davis-Stober, 2014). First, previous research on this issue has tended to neglect descriptions of 

choice behavior. Rather, the focus has been on how well theoretical models fit choice behavior 

data. As Tukey (1980) has argued, however, exploring and describing data is just as important as 



INTRANSITIVE AND TRANSITIVE PREFERENCES 

  

6 

model testing.  In this spirit, we present an exploratory descriptive analysis of choice patterns in 

Tversky’s (1969) lottery context. We see this as a crucial component in developing a process 

account of intransitive and transitive preferences when participants have complete information. 

(It should be noted that in contrast to the context investigated by Müller-Trede, Sher, and 

McKenzie (2015), participants in the studies reviewed here had full information about the 

attributes of alternatives relevant to their decision). Second, previous treatments proposed 

alternative models but did not evaluate the goodness of fit of Tversky’s additive difference 

model to replications of his lottery task1. Here we do this by developing a two-parameter, 

simplified additive difference (SAD) model, and describe the relationship between the model’s 

parameters and the transitivity or intransitivity of choice in Tversky’s lottery choice task.  That 

is, we identify the conditions under which the two-parameter SAD model predicts that WST will 

be satisfied or violated in this task. We further show how different specifications of the model 

correspond to different dimension-based decision strategies and heuristics: this draws on the 

assumption that decision makers have a repertoire of decision strategies from which they can 

select (Payne, 1982; Payne, Bettman & Johnson, 1993; Svenson, 1979). Process-tracing 

evidence, for example, from think aloud protocols (Montgomery, 1977), eye-tracking (Glöckner 

& Herbold, 2011), and information acquisition monitoring (Pachur, Hertwig & Wolkewitz, 

2014)) has shown that across-gamble, dimension-based, as well as within-gamble, cognitive 

processing has a role in decisions between simple monetary gambles. As well as Tversky’s 

(1969) dimension-based models we consider  one-dimensional, ‘take the best’ heuristics 

 
1 TŚĞ ŐŽŽĚŶĞƐƐ ŽĨ Ĩŝƚ ƚŽ ƐŽŵĞ ĚĂƚĂ ƐĞƚƐ ŽĨ Ă ƐƚŽĐŚĂƐƚŝĐ ǀĞƌƐŝŽŶ ŽĨ  TǀĞƌƐŬǇ͛Ɛ ŽƚŚĞƌ ŵŽĚĞů ƉƌĞĚŝĐƚŝŶŐ ŝŶƚƌĂŶƐŝƚŝǀĞ 
preferences, the lexicographic semiorder, has been tested (Davis-Stober, Brown & Cavagnaro, 2015; Regenwetter, 

Dana, Davis-Stober & Guo, 2011).  
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(Gigerenzer & Goldstein, 1999), since some participants may resort to choice strategies requiring 

less cognitive effort when faced with the demands of a long series of similar choice problems.   

 Our main contribution, then, is that, based on Tversky’s (1969) extended additive 

difference model, we develop a simplified additive difference (SAD) model, which allows for a 

quantitative description of how individuals vary with respect to dimensional processing 

strategies. Most importantly, the SAD model specifies boundaries for when violations of WST 

will occur for an individual depending on his or her dimensional processing strategy. Using this 

framework we review and reanalyze previous choice data from seven replications of Tversky’s 

lottery choice experiment: Cavagnaro & Davis-Stober, (2014), Kalenscher et al. (2010), 

Montgomery (1977), Ranyard (1977), Regenwetter et al. (2011), Tsai and Böckenholt (2006) and 

Tversky (1969). We are aware that Regenwetter et al. (2010) have argued that WST is not a 

legitimate criterion of stochastic transitivity. However, we retain Tversky’s original, and still 

widely recognized, WST criterion (e.g. Oliveira, Zehavi, & Davidov, 2018), because WST is a 

transparent and clearly defined formulation of stochastic transitivity such that: “a person’s 

preference … is [stochastically] transitive if their majority choices (over repeated trials) are 

transitive” (Regenwetter et al., 2010, p. 5). Nevertheless, we also consider Regenwetter et al.’s 

TI alternative when comparing alternative analyses.  

 Our reanalysis involves a descriptive and a model fitting stage in which we estimate the 

SAD model’s parameters for each individual data set, using the maximum likelihood estimation 

(MLE) method. We then test its goodness of fit relative to the alternative models described 

earlier and apply likelihood ratio tests to classify individual choice data by decision strategy 

type, and whether they are transitive or intransitive with respect to WST. Next we compare our 

findings to previous analyses that were from the perspective of transitive models. Our aim is to 
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establish, once and for all, whether Tversky’s (1969) original findings of intransitive preferences 

with respect to WST are robust and replicable, and whether his contribution to theory, with 

respect to dimensional processing in decision making, is valid. We conclude with some caveats 

and some avenues for future research 

 

Tversky’s dimensional processing models 

Tversky (1969) argued that intransitive preferences might occur when people construe 

decision alternatives as varying on two or more dimensions and process information across 

dimensions rather than within alternatives.  He considered two cases of dimensional decision 

representations: (1) choice between simple monetary lotteries with the structure win s dollars 

with probability p, otherwise win zero (dimensions S and P); and (2) choice between job 

applicants varying in three important dimensions that were labelled intellectual ability, emotional 

stability and social facility. His first example of a model that might result in intransitive 

preferences, the LS heuristic, processes only some of the available information. The second, the 

additive difference model, fully utilizes all available information by evaluating and comparing 

all dimension differences. 

The lexicographic semiorder (LS) heuristic 

With the LS heuristic, information is processed as follows: 

If the difference between the two alternatives on dimension I is (strictly) greater than [a 

threshold value,] İ, choose the value that has the higher value on dimension I. If the 

difference between the alternatives is less than or equal to İ, choose the alternative that 

has the higher value on dimension II (Tversky, 1969, p32).  
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In his first study, Tversky investigated choices between pairs from a set of simple lotteries as 

described above, with the values of P and S shown on the left of Table 1. It can be seen that 

adjacent lotteries in the sequence a, b, c, etc. have small differences on each dimension, whereas 

S and P differences between non-adjacent lotteries are greater. Suppose the probability of 

winning (P) is dimension I and the winning amount (S) is dimension II, the probability difference 

threshold, İ = 2/24 and choice inconsistency, or error rate, is fixed at 20%2. It should be noted 

that the priority heuristic in this context is the LS heuristic with İ = 1/10 (Brandstätter, 

Gigerenzer & Hertwig, 2006). The LS heuristic applied in this way to choices between pairs of 

alternatives from Tversky’s lottery set could lead to the choice proportions shown in the top left 

panel of Table 1. This shows how the lottery with the higher S value is chosen most often when 

the P difference is less than or equal to the threshold, whereas that with the higher P value is 

chosen more often when it is greater. It can be seen how WST is violated for several cycles of 

choice in this case, for example choice proportions for (a,b), (b,c), (c,d) and (d,e) are all greater 

than .5, whereas that for (a,e) is less than .5. In contrast, the top right panel of the table illustrates 

choice proportions for an LS heuristic in which S is dimension I, P is dimension II, and the 

threshold is İ = $0.25 on the S dimension. This leads to violations of WST in the opposite 

direction to the first case. It is notable that in both cases there is a sharp switch in preferences for 

either the higher S or the higher P as differences change. 

 It should be noted that the way the WST might be violated in this lottery set is different 

for different values of the δS heuristic threshold. If the probability difference threshold, İ = 3/24, 

 
2 Although a 20% error rate is arbitrary, it represents a relatively consistent but variable application of the 

heuristic, takinŐ ŚĞĞĚ ŽĨ RĞŐĞŶǁĞƚƚĞƌ Ğƚ Ăů͛͘Ɛ ĐŽŵŵĞŶƚ ƚŚĂƚ ͟Ă ƚŚĞŽƌǇ ƚŚĂƚ ĂůůŽǁƐ ĞƌƌŽƌ ƌĂƚĞƐ ƚŽ ĂƉƉƌŽĂĐŚ ϱϬй ŝƐ 
ƵŶƐĂƚŝƐĨǇŝŶŐ͟ ;ϮϬϭϭ͕ Ɖ͘ϰϱͿ͘    
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then only the cycle of five choice pairs are predicted to violate WST,  i.e., p(a,b), p(b,c), p(c,d), 

p(d,e) ≥ .5, but p(a,e) < .5. However, if the threshold were 2/24, as illustrated in the top left panel 

of Table 1, the cycles of four pairs would also violate WST, i.e.: p(a,b), p(b,c), p(c,d) ≥ .5, but 

p(a,d) < .5; and  p(b,c), p(c,d), (p(d,e) ≥ .5, but p(b,e) < .5. Finally, if the threshold were 1/24, the 

cycles of three adjacent pairs would also be predicted to violate WST. 

--- Table 1 in here --- 

The additive difference model 

The additive difference model assumes that decisions are made by evaluating the 

subjective difference on each dimension and weighing additively those differences favoring one 

alternative (its advantages) against those not favoring it (its disadvantages). Like utility models, 

this decision rule is compensatory in that all information is fully utilized in trade-offs between 

advantages and disadvantages. In the case of choosing from a pair of two-dimensional lotteries, 

the model reduces to evaluating and comparing the P advantage with the S disadvantage, or vice-

versa. For example, in εontgomery’s (1977) replication of Tversky’s (1969) lottery study one of 

his participants said: “I’ll take the alternative B because the decrease in the chances of winning 

does not correspond to the increase in payoff” (p. 352).  

Tversky’s (1969) additive difference model (algebraic version) 

 The following account of the additive difference model closely follows Tversky 

(1969). 

Let A = A1 x A2 ….. x An be a set of multidimensional alternatives with elements of the 

form: 

x = (x1, …..., xn),  y = (y1, …..., yn) , where xi and yi (i = 1, …., n) are the values of 

alternatives x and y on dimension i. 
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There exist scales u1, u2, ….. , un defined on A1, A2, ….. An respectively such that ui(xi), 

ui(yi) are the subjective values of the ith component of alternatives x and y respectively. 

Then  įi = ui(xi) - ui(yi) is defined as the difference between the subjective values of x and 

y on the ith dimension. A difference function, ĳi(įi), is applied to this which determines the 

subjective difference between x and y on the ith dimension. This can be viewed as the advantage 

or disadvantage of x over y on dimension i. δet ĳi(-įi) = - ĳi(įi). 

A preference structure satisfies the additive difference model if there exist real-valued 

functions u1, u2, ….. , un and continuous difference functions, ĳ1(į1), …. ĳn(įn) such that:  

(1)  x غ y if and only if  osd(x,y) = σ௡௜ୀଵ  ĳi[ui(xi) - ui(yi)]  ≥ 0 

where osd(x,y) is the overall subjective difference between x and y,  

and ĳi(-įi) = - ĳi(įi) for all i.  

Tversky proved that under the additive difference model preference is transitive if and 

only if the following conditions apply, otherwise preference may be intransitive: (1) for all n ≥ 3, 

transitivity holds if and only if all dimension difference functions are linear; (2) for n = 2, 

transitivity holds if and only if ĳ1(į) =  ĳ2(tį) for some positive t; and (3) if n = 1, transitivity is 

always satisfied. We note that for n = 2, if one of the dimension difference functions is nonlinear 

and the other is linear then the above transitivity condition does not hold and preferences may be 

intransitive. 

The extended additive difference model (probabilistic) 

In characterizing choice as probabilistic, repeated presentations of (x,y) in a two-

alternative, forced choice paradigm are assumed to be independent Bernoulli trials, i.e., binomial 

random variables. Let p(x,y) be the probability of choosing lottery x over lottery y, and suppose 

that no choice probability is 0 or 1. Let F be an increasing function.  
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The extended additive difference model is satisfied whenever equation (1) holds and: 

 p(x,y) = F(osd(x,y)) = F(σ௡௜ୀଵ  ĳi[ui(xi) - ui(yi)]) 

Tversky comments that this is a Fechnerian model, such that choice variability is due to 

the relationship between the overall subjective difference between x and y, osd(x,y) and p(x,y). 

He suggested that function F can be either the normal or the logistic function – here we specify 

the logistic function: 

p(x,y) = F(osd(x,y)) = exp(osd(x,y))/(1+ exp(osd(x,y))). 

A simplified additive difference model for Tversky’s lottery paradigm 

 In the following we present a simplified model specifically for Tversky’s lottery 

paradigm. 

Let A = S x P be a set of two-dimensional lottery alternatives of the form (si,pi) such that 

payoff si is won with probability, pi, otherwise nothing is won,  i = 1, … 5. The set of payoffs, s1, 

…., s5 are decreasing in equal intervals, ds, and the set of probabilities, p1, …. , p5 are increasing 

in equal intervals, dp. We also denote the five lotteries of set A as a = (s1,p1), b = (s2,p2), c = 

(s3,p3), d = (s4,p4), e = (s5,p5). The specific values of Tversky’s original lottery set are shown in 

Table 1. 

We simplify the additive difference model as follows. For lottery set A = S x P we denote 

the scales u1 and u2 as us and up, the corresponding subjective values on dimensions S and P as 

us(s) and up(p) respectively, and the subjective dimension difference functions, ĳ1(į1) and ĳ2(į2) 

as ĳs(įs) and ĳp(įp). Next, we let us(s) = si/ds and up(p) = pi/dp, the difference in subjective values 

on dimension P be įp = (pi – pj)/dp, and the difference in subjective values on dimension S be įs = 

(si – sj)/ds. Note that this standardizes the difference in subjective dimension values, įp and įs, to 

a common scale which is the objective standard difference level between lotteries of the set, dc. 
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For lottery pairs in Tversky’ paradigm, dc takes the values 1, 2, 3, 4, as difference level increases. 

Difference functions are applied to the P and S dimensions, denoted ĳp(įp), and ĳs(įs). These can 

be viewed as the advantage or disadvantage of lottery x over y on the P and S dimensions 

respectively.  δet ĳp(-įp) = -ĳp(įp) and ĳs(-įs) = -ĳs(įs). In the following we substitute the 

standardized objective difference, dc, for įp and įs, since by our simplification, įp = įs = dc. This 

means that the subjective dimension difference functions, ĳp and ĳs, and the overall subjective 

difference, osd, are all functions of dc. 

A preference structure in Tversky’s lottery paradigm satisfies the simplified additive 

difference model if there exist continuous difference functions, ĳp(dc) and ĳs(dc) such that:  

(2) x غ y if and only if ĳs(dc) - ĳp(dc)  ≥ 0 

where x has a lower P and higher S value than y in Tversky’s lottery set, and dc is 

the objective standard difference between x and y. 

If one of the dimension difference functions is nonlinear and the other is linear then 

Tversky’s transitivity condition described above is not met and preferences may be intransitive. 

This is illustrated in Figure 1, where subjective differences for the S dimension are linear, ĳs(dc) 

= dc, and the subjective differences on the P dimension are nonlinear, ĳp(dc) = 0.4dc2.  In this 

figure it can be seen that the overall subjective difference, osd(dc) is positive for dc = 1 and dc = 2 

since ĳs(dc) > ĳp(dc); in these cases, therefore, x غ y. However, for dc = 3 and dc = 4, since ĳs(dc) 

< ĳp(dc), preference switches to y غ x. In this case, then, the simplified additive difference model 

predicts intransitivity of preferences.  

To model the simplified additive difference model on Tversky’s lottery set there are two 

approaches that could be adopted. First, it might be seen as more natural to specify and estimate 

parameters for the dimension difference functions, ĳs(dc) and ĳp(dc). However, we adopt the 
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second, more elegant and parsimonious, approach and directly model the overall difference 

function, osd(dc), as explained below. 

------ Figure 1 about here ------ 

The two-parameter, simplified additive difference (SAD) model 

Dimension difference functions that predict intransitive preferences in the manner 

illustrated in Figure 1 will yield overall subjective difference functions, osd(dc), that are either 

monotone increasing or monotone decreasing, and change from positive to negative, or vice 

versa, in the range 1 < dc < 4. A curvilinear function of this type would predict intransitive 

preferences, including, as Tversky (1969) has observed, a step function consistent with the LS 

heuristic. However, a linear function is a more parsimonious function with these properties. 

Furthermore, it predicts intransitive preferences in line with those from a nonlinear function if 

both functions predict preference switches at the same difference level. Thus, we define the 

(algebraic) two-parameter, simplified additive difference (SAD) model for Tversky’s lottery 

paradigm by the following linear function: 

(3) osd(dc) = a0 + a1dc  

where dc  is the objective dimension difference level between lotteries x and y 

described earlier. 

The linear overall subjective difference function models the difference between 

subjective dimension difference functions that may be either nonlinear, or linear but not related 

by the equation ĳs(dc) =  ĳp(tdc).  

As indicated above, an important property of the model is that it enables us to predict 

when preferences will be transitive or intransitive. This is illustrated in figure 2, which shows the 

graphs of four specific two-parameter SAD models. In two of them the linear function crosses 
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the horizontal axis, i.e. at dc = -a0/a1, between dc = 1 and dc = 4, thus predicting that preference 

will switch from the better S to the better P in the range 1 < dc < 4, or vice versa. That is, if 1 ≤ -

a0/a1 ≤ 4 preferences will be intransitive; for example, if -a0/a1 = 1.5, osd(dc) > 0 for pairs (a,b) 

and (b,c), but osd(dc) < 0 for pair (a,c) in the lotteries of Tversky’s paradigm. For the other two 

models shown in the figure, the value of -a0/a1 is not in this range and the model predicts that 

preferences will be transitive, since osd(dc) is either always positive, or always negative, in the 

range 1 < dc < 4.  

----- Figure 2 about here ---- 

As with the extended additive difference model, the extended (probabilistic) two-

parameter SAD model is satisfied whenever equations (2) and (3) hold and 

 p(x,y) = F(osd(dc)) = exp(osd(dc))/(1+ exp(osd(dc))) 

 where dc is the objective difference level for lottery pair (x,y). 

The extended model predicts that WST will be violated when 1 ≤ -a0/a1 ≤ 4, and 

conversely, that WST will hold when -a0/a1 is outside that range. For example, in the case 

described above, where -a0/a1 = 1.5: p(a,b) > .5, p(a,c) >.5 but p(a,c) < .5, which violates WST3. 

Other models against which the extended two-parameter SAD model can be tested 

We compare the goodness of fit of the extended two-parameter SAD model on choices in 

Tversky’s paradigm to that of four others in a family of nested probabilistic models. 

The ten-parameter baseline, model (M0). Following Tversky (1969) and others, we 

assume that probabilistic models with less than ten parameters are nested within a baseline model 

that Tversky referred to as the nonrestrictive model, M0. This places no restrictions on the ten 

 
3 The SAD model also predicts when the TI condition is satisfied or violated, although the boundary conditions for 

this are not straightforward. 
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binary choice probabilities of Tversky’s lottery paradigm, and consequently has ten parameters, 

one for each pair of lotteries in the set. Cavagnaro and Davis-Stober (2014) refer to this as the 

encompassing, or baseline mode. If M0 is not a significantly better fit than a model with fewer 

parameters, such as the two-parameter SAD model, we conclude that the latter has a good fit to 

the data. 

The four-parameter cubic model. This is another baseline model that provides us with a 

test of departures from the linearity assumed by the two-parameter SAD model: 

(4) osd(dc) = a0 + a1dc + a2 dc
2 + a3dc

3 

If the extended cubic model is a good fit and significantly better than the SAD model, 

then we should conclude that the data does not support the linear model. However, the further 

interpretation of a well-fitting cubic model depends on its specific parameter values. Parameter 

values that approximate a step function, are monotonic increasing or decreasing and change from 

positive to negative, or vice versa, in the range dc = 1 to dc = 4 can be interpreted as being 

consistent with the LS heuristic predicting intransitive preferences in the sense of violating WST. 

Others parameter combinations, however, can indicate that the relationship between 

osd(dc) and dc is nonmonotonic, and that the dimensional models considered here should be 

rejected. 

The one-parameter constant choice probability (CCP) model. In this model the slope of 

the linear relationship of the SAD model is zero: 

(5) osd(dc) = a0. 

The extended CCP model predicts that across the ten binary pairs of the lottery set the 

binary choice probability will be constant and therefore, WST will be satisfied. Since choice 

probability is not sensitive to differences between P or S values under this model, it is a decision 
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heuristic. Figure 3 illustrates how the model can be interpreted for different values of a0: a value 

a0 > 0 reflects a preference for the higher S, whereas a0 < 0 reflects a preference for a higher P; a0 

= 0 defines indifference, corresponding to random choice. Additionally, a value of a0 ≤ -1.39 

represents a stochastic 'take the best P' heuristic, and a0 ≥ 1.39 represents a stochastic 'take the 

best S' heuristic (Gigerenzer & Goldstein, 1999).  Since the CCP model predicts transitive 

preferences, observed intransitive choice cycles are explained by the inherent stochastic nature of 

choice, with choice probability being related to the strength of preference for S over P or vice 

versa. 

------ Figure 3 about here ----- 

The zero-parameter random choice (RC) model. As mentioned above, if a0 = 0 in 

equation (5) the extended model predicts indifference across all pairs of the lottery set and, 

therefore, random choice. Although it predicts that WST will hold, this is a case of the 

transitivity of indifference. 

 The focus of our analysis is the two-parameter SAD model, in particular the 

number of cases where it is a significantly better fit to the data than the CCP model, is a good fit 

to the data, WST is predicted to be violated, and neither the cubic model nor M0 are significantly 

better. Alternative patterns of choice proportion exhibiting violations of WST predicted by the 

SAD model are illustrated in the bottom panels of Table 1. This shows that the main difference 

with the predictions of the LS heuristic (upper panels) is a more gradual change in choice 

proportions as dimension differences increase.  

 

Tversky's (1969) lottery experiment and six replications 
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 Tversky (1969) invited 18 students to participate in his lottery study. In the first session 

they chose between adjacent lotteries from the set shown in Table 1, i.e. pairs (a,b), (b,c), (c,d) 

and (d,e) as well as the extreme pair, (a,e). Each of these was presented three times with filler 

pairs interspersed, and afterwards participants played the gamble chosen on a randomly selected 

trial for real. Eight participants then returned for the main experiment, all those who had chosen 

the higher S on the majority of adjacent pairs at least twice, but the higher P on the extreme pair 

at least twice. Regenwetter et al. (2011) describe this selection of potentially intransitive 

participants as “cherry picking”. However, we find that the sample selected from, and the 

method of selection, are clear and transparent, and consistent with the aims of the study. In the 

main experiment participants chose from each of the ten pairs from the lottery set 20 times across 

five sessions, one week apart. As before, filler choices were interspersed and at the end of a 

session participants played one chosen lottery for real. Tversky reported that likelihood ratio tests 

showed that the choice patterns of five participants significantly violated WST at the 5% level of 

significance or lower, while only one participants’ pattern violated the δS heuristic. The choice 

patterns of two of Tversky’s participants are shown in Table 2. 

------- Table 2 about here ----- 

 Regenwetter et al. (2011) challenged Tversky’s conclusions on several grounds, one of 

which cited Iverson and Falmagne’s (1985) reanalysis that identified a flaw in Tversky’s 

likelihood ratio test of WST. Iverson and Falmagne derived a valid alternative test which found 

that only one of Tversky’s participants significantly violated WST. Regenwetter et al. themselves 

came to a similar conclusion: the choice pattern of only one participant was significantly outside 

the TI condition at the p < .05 level, with one other being borderline at p = .05. Thus, their 

transitive preferences model, the linear order mixture model, could be rejected for only two of 
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Tversky’s 18 participants at most. However, using Bayes factor analysis, Cavagnaro & Davis-

Stober (2014) found strong evidence against transitive preferences for three participants, with 

evidence supporting transitive preference being inconclusive for three others (their analysis 

tested both the mixture model and WST). In summary, while Tversky’s original analysis found 

that 5/18 participants exhibited significant intransitive preferences, others have concluded that 

the number is actually fewer, ranging from one to three out of 18 participants. 

 We reanalyzed Tversky’s (1969) lottery experiment and six replications. The three earlier 

replications, Montgomery (1977), Ranyard (1977) and Tsai and Böckenholt (2006), were 

reviewed by Regenwetter et al. (2011 and by Cavagnaro & Davis-Stober, (2014), who also 

conducted their own replications. Kalenscher et al.’s (2010) experiment was reanalyzed by 

Brown, Davis-Stober & Regenwetter (2015). Five of the studies adopted the five lotteries that 

Tversky devised, adjusted for currency and inflation. The exception was Tsai and Böckenholt’s 

that only presented the first four lotteries. This was also the only study that did not have a real 

consequence of a lottery choice, and it was the one that presented each lottery pair the most 

times, 120, rather than the range 8 to 20 of the other studies. Another important difference 

among the studies is that Montgomery (1977 and Ranyard (1977) only fully analyzed a subset of 

participants, whereas the other studies fully analyzed the data from the whole sample. Further 

details of the six studies, and previous reviews of them, are presented in appendix 1. 

 

Method 

 Our reanalysis of the seven data sets described above has two phases. In the first, 

exploratory phase, we conduct a descriptive analysis of individual choice proportions. An 

important aspect of this is to identify participants whose choices had very little variability. In 
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these cases choice is close to deterministic and decision strategies can be clearly identified 

without recourse to probabilistic analysis, which in any case would be inappropriate. For the 

remaining participants we move to the second, probabilistic model testing phase. 

Exploratory analysis 

 Previous studies of choice in Tversky’s (1969) lottery paradigm did not include a detailed 

descriptive analysis of individual binary choice proportions. Tversky himself merely presented 

the matrix of choice proportions from the lottery set for eight selected participants and identified 

those that were inconsistent with either WST or an LS heuristic. Montgomery (1977) adopted the 

same descriptive approach, while Ranyard (1977) only presented the choice frequencies of 

selected participants. Regenwetter et al. (2011) also only presented choice frequencies, although 

these were in the supplementary material available from the authors rather than in the main 

paper. For the more recent studies we had to calculate the choice proportions from data in an 

appendix (Tsai and Böckenholt, 2006) or request the information from the authors (Cavagnaro & 

Davis-Stober, 2014; Kalenscher et al., 2010). 4  

 Our descriptive measures are conventional ones that were not inspected closely in the 

original studies: means and confidence intervals for the ten choice proportions of the set, and a 

regression coefficient measuring the linear relationship between dimension difference and choice 

proportion. For each participant we first we calculated statistics relevant to the CCP model: (1) 

the mean choice proportion (cp) across the set; (2) the 95% confidence interval (CI) for cp under 

the CCP model, identified from the binomial distribution for each mean cp; and (3) those cps 

lying outside the CI, noting the number of outliers, their position in the set, and their 
 

4 All data are available online on the Open Science Framework (OSF) website: https://osf.io/y8fxg/ 

 

https://osf.io/y8fxg/
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probabilities of occurrence under the CCP model.  Second, we calculated a descriptive statistic 

relevant to the SAD model, which predicts that across the ten choice proportions of the set there 

will be a relationship between the level of dimension difference, dc, and cp. Specifically, we 

calculated the unstandardized regression weights (B) for the linear regression predicting cp from 

dc. Finally, we noted whether violations of WST occurred for cycles of three, four or five binary 

choice pairs occurred, as predicted by LS heuristics with different thresholds. 

 As well as summarizing the basic characteristics of individual choice data, the 

exploratory analysis identified those cases with minimal choice variability that could be 

classified on the basis of an algebraic dimensional model with very low error rate. Specifically, 

those where the mean choice proportion is very low or very high, with many being zero or many 

being one, were classified as ‘take the best S’ or ‘take the best P’. In these cases probabilistic 

model fitting is neither necessary nor appropriate. 

Probabilistic models: parameter estimation, tests and categorization 

Categorization of individual choice behavior 

 The main conditions defining different categories of choice behavior are described below. 

As discussed earlier, under the two-parameter SAD model, preferences may satisfy or violate 

WST depending on the specific values of the model’s parameters. Also as mentioned earlier, the 

one-parameter CCP model is a transitive case of the SAD model when a1 = 0. The categories are 

defined in terms of the parameter values of the overall subjective difference function, osd(dc) = 

a0 + a1dc, where dc, the objective difference between lotteries in Tversky’s task, varies from 1 to 

4. Three main cases can be distinguished, with four variants of the third case, including the 

baseline random choice model (codes for each case in parentheses). For the first two categories 
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the extend two-parameter SAD model is a good fit to the data. The model predicts that WST will 

be violated when 1 ≤ -a0/a1 ≤ 4, and conversely, WST will hold when -a0/a1 is outside that range. 

1. Intransitive preferences.  

 If 1 < -a0/a1 < 4, then preferences will violate WST (SAD INT). 

2. Transitive preferences with a1 ≠ 0. 

 If -a0/a1 is outside the above range, preferences will be transitive, and satisfy WST (SAD 

WST).  

For the third category, and its subcategories, the extended one-parameter CCP model is a good 

fit and models with more parameters are not significantly better. Note that the values a0 = ± 1.39 

are those predicting choice proportions of 20 or 80 percent. 

3. Transitive preferences with a1= 0 

a. Constant choice probability other, if -1.39 < a0 < 1.39 (CCP(O)) 

b. Take the best P, if a0  ≤ -1.39 (CCP(P)) 

c. Take the best S, if 1.39 ≤ a0 (CCP(S)) 

d. Random choice, if a0 = 0. (RC) 

Finally, we identify two categories of choice behavior when the cubic model is a good fit and 

significantly better than the SAD model. As stated earlier, this indicates significant nonlinearity 

of overall subjective differences such that the SAD model is rejected. Classification is based on 

visual inspection of choice proportions. 

4. Nonlinear overall subjective differences 

a. Intransitive preferences, nonlinearity approximating a step function consistent 

with the LS heuristic that predicts violation of WST (LS INT) 

b. Transitive preferences, nonlinearity which is nonmonotonic (NM). 
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Model fitting  

 The more powerful maximum likelihood (ML) method is preferred because it uses all the 

information in the data by estimating parameters from individual choice trial data, rather than a 

least squares method fitting choice proportions without reference to the number of replications 

(see Kalenscher et al., 2010). Furthermore, with the ML method, likelihood ratio (LR) tests can 

be used to test the goodness of fit of the different models described earlier. 

 Maximum likelihood estimation (MLE). For the cases that were designated probabilistic 

after exploratory analysis, we applied the ML method to estimate model parameters. As 

mentioned earlier, we assume that repeated presentations of any two lotteries, (x,y), in a two-

alternative, forced choice paradigm are independent Bernoulli trials. Each choice trial is an 

independent, binomial random variable, where p(x,y) is the probability of choosing lottery x over 

lottery y. We assume that no choice probability is 0 or 1. If each lottery pair is presented r times, 

the likelihood of the observed choice frequency, i.e. the number of times x is chosen over y out 

of r presentations, given a predicted p(x,y), is determined by the Binomial distribution. Under the 

further assumption that the binary choice probabilities are independent, the overall likelihood is 

given by the product of the likelihoods of the ten choice proportions. In our MLE algorithm to 

estimate parameter values we let choice proportions of zero or one take the values .01 and .99 

respectively, in line with best MLE practice (Myung, 2003). 

 We use the statistic -2ln(likelihood), denoted -2LL, to assess the goodness of fit of the 

resulting models. Under the standard ML approach, this can be assumed to approximate a chi-

square statistic with degrees of freedom equal to the number of parameters of the model. We also 

applied the ML method to the one-parameter CCP model by finding the MLE of parameter a0 

when a1 = 0.  
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 Model testing and classification of individual choice data. We applied LR tests to 

determine the best fitting model of the five nested models described earlier (number of 

parameters in parentheses): M0 (ten), Cubic (four), SAD (two), CCP (one) and RC (none). In 

these tests, the difference in -2LL between two models is assumed to approximate a chi-square 

distribution with degrees of freedom equal to the difference in the number of parameters of the 

models. In comparisons with M0, if this statistic is less  than the critical value for p = .05, we 

conclude that the model has a good fit to the data. In comparisons between the other models, if 

the chi-square statistic is significant at p < .05, we conclude that the model with the higher 

number of parameters has a significantly better fit. Otherwise, we conclude that the additional 

parameters do not significantly improved model fit. The aim is to identify the model with the 

lowest number of parameters that is a good fit to the data, not improved upon significantly by a 

model with more parameters. By the principle of parsimony, we conclude that out of all models 

with a good fit, the one with the lowest number of parameters is the best fit. For example, if no 

model has a significantly better fit than the RC model we conclude that the RC model is a good, 

and the best fit. We then test the CCP model against models with more parameters, then the SAD 

model, and finally the cubic model, stopping if  we identify a model that is a good, and the best 

fit. The outcomes of these tests, together with the MLEs of parameters, determine our 

categorization of choice data as described earlier. The tests also reveal cases where none of the 

models tested against M0 have a good fit. Additionally, where the Cubic model is a good fit and 

the best fitting model, it is interpreted in a follow-up exploratory analysis, specifically, a visual 

inspection of the scatterplot of the log-odds of choice proportions, to determine whether it should 

be classified as a case of intransitive preferences, i.e., consistent with the LS heuristic and 
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violating WST (LS INT), or as transitive preferences but with a nonmonotonic relationship 

between choice proportion and level of dimension difference (NM). 

 

Results 

Tversky (1969) 

 Our reanalysis is summarized in Table 3, with the descriptive statistics of the exploratory 

analysis to the left and model fitting information to the right. The left of the table shows that for 

the first six participants there are several outlier cps, a strong linear relationship between cp and 

dc, and observed violations of WST, suggestive of intransitive preferences consistent with the 

SAD or LS models. On the other hand, the statistics for participant seven are more suggestive of 

the CCP model, since there are no outlier cps, a very weak relation between cp and dc, and only 

one observed violation of WST. Finally, for participant eight the statistics suggest a transitive 

pattern with no observed violations of WST and a strong relationship between cp and dc 

consistent with the SAD model (see Table 2).  

 These observations are broadly confirmed by the ML estimation and goodness of fit 

results shown to the right of the table. For five participants (1 to 4 and 6) the difference between 

the -2LL values for M0 and the SAD model, and between the cubic and SAD model, were not 

significant, but those between SAD and CCP, and between SAD and RC, were significant. In 

these cases, then, the SAD model is a good, and the best fit, with values of a0 and a1 predicting 

systematic violations of WST (i.e., 1 < -a0/a1 < 4). For participant 5, however, while the SAD is a 

good fit and significantly better than the CCP model, the cubic model is significantly better than 

the SAD model, indicating nonlinearity. Inspection of choice proportions shows that this is due 

to a nonmonotonic relationship such that the SAD model is not supported (classified as NM).  
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For participant seven, the CCP model has a good fit and is the most parsimonious, since the two-

parameter SAD model is not significantly better. Finally, for participant eight the SAD model is 

a good, and the best, fit with parameter values consistent with transitive preferences. We 

conclude, therefore, that the SAD model predicting violations of WST is a good, and the best fit 

for 5/18 of Tversky’s participants. 

---- Table 3 about here ------ 

Early replications 

 The results presented in Table 4 show that for Montgomery (1977) and Ranyard (1977) 

the SAD model was a good, and the best fit for six of the seven participants fully reported, with 

parameter estimates for these six predicting the observed violations of WST. The exception was 

εontgomery’s participant five. In this case, while the SAD model was a significantly better fit 

than the CCP model, inspection of the data reveals that its relatively poor fit in comparison to M0 

was due to variations in choice proportion within some levels of dimension difference. 

 Turning to Tsai and Böckenholt (2006), for two participants the random choice (RC) 

model was a good, and the best fit. However, in three other cases, the SAD model was a good, 

and the best fit with parameter estimates predicting the observed violations of WST (see Table 6, 

top panels for examples). Comparing the first two studies with the later one, the rate of change of 

choice proportion as dimension difference changes is rather lower in Tsai and Böckenholt’s 

cases, around 10 percent compared to 15-30 percent in the earlier studies. Nevertheless, overall 

for about a third of participants in these three studies the SAD model predicting observed 

violations of WST was a good, and the best fit. 

----- Table 4 about here ------ 

Regenwetter et al. (2011) 
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 We present the reanalysis of the Cash 1 data, which was a replication of  Tversky’s 

original lotteries adjusted for inflation. Our exploratory analysis (Table 4, columns 2 to 6) found 

that six participants (3, 5, 8, 10, 11 and 14) could be classified as being consistent with take the 

best P or take the best S heuristics on the criteria described earlier. For the remaining 12 

participants, probabilistic model testing using MLE and LR tests was carried out (Table 4, from 

column seven). This identified two further cases where the CCP model was a good, and the best 

fit: participant 7 was classified as take the best P; and participant 9 was classified as CCP(O). 

These were so classified because: (1) the differences between -2LL for this model and either M0, 

the cubic model or the SAD model were not significant (p > .05); and (2) the differences between 

-2LL for this model and RC were significant. In addition, we identified seven cases where the 

SAD model was a good fit, with neither M0 nor the cubic model being significantly better (p > 

.05), but where the SAD model was significantly better than the CCP or RC models (p < .05). 

Four of these predict the observed violations of WST (see Table 6, bottom panels for examples) 

while for the other three transitive preferences are predicted. Finally, there were three cases for 

which none of the models tested was a good fit, due to substantial variability in choice 

proportions for some dimension differences. The most important finding, however, is that 4/18 

cases exhibited violations of WST predicted by the well-fitting SAD model. 

----- Tables 5 and 6 about here ----- 

Cavagnaro and Davis-Stober (2014) 

 This study presented two sets of lotteries to participants with or without time pressure. 

We reanalyzed Set 1 data in the without time pressure condition since this replicates Tversky’s 

(1969) experiment. Our exploratory analysis, presented in Table 7 columns two to six, shows 

that eight participants were classified as consistent with ‘take the best’ heuristics. For the 
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remaining 21 cases probabilistic model testing is summarized in the table from column seven. 

This identified two participants classified as CCP(O) and four as SAD (WST), giving a total of 

14 (48 percent) for which transitive variants of the models were the best fit. In a further four 

cases, none of the models tested was a good fit, due to variability of choice proportions for some 

dimension differences. In another case the cubic model was a good, and the best fit, because of 

nonlinearity of choice proportions across dimension difference (classified as NM). However, the 

most important finding is that for ten participants (34 percent) the SAD model was a good, and 

the best fit with parameter values predicting the observed violations of WST.   

---- Table 7 about here ------ 

Kalenscher et al. (2010) 

 As indicated in Table 8, exploratory analysis identified four cases not suitable for 

probabilistic modelling because of very high or low mean choice proportions. These were 

classified as consistent with take the best P or S heuristics. Of the remaining 26, the cubic model 

was a good, and the best, fit for a relatively high number: the seven participants asterisked in the 

M0 column of the table. Inspection of the configuration of choice proportions in these cases 

showed that violations of WST consistent with the LS heuristic were observed in three (classified 

as LS INT) and transitive preferences with a nonmonotonic relationship between choice 

proportion and dimension difference in four (classified as NM). These latter cases do not fit the 

dimensional models under investigation because of significant nonmonotonicity. In addition, 

poor fit of dimensional models was identified in six other cases where M0 was the best fit. In the 

remaining 13 cases the SAD model was a good, and the best fit, with two being transitive 

(classified as SAD WST) and 11 predicting observed violations of WST (SAD INT). Overall, 

then, for 14/30 (47 percent) of participants a dimensional model predicting violations of WST 
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was a good, and the best fit to the data, either the SAD model or the cubic model consistent with 

the LS heuristic.   

  ----Table 8 about here ----- 

Overview of the reanalysis 

 An overview of our reanalysis is presented in Table 9. The first column shows the percent 

of participants in each study for whom the two-parameter SAD model was a good, and the best 

fit to the choice data, with parameter values predicting the observed violations of WST. In the 

case of Kalenscher et al.’s study, this includes three cases where the cubic function 

approximating the LS heuristic was a good, and the best fit, and with observed violations of 

WST consistent with this.  We find a remarkable consistency across the seven studies reviewed 

with respect to the proportion of participants displaying violations of WST predicted by well-

fitting dimensional models; one third of all participants across all studies. 

 The second column of Table 9 shows that for a further eight percent of participants 

overall, the two-parameter SAD model was also a good, and the best fit, although in these cases 

observed transitive preferences were predicted by the model. The third column shows that for 

about one in four participants from studies where full data sets were available the CCP model 

was a good, and the best fit, with observed transitive preferences predicted by the model. Most of 

these were classified as consistent with take the best S or P heuristics. In the fourth column it can 

be seen that random choice was a good, and the best fit for only two participants, both from Tsai 

and Bockenholt’s (2006) study. Finally, despite the overall success of the dimensional models in 

predicting the data, the fifth column of Table 9 shows that for about fifteen percent of 

participants either M0, or the cubic model with observed nonmonotonicity, had significantly 



INTRANSITIVE AND TRANSITIVE PREFERENCES 

  

30 

better fit than the other models tested. This latter point represents the main limitation of an 

otherwise successful test of dimensional models. 

----- Table 9 about here ---- 

 

Comparison with previous analyses 

 Previous analyses of Tversky’s (1969) lottery study focused on establishing whether the 

individual choice data significantly violated WST and/or the TI condition. While Tversky 

concluded that 5/18 of his participants significantly violated WST, others subsequently disputed 

this. Notably, Regenwetter et al. (2011) concluded that only 1/18 significantly violated the above 

transitivity conditions, interpreting this violation as a type I error from a transitive preference 

model. However, Cavagnaro and Davis-Stober’s (2014) Bayes factor analysis found that in 3/18 

(17%) cases there was strong evidence against transitivity, in that both transitivity conditions 

were violated, with a further three cases being inconclusive. Our own reanalysis was consistent 

with this, since for five participants the two-parameter SAD model was a good, and the best fit, 

with parameter values predicting the observed violations of WST. Taking both of these analyses 

into account, we conclude that for three participants the additive difference model predicting 

observed violations of WST is supported conclusively, and transitive models (e. g., expected 

utility or cumulative prospect theory) are rejected. In addition, two other cases strongly support 

the SAD model predicting observed violations of WST, although these are inconclusive since a 

transitive model also fits the data well. 

 Turning to the three earlier replications, each claimed to have extended Tversky’s (1969) 

findings in different ways. Ranyard (1977) identified cases where violations of WST were still 

evident when the probability information format was numerical rather than graphical, thereby 
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eliminating perceptual issues. Montgomery (1977) also identified several cases violating WST, 

and presented a rigorous analysis of think aloud evidence of underlying dimensional processing. 

Both Regenwetter et al.’s. (2011) and Cavagnaro and Davis-Stober’s (2014) reanalyses 

corroborated Ranyard’s and εontgomery’s findings. In particular, the latter found strong 

evidence against both WST and the mixture models in six cases across the two studies, while we 

found that the SAD model predicting violations of WST was a good fit in five cases. In these 

five cases, therefore, the explanation of intransitive preferences provided by the SAD model is 

supported unambiguously. 

 With respect to the third earlier study, while Tsai and Böckenholt (2006) did not test 

transitivity directly, they did present evidence from correlations between choices across gamble 

pairs that supported dependent response models, of which Tversky’s additive difference model is 

one. Neither Regenwetter et al. nor Cavagnaro and Davis-Stober discussed these findings in their 

reviews, instead focusing on their own analyses, which found strong evidence supporting 

transitive preference models. In contrast, our reanalysis identified predictable violations of WST 

in three of Tsai and Böckenholt’s five participants (not previously reported), and model testing 

showed that the SAD model predicting this was a good, and the best fit to the data. It should be 

noted, however, that this was the only replication that did not motivate participants by paying out 

on a randomly selected chosen lottery, which may explain why two participants apparently 

responded at chance level. 

 Let us consider further the discrepancy between these very different conclusions from 

different analyses of Tsai and Böckenholt’s (2006) data. Regenwetter at al.’s conclusion, 

confirmed by Cavagnaro and Davis-Stober, was that all five participants’ choice patterns are a 

good fit to the transitive mixture model, and do not significantly violate either the TI or WST 
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conditions. We do not dispute this, but argue that our reanalysis gives further insights. First, as 

mentioned above we found that the random choice model (not previously tested on this data) was 

a good fit for the choices of two participants. While this is a transitive model, it is perhaps better 

characterized as transitivity of indifference. Second, as stated above, we observed violations of 

WST, with parameter estimates of the well-fitting SAD model predicting this. The data is 

inconclusive in these cases, since it is a good fit to both transitive and intransitive preference 

models. Nevertheless, taking Tsai and Böckenholt’s own results into account, we suggest that the 

balance of evidence swings in favor of the dimensional processing model predicting violations of 

WST. 

 Turning to Regenwetter et al.’s (2011) study, we found that the SAD model predicting 

intransitive preference was a good fit for 4/18 of Cash 1 choice patterns (see Table 6 for 

individual data), a proportion of the sample not dissimilar to Tversky’s study, in which at least 

5/18 participants had a good fit to the model in the same way. From our perspective, then, this 

warrants a conclusion of replication rather than a failure to replicate. On average the choices of 

these four of Regenwetter et al.’s participants were quite sensitive to changes in dimension 

difference (as measured by the slope parameters of the SAD model, and the unstandardized 

regression coefficients, B, which  ranged from -.11 to -.19, see table 5). Note that for B = -.15, 

choice proportion changes on average by 15 percent for each change in dimension difference. 

However, Cavagnaro and Davis-Stober’s analysis found strong evidence against transitivity for 

only one of these cases (participant four) with the three others either being inconclusive or 

having strong evidence supporting transitivity. Taking all the analyses together, it seems that one 

of the four cases we identified gives unambiguously strong evidence supporting the SAD model 

predicting observed violations of WST, while the other three are inconclusive, since they can be 
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explained by both transitive and intransitive models. In other respects our analysis confirms that 

most participants exhibited transitive preferences. However, a new insight from our analysis is 

that dimensional processing models predicting transitivity were a good fit for over half the 

sample (11/18, 61 percent),  and most of these (8/18, or 44 percent) were consistent with the 

application of simple, take the best heuristics in which only one dimension is processed. Finally, 

inspection of the 3/18 cases for which the SAD model was not a good fit revealed that this was 

because of substantial variability of choice proportions for some particular dimension 

differences. Notwithstanding, we found that dimensional processing models successfully 

accounted for 83 percent of the sample. 

 In Cavagnaro and Davis-Stober’s (2014) study we again find replication of Tversky’s 

(1969) findings, since the two-parameter SAD model predicting violations of WST was a good, 

and the best fit for about one third of participants (10/29), again similar to the proportion of the 

sample in Tversky’s study. However, four of these are inconclusive since Cavagnaro and Davis-

Stober found strong evidence against transitivity in only 6/29 (21 percent). As in Regenwetter et 

al.’s (2011) study, we found here that for a substantial proportion of transitive participants, 

choice data were consistent with the use of simple, one-dimensional heuristics. Finally, a little 

disappointingly, the dimensional models did not have a good fit for 5/29 (17 percent) of cases. 

 Turning to Kalenscher et al.’s (2010) study, although for about one third of participants 

dimensional models were not a good fit to the data, again we find replication of Tversky’s (1969) 

findings. Specifically, for 47 percent of participants (14/30) the SAD model or the LS heuristic 

were a good, and the best fit with observed violations of WST being predicted by these models. 

However, while support for Tversky’s models was unambiguous in seven cases, the other four 

should be seen as inconclusive, since Brown et al. (2015) found that only 21 percent (7/30) of 
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cases strongly supported intransitivity. Thus, both transitive and intransitive models fit the data 

of these four participants. It would be interesting to reinterpret Kalenscher et al.’s evidence 

concerning neural correlates in the light of our classification, bearing in mind that different 

categories imply the processing of more or less information. 

 Overall, then, we have shown how the six studies reviewed replicated Tversky’s (1969) 

initial findings, with about 30 percent exhibiting violations of WST predicted by the SAD model. 

Although in a third of these cases the evidence is inconclusive, since transitive models also fit 

the data well, we conclude that in other two thirds there is unambiguous strong support for 

Tversky’s (1969) models predicting observed violations of WST. 

 

General discussion 

 Previous reviews of Tversky’s (1969) lottery study and its replications have viewed them 

through the lens of transitive models such as the weak utility or random utility models. From this 

perspective, Regenwetter et al. (2010, 2011) interpreted observed intransitive choice cycles as 

type I errors. While Cavagnaro and Davis-Stober (2014) did not concur, they did conclude that 

choice behavior in the lottery task was broadly transitive, such that evaluations of decision 

alternatives are basically stable. In our own review we have challenged this characterization, as 

Tversky did, by looking at the evidence through the lens of dimensional processing models. This 

assumes that the evaluation of decision alternatives can be relative, and can change as the set of 

alternatives under consideration changes. From the dimensional processing perspective, we 

showed how evaluation can be relative, and choices can violate WST, if decision makers process 

dimension differences on both payoff and probability dimensions. However, preferences will be 

transitive and stable if only one of these dimensions is processed. With respect to the latter point, 
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we showed that a substantial proportion of transitive choices were consistent with simple, one-

dimensional heuristics. All this was supported by our exploratory analysis, inspired by Tukey’s 

(1980) approach, and formalized in our specification of the SAD model and its variants, which 

accounted for about 85 percent of the data. 

 We would like to make clear some caveats. First, the SAD model is a testable 

simplification of Tversky’s (1969) extended additive difference model specifically designed for 

his lottery task. Therefore, to test the model in a wider context alternative overall difference 

functions would need to be developed, preferably modelling each subjective dimension 

difference function. Second, our treatment of stochastic transitivity of choice and preference is 

mainly based on WST rather that the TI condition related to random utility models. The 

insightful critique of WST by Regenwetter et al. (e.g., 2010) is important, but we believe that 

retaining WST as a criterion of stochastic transitivity in evaluating Tversky’s extended additive 

difference model for intra-individual preference is justified for the following reasons. Their first 

criticism, that WST is confounded with variability of preference (p.6), is justified for data 

aggregated across individuals, since preferences do vary across individuals. However, the SAD 

model assumes that an individual’s underlying pairwise preferences are not variable, with 

stochastic binary choices predicted by a logistic function of strength of preference. That is, if 

context is fixed, as in Tversky’s lottery paradigm, the model assumes that individual preferences 

between pairs of gambles are invariable but stochastic (see Tversky, 1969). Their second point, 

that WST does not model transitivity in isolation from other axioms of preference is well-argued 

and demonstrated, and we accept that violations of WST could be due to violations of the other 

axioms of a weak order, reflexivity and completeness. However, this only means that violations 

of WST might be due to violations of these other axioms. Turning to their third point, that WST 
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only allows linear preference orders…. and … neglects … transitive relations that are …not 

weak orders, this argues that WST is only a partial test of stochastic transitivity. Their fourth 

criticism is that WST treats probability as a binary category rather than an absolute scale. This 

is true, but the extended additive difference model (and therefore the SAD model) models choice 

probability on a ratio scale, and when WST is treated as a testable consequence of this fully 

probabilistic model its binary status is  not relevant. For the above reasons we conclude that 

despite some limitations WST remains an important criterion of stochastic transitivity. 

Notwithstanding the above, to give a more nuanced comparison of models than we have so far 

been able to achieve, future research could examine the extent to which the SAD model predicts 

observed violations of the TI condition. Our final caveat is to note that our comparison of the 

present analysis with previous ones is only definitive with respect to the majority of cases that 

are interpreted as either unambiguously transitive or unambiguously intransitive. 

  We conclude with some suggestions for further research. First, it is important to 

investigate why some participants’ choices did not fit dimensional models because of variability 

of choice proportions for a given level of dimension difference. It is possible that this is due to 

the use of hybrid dimensional and absolute, or holistic, evaluation of payoffs, probabilities or 

lotteries. This could be explored further with process tracing methods. Second, as discussed 

earlier, it would be instructive to revisit Kalenscher et al.’s (2010) work on neural correlates of 

lottery decision making in the light of our findings. Third, in addition to the need for further 

research in laboratory settings, a natural next step would be to extend the present research to the 

real world to reveal when and why people sometimes are intransitive and sometimes are 

transitive in their choices in certain domains, such as financial investments, consumer choice and 

social preferences. Fourth, our analysis of the four-parameter cubic model found that this 
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approximation to a lexicographic semiorder was only in a few cases significantly better at 

predicting violaions of WST than the SAD model. A direct comparison of the SAD model with 

Davis-Stober’s (2012) stochastic lexicographic models would be a better way to clarify the 

predictive power of the two models (Davis-Stober, Brown & Cavagnaro, 2015; Regenwetter, 

Dana, Davis-Stober & Guo, 2011). Related to this, it may also be useful to directly compare the 

SAD model with other developments of Tversky’s additive difference model (e.g. δoomes, 

2010; Rubinstein, 1988; Leland, 1994). Since these developments have been focused on 

deterministic representations (cf. Loomes, 2010, p. 1), an interesting task for future research 

would be to evaluate the predictive performance of the SAD model compared to stochastic 

versions of these more recent models. In this we are consonant with Loomes (2010, p. 14)   who 

stated with regard to his PRAε model that “the incorporation of a stochastic element  … could 

be profitably investigated in future research”. 

 In conclusion, we have argued that an exploratory, descriptive analysis is essential for a 

rigorous investigation of the replicability of empirical findings. A second requirement is to 

compare any reanalysis from a new perspective with that from the original perspective. This is 

what we have done, and thereby provided clear evidence that Tversky’s (1969) original findings 

are robust and replicable, and that his contribution to theory with respect to dimensional 

processing in decision making is valid and insightful. 
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Appendix 1: Six replications of Tversky’s (1969) lottery experiment 

Earlier replications 

 Three early replications were reviewed by Regenwetter et al. (2011) and by Cavagnaro 

and Davis-Stober (2014): those by Montgomery (1977) and Ranyard (1977); and the partial 

replication by Tsai and Böckenholt (2006). 

 In Montgomery’s (1977) replication, 21 Swedish students undertook the same pre-test as  

that used by Tversky, choosing from a variation of the original lottery set in which the payoffs 

were from 40 to 50 SEK in steps of 2.50 SEK. Seven participants met Tversky’s selection 

criterion, but because of resource limitations only five participated in εontgomery’s main study. 

This was resource intensive since think aloud protocols as well as choice data were elicited and 

analyzed. The five selected participants undertook a single session in which each pair from the 

lottery set was presented ten times, interspersed with filler trials. Montgomery found that the 

choice data from all of them violated WST, although no significance test was applied. 

Regenwetter et al. (2011) reanalyzed the data and reported (in their online supplement) that 

choices from four participants significantly violated the TI condition at the 5% level or lower. 

However, Cavagnaro and Davis-Stober (2014) found strong evidence against transitivity for all 

five participants. 

 Ranyard (1977) carried out two relevant experiments with British students (N = 8; 20) in 

which the lottery payoffs were also changed to local currency, from 80 to 100 pence in steps of 5 

(100 pence = 1 GBP)5. In the first, in individual sessions for each participant, all pairs from the 

 
5 SŝŶĐĞ ƚŚĞ ƐĞĐŽŶĚ ĞǆƉĞƌŝŵĞŶƚ ĚŝĚ ŶŽƚ ƌĞƉůŝĐĂƚĞ TǀĞƌƐŬǇ͛Ɛ ;ϭϵϲϵͿ ĞǆƉĞƌŝŵĞŶƚ ŝƚ ǁŝůů ŶŽƚ ďĞ ƌĞǀŝĞǁĞĚ ŚĞƌĞ͘ 
Regenwetter et al. (2011) and Cavagnaro & Davis-Stober (214) reanalyzed it erroneously as if it were a replication 

ŽĨ TǀĞƌƐŬǇ͛Ɛ͘ 
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lottery set were presented with eight replications, interspersed with filler trials. The lottery 

display format was changed, with both S and P information presented numerically. Tversky 

(1969) had chosen to present the latter in analogical form as sectors of a circle (representing a 

wheel of fortune with a spinner that could fall in either win or not win sectors) with their sizes 

determining probabilities of outcome. This was to induce an LS-type strategy in which small 

differences in S, presented numerically, were clearer than small differences in P. However, 

Ranyard argued that small sector differences may have been difficult to discriminate and 

consequently, intransitive cycles of choice may have to some extent been perceptual rather than 

preferential phenomena. He therefore changed the lottery format, displaying values on both 

dimensions clearly as numbers, in order to test whether Tversky’s findings could be replicated 

when perceptual factors were controlled. After the main session, participants were asked how 

they had chosen from the target lottery pairs. They were classified as LS if they gave a 

“spontaneous and unambiguous statement that the basis for choice switched from probability to 

payoff as probability differences changed” (Ranyard, 1977, p. 454). On this basis two of the 

eight participants were classified in the LS group. For each choice pattern a measure of degree of 

departure from a transitive order, known as Slater’s i, was calculated (Ranyard, 1976). This is the 

minimum number of choices that must be changed to produce a transitive order. As predicted, 

the median value of this statistic was significantly higher in the LS compared to the non-LS 

group. It should be noted that Ranyard (1977) analyzed the data from all participants but 

presented the individual data of the LS group in order to show how their choices compared to 

Tversky’s. Regenwetter et al.’s (2011) reanalysis of the two δS participants of Ranyard’s 
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experiment 1, reported in their online supplement, found that one of these two choice patterns 

falsified the linear order mixture model by significantly violating the TI condition at the p < .05 

level. However, Cavagnaro and Davis-Stober (2014) found strong evidence against transitivity in 

both cases. 

 The partial replication by Tsai and Böckenholt (2006) differed from Tversky’s (1969) 

study in several respects: (1) only four of the five lotteries were presented (a,b,c and d in Table 

1), with payoffs multiplied by four to take account of inflation; (2) each of the six pair 

comparisons of these lotteries were presented 120 times across several sessions per day for five 

days; (3) the five student participants were not screened using Tversky’s pre-test procedure; and 

(4) unlike the other replications, they were motivated with a payment not dependent on their 

lottery choices6. One aim of the study was to compare an independent response (IR) with 

dependent response (DR) models. DR models assume that the utility of a lottery is dependent of 

the item with which it is compared, whereas IR models assume that they are independent. The 

authors did not analyze the overall binary choice proportions, focusing instead on the 

correlations between choices across pairs presented. They concluded that the pattern of 

correlations that they observed were consistent with a change in choice strategy for pairs of 

adjacent lotteries (i.e. (a,b), (b,c) etc.) compared to non-adjacent pairs. Despite these findings 

supporting Tversky’s general position, Regenwetter et al.’s (2011) reanalysis of the five 

participants’ overall binary choice proportions found that the data were consistent with their 

transitive preference model, since no significant violations of the TI condition were found. 

Cavagnaro and Davis-Stober’s (2014) analysis confirmed this. 

 
 6 We are grateful to Ulf Böckenholt for clarifying these methodological details in a personal communication.  
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Regenwetter et al.’s (2011) replication  

 Regenwetter et al. (2011) replicated and extended Tversky’s (1969) lottery experiment 

with 18 US student participants. In contrast to Tversky’ experiment, no pre-test was given and all 

carried out the main experiment. Three lottery sets were presented: (1) Cash 1, current price 

equivalents of Tversky’s original lotteries, from $22.40 to $28.00 in steps of $2.60, combined 

with the original P values; (2) Cash 2, similar P values (.28 to .44 in steps of .04) with S values 

varied so that the lotteries had equal expected value ($20.00, $22.00, $24.44, $27.50 and 

$31.43); (3) a set (not discussed further here7) with non-monetary prizes of equal cash value, 

such as about 15 sandwiches. In a single session for each participant, the ten lottery pairs from 

all three sets were presented 20 times, with filler trials interspersed (818 choices in total).  Rather 

than weak stochastic transitivity, the triangle inequalities condition was tested. Regenwetter et al. 

reported that in the first lottery set the linear order mixture model could be rejected for only one 

choice pattern because triangle inequalities were significantly violated (p < .01). The same was 

true for the second lottery set, and interestingly, it was the same participant. In their 2010 paper, 

the authors presented a comparison of violations of TI and WST on their data. This found that 

WST was violated significantly by one participant in the Cash 1 set and by two different 

 
7 This data was excluded because the lottery set departs in a non-trivial way fƌŽŵ TǀĞƌƐŬǇ͛Ɛ ŽƌŝŐŝŶĂů ƉĂƌĂĚŝŐŵ͘ On 

the positive side, the noncash payoffs were real loƚƚĞƌǇ ŽƵƚĐŽŵĞƐ ;ƵŶůŝŬĞ TǀĞƌƐŬǇ͛Ɛ ;ϭϵϲϵͿ ĞǆƉĞƌŝŵĞŶƚ Ϯ ĐŚŽŝĐĞ 
alternatives which were hypothetical). However, they do not have a clear dimensional structure, unlike money 

which is a single quantitative dimension. Consequently, the NLAD strategy is not readily applicable in this context. 

Furthermore, the observed choice behaviour in this set was quite different to that in the cash sets: for many 

participants the choice seems to have been very strongly determined by the noncash prizes, and there is some 

indication that preferences in the binary choice task were reversed for some prizes compared to preferences in the 

prior ranking task. If explored further, this may turn out to be a preference reversal phenomenon, or due to the 

ranking procedure being unreliable. 
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participants in the Cash 2 set. Cavagnaro and Davis-Stober’s (2014) similarly found strong 

evidence against transitivity for only two participants in each of sets Cash 1 and 2. 

Cavagnaro & Davis-Stober (2014): a review, a replication and an extension 

 This paper follows up Regenwetter et al. (2011) by carrying out a more extensive 

analysis of previous replications of Tversky’s (1969) experiment 1, and by reporting a new 

replication and extension with 29 student participants. This experiment had a 2 x 2 factorial, 

repeated-measures design with one factor being lottery set (set 1 versus set 2), and the other time 

pressure (with versus without). Thus, each participant carried out the task twice with each lottery 

set, once under time pressure and once with no time pressure. Lottery set 1 was that used by 

Tversky, with win amounts adjusted to take account of inflation. Set 2 had payoffs varied so that 

expected win increased with win amount, in contrast to set 1 in which it increased with 

probability of winning. The experiment was carried out in a single session, with all critical pairs 

presented 12 times to give 480 choices, interspersed with filler trials. The participants’ standard 

payment was increased by the outcome of a randomly selected trial. 

 Whereas Regenwetter et al. (2011) focused on testing the goodness of fit of the mixture 

model of transitive preferences (MMPT), this paper carries out a comparative analysis of four 

models of transitive preference: MMPT, weak stochastic transitivity (WPT), moderate stochastic 

transitivity (MST) and strong stochastic transitivity (SST). These were compared with a baseline, 

encompassing model which permits intransitive preference, denoted M1. The authors adopt the 

Bayes factor, defined as ‘the ratio of the marginal likelihoods of two models, derived from 

Bayesian updating’, as the criterion for model evaluation. They argue that ‘strong evidence in 

favor of M1 over any other [transitive] model means that the restrictions imposed by that model 

are not supported’ (p.108). When comparing a transitive model against the baseline, a value 
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greater than 3.16 defined strong evidence in favor of the transitive model, whereas a value less 

than .316 is taken as strong evidence against, and in favor of the baseline. When more than one 

transitive model has strong evidence in favor, the one with the highest value is considered to 

have the best fit. When all Bayes factors are between the above values the evidence is 

inconclusive. For set 1 without time pressure, which directly replicated Tversky’s (1969) 

experiment, the authors found that although there was strong evidence in support of one or other 

of the transitive preference models for most participants (19/29), there was strong evidence in 

favor of M1, which allows intransitivity, in six cases (21 percent), while the evidence from four 

was inconclusive. The findings for the other three conditions were similar. 

Kalenscher et al.’s (2010) replication 

 Kalenscher et al. (2010) extended previous replications of Tversky’s (1969) lottery task, 

notably by measuring neural correlates of choice behavior. To this end, the 31 university-

recruited Dutch participants carried out the task in an fRMI scanner. They were right-handed, 

had normal or corrected normal vision, and were screened to ensure they were fit to participate 

under these conditions. In addition to a 25 euro participation fee, they were paid the outcome of 

the lottery they chose on a randomly selected trial. Tversky’s lottery set was modified such that 

probability of win was decimalized, varying from .29 in steps of .04 to .41, and presented 

graphically as a proportion of a vertical bar. In addition, the win amounts were presented in 

USD, from 400 in steps of 25 to 500, although the actual win was paid in euro converted at a rate 

100 USD to one euro. Each pair from the lottery set was presented 20 times. These critical trials 

were interspersed with fillers in which one lottery dominated the other, since either the winning 

amounts or their probabilities were the same. This gave a total of 440 trails. There was a small 



INTRANSITIVE AND TRANSITIVE PREFERENCES 

  

48 

number of missing choices because participants occasionally failed to respond within the 4s 

allowed.  

 The researchers measured degree of intransitivity with an index based on the number of 

preferences that had to be changed to eliminate violations of WST, which was specified a little 

differently to earlier, with .4 ≤ p(a,b) ≤ .6 defining a ~ b. The index was normalized by dividing 

the number of changed preferences by the maximum possible, so that it varied from 0 to 1. 

Participants were classified as intransitive if the index was ≥ .3, benchmarked from a simulation 

of the choice behavior resulting from a stochastic version of the transitive expected utility model. 

Four participants were discarded from full analysis because of excessive head movements in the 

scanner, although choice data was accepted for three of them. For this sample of 30, 18 

participants were classified as intransitive and 12 as transitive. Subsequently, however, Brown, 

Davis-Stober & Regenwetter (2015) applied Bayes factor analysis to this data and concluded that 

there was strong evidence of transitive preferences for a larger proportion, 14/30, and strong 

evidence of intransitivity for a smaller proportion, 7/30, with evidence from the remaining nine 

participants being inconclusive. Nevertheless, there was significant overlap in the two 

classifications, since all of Brown et al.’s intransitive participants’ choices were classified the 

same by Kalenscher et al., and of Brown et al.’s 14 transitive participants, 9 were so classified by 

Kalenscher et al. Another interesting behavioral finding was that on average for intransitive 

participants the proportion of choice for the higher win probability was strongly related to 

dimension difference, whereas for transitive participants it was not. 
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Tables 
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Table 1. Tversky’s (1969) lottery set and proportions of row lottery choices over the column ones 

exhibiting violations of WST predicted by: (1) Lexicographic Semi-order heuristics 

(LS1, LS2); and (2) Non-linear additive difference strategies (SAD1, SAD2) 

 
Lotteries Dimensional processing model 

LS1 LS2 

P S Label a b c d e  a b c d e 

7/24 

8/24 

9/24 

10/24 

11/24 

5.00 

4.75 

4.50 

4.25 

4.00 

a 

b 

c 

d 

e 

- .8 

- 

.8 

.8 

- 

.2 

.8 

.8 

- 

.2 

.2 

.8 

.8 

- 

- .2 

- 

.8 

.2 

- 

.8 

.8 

.2 

- 

.8 

.8 

.8 

.2 

- 

 SAD1  SAD2 

P S Label a b c d e a b c d e 

7/24 

8/24 

9/24 

10/24 

11/24 

5.00 

4.75 

4.50 

4.25 

4.00 

a 

b 

c 

d 

e 

- .8 

- 

.5 

.8 

- 

.3 

.5 

.8 

- 

.1 

.3 

.5 

.8 

- 

- .3 

- 

.5 

.3 

- 

.7 

.5 

.3 

- 

.9 

.7 

.5 

.3 

- 

 
Note. 

(1) the five lotteries of the set have the same form, win S dollars with probability P, 
otherwise win nothing, e.g. in lottery a, $5.00 can be won with probability 7/24.  
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Table 2. Tversky’s (1969) lottery set and observed proportions of row lottery choices (over the 

column ones) for two of his participants 

 

Lotteries Participant 

41 8 

P S Label a b c d e  a b c d e 

7/24 

8/24 

9/24 

10/24 

11/24 

5.00 

4.75 

4.50 

4.25 

4.00 

a 

b 

c 

d 

e 

- .50 

- 

.45 

.65 

.20 

.35 

.70 

- 

.05 

.10 

.40 

.85 

- .60 

- 

.70 

.65 

- 

.75 

.75 

.60 

- 

.85 

.85 

.80 

.40 

- 

 
 

Note: 1This participant's choice pattern  significantly violated weak stochastic transitivity on 

Tversky's (1969) test, although Regenwetter et al. (2011) found that it did not significantly 

violate the triangle inequalities condition.  
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Table 3. Reanalysis of Tversky (1969): descriptive statistics, ML parameter estimation and goodness of fit (-2lnLL) of the models M0, SAD, 

CCP, and RC (number of parameters in parentheses) 

 
Part. mean 

cp 
CI N 

out. 
B N WST a0 a1 M0(10) SAD (2) CCP (1) RC (0) Category 

1 .62 .40-.80 3 -0.21 0,2,1 2.52 -0.98 31.75 33.73 72.44 84.07 SAD INT 

2 .53 .35-.75 5 -0.12 1,1,0 1.16 -0.52 33.46 44.42 57.19 57.91 SAD INT 

3 .69 .50-.85 4 -0.20 0,1,1 2.94 -1.00 28.38 40.65 78.49 108.12 SAD INT 

4 .43 .25-.65 5 -0.23 3,2,1 1.97 -1.22 30.77 37.98 87.24 91.76 SAD INT 

5 .60 .40-.80 2 -0.10 0,2,0 1.30 -0.44 33.27 43.87* 53.06 61.11 NM 

6 .72 .55-.90 2 -0.18 0,0,1 2.97 -0.95 28.13 42.84 76.42 114.64 SAD INT 

7 .59 .40-.80 0 0.02 1,0,0 0.20 0.08 33.93 42.68 43.02 49.53 CCP(O) 

8 .70 .50-.85 5 0.10 0,0,0 -0.22 0.55 32.08 37.07 48.19 79.43 SAD WST 

 
Notes: 
(1) Part., participant number 
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(2) Mean cp, mean choice proportion of the row lottery chosen over the column lottery. 
(3) CI, confidence interval, the lower and upper bound of choice proportion for 95% CI. 
(4) N outliers, number of choice frequencies outside the CI for the mean cp.  
(5) B is the slope of the regression equation (B unit change in cp for 1 unit change in level of difference) nb: if B = .08, for every change 
difference of 1, choice proportion changes by 7.5%. 
(6) N WST, number of triads out of three (a,b,c), (b,c,d), (c,d,e); number of 4-tples out of two (a,b,c,d), (b,c,d,e), and number of 5-tples out of 
one (a,b,c,d,e) violating WST in a manner predicted by Tversky (1969). 
(7)  -2LL values in bold-italics indicate the best fitting model which is: (1) a good fit, i.e. the fit of the unrestricted model is not significantly 
better; and in relation to the other variants (2) is significantly better than models with fewer parameters; and (3) models with more parameters 
are not significantly better. (All based on likelihood ratio tests with degrees of freedom the difference in number of parameters of the two models 
tested, test statistic difference in -2LL of the two models, assumed to be distributed as chi-square).  
(8) Where none of the three models is a good fit on the above criteria, the -2LL value underlined indicates the best fitting model of these (code in 
parentheses). In these cases the unconstrained model is considered the overall best fitting model (indicated by bold/italic font).  
 
* For participant 5, while the SAD model is a good fit, the cubic model is significantly better, in this case indicating a nonmonotonic pattern of 
choice proportions.  
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Table 4. Reanalysis of earlier replications: Tsai and Böckenholt (2006) r = 120; Montgomery (1977) r = 10; Ranyard (1977) r = 8. Descriptive 

statistics, ML parameter estimation and goodness of fit (-2lnLL) of the models M0, SAD, CCP and RC (number of parameters in 

parentheses)  

Part. mean 
cp 

CI N 
out. 

B N WST a0 a1 M0(10) SAD (2) CCP (1) RC (0) Category 

Ts1 .50 .40 - .60 2 -.09 2,1 0.55 -0.34 31.33 38.56  49.73 49.73 SAD INT 

Ts2 .49 .40 - .60 0 -.13 2,1 0.89 -0.55 31.22 33.30  62.17 62.26 SAD INT 

Ts3 .53 .45 - .62 0 -.04 0,1 0.37 -0.16 31.41 33.66 36.23 38.03 RC 

Ts4 .51 .40 - .60 1 -.12 1,1 0.85 -0.48 31.29 33.32  55.30 55.86 SAD INT 

Ts5 .50 .40 - .60 0 -.04 1,1 0.27 -0.15 31.43 34.59 36.94 36.97 RC 

M1 .68 .40 - .90 3  -.22 0,2,0 3.16 -1.13 21.25 25.08  44.09 54.10 SAD INT 

M2 .20 .30 - .80 5 -.30 1,2,1 3.40 -1.69 18.55 28.08  61.69 61.89 SAD INT 

M3 .52 .30 - .80 6  -.36 2,2,1 4.83 -2.46 14.50 23.12  72.96 73.16 SAD INT 

M4 .45 .20 - .70 7  -.37 3,2,1 5.00 -2.96 13.21 19.75  80.14 80.94 SAD INT 

M5 .48 .20 - .70 3  -.16 0,1,0 1.27 -0.64 21.62 42.04  49.50 49.50 (SAD INT) 

R1 .59 .25 - .88 3  -.25 0,1,1 2.86 -1.23 20.29 29.45  51.60 54.06 SAD INT 

R2 .36 .13 - .63 6 -.31 3,2,1 4.30 -3.00 13.26 23.11  72.31 78.43 SAD INT 
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Note: See Table 3 notes for explanations of column contents 
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Table 5. Reanalysis of Regenwetter et al. (2011) Cash 1, r = 20. Descriptive statistics, ML parameter estimation and goodness of fit (-2lnLL) of 

models M0 (10), SAD (2), CCP (1), and RC (0) (number of parameters in parentheses) 

Part. mean cp CI N out. B N WST a0 a1 M0 (10) SAD (2) CCP (1) RC (0) Category 

1 .32 .15-.50 5   -.17 2,1,0 1.05 -0.98 30.82 39.11 69.03 94.06 SAD 
INT 

2 .82 .65-.95 2     .01 0,0,0 1.10 0.21 26.76 43.54 44.80 133.50 (CCP(S)) 
 

3 .01 .00-.05 0    -.01 0,0,0       CCP(P) 
 

4 .42 .20-.60 8*   -.24 1,1,0 2.12 -1.30 26.85 74.7 129.00 133.52 (SAD 
INT) 

5 .04 .00-.10 0    -.02 0,0,0       CCP(P) 
 

6 .26 .10-.40 5    -.11 2,1,0 1.90 -1.84 24.51 34.27 90.25 140.40 SAD 
INT 

7 .10 .00-.20 0    -.02 0,0,0 -1.90 -0.18 24.06 26.44 26.98 178.66 CCP(P) 
 

8 .02 .00-.10 1    -.02 0,0,0       CCP(P) 
 

9 .37 .20-.60 2    -.01 0,0,0 -0.51 -0.02 33.18 46.87 46.89 61.65 CCP(O) 
 

10 .07 .00-.15 0    -.04 0,0,0       CCP(P) 
 

11 .03 .00-.10 1     -.03 0,0,0       CCP(P) 
 

12 .40 .20-.60 4    -.19 3,2,1 1.40 -0.96 31.28 44.23 77.51 85.57 SAD 
INT 

13 .36 .15-.55 0    -.10 0,0,0 0.32 -0.47 32.54 46.32 55.39 71.28 SAD 
WST 

14 .99 .95-1.00 0    .01 0,0,0       CCP(S) 
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15 .25 .10-.40 2   -.10 0,0,0 0.13 -0.65 30.58 35.57 48.28 98.44 SAD 

WST 
16 .09 .00-.20 2     .07 0,0,0 -4.38 0.85 15.35 36.23 48.01 208.94 (SAD 

WST) 
17 .59 .40-.80 1  -.11 1,1,1 1.35 -0.48 33.01 45.03 56.01 62.52 SAD 

INT 
18 .34 .15-.55 1   -.10 0,0,0 0.29 -0.52 32.42 37.90 48.45 72.09 SAD 

WST 
 
 

Note: See Table 3 notes for explanations of column contents 
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Table 6. Lottery set and proportions of row lottery choices over the column ones for some 

participants classified as SAD INT choice patterns: top panel, Tsai and Böckenholt 

(2006); bottom panel, Regenwetter et al. (2011) 

 
Lotteries Participant 

1 2 

P S Label a b c d   a b c d  

7/24 

8/24 

9/24 

10/24 

 

20 

19 

18 

17 

 

a 

b 

c 

d 

- .61 

- 

.47 

.52 

- 

.43 

.38 

.58 

- 

 

 

 

 

- .53 

- 

43 

.63 

- 

.33 

.43 

.58 

- 

 

 

 

 

 

 12  17 

P S Label a b c d e a b c d e 

7/24 

8/24 

9/24 

10/24 

11/24 

28.00 

26.60 

25.20 

23.80 

22.40 

a 

b 

c 

d 

e 

- .50 

- 

.40 

.80 

- 

.25 

.45 

.65 

- 

.15 

.05 

.20 

.55 

- 

- .65 

- 

.50 

.90 

- 

.40 

.40 

.70 

- 

.40 

.55 

.75 

.65 

- 

 
Note. 

(1) The four or five lotteries of the set have the same form, win S with probability P, 
otherwise win nothing, e.g. in lottery a (bottom panel), $28.00 can be won with 
probability 7/24.  
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Table 7. Reanalysis of Cavagnaro & Davis-Stober (2014) Set 1, no time pressure (r = 12): Descriptive statistics, ML parameter estimation and 

goodness of fit (-2lnLL) of the models M0 (10), SAD (2), CCP (1) and RC (0)  (number of parameters in parentheses) 

Part. mean 
cp 

CI N 
out. 

B N 
WST 

a0 a1 M0 (10) SAD (2) CCP (1) RC (0) Category 

1 .26 1-6 1 -.11 0,0,0 0.17 -0.67 24.38 32.61  40.68 69.92 SAD WST 

2 .55 4-10 2 -.33 2,2,1 2.42 -1.1 26.72 30.46  58.77 59.97 SAD INT 

3 .38 2-8 8 -.30 1,1,0 3.54 -2.36 16.73 43.42  104.81 111.40 SAD INT 

4 .20 0-5 3 -.20 1,0,0 4.99 -5.00 13.308 13.01  66.08 112.34 SAD WST 

5 .07 0-2 1 -.07 0,0,0       CCP(P) 

6 .08 0-2 0 -.01 0,0,0       CCP(P) 

7 .14 0-4 2 -.12 0,0,0 0.93 -1.80 13.84* 30.03  48.56 117.00 NM 

8 .31 1-6 8 -.25 3,2,1 3.93 -3.41 14.85 24.19  84.32 111.49 SAD INT 

9 .58 4-10 3 -.19 1,1,1 2.08 -0.86 25.88 45.24  63.99 67.34 (SAD INT) 

10 .27 1-6 0   .03 0,0,0 -1.26 0.16 25.57 38.92  39.30 66.47 CCP(O) 

11 .03 0-1 1 -.00 0,0,0       CCP(P) 

12 .52 3-9 3 -.23 1,2,3 2.19 -1.06 26.65 33.24  59.46 59.76 SAD INT 

13 .12 0-3 0 -.09 0,0,0 0.38 -1.55 15.88 19.25  32.37 112.27 SAD WST 

14 .39 2-8 1 -.18 1,2,1 1.30 -0.93 25.59 33.73  52.42 58.10 SAD INT 

15 .30 1-6 5 -.25 1,0,0 2.89 -2.34 16.74 34.32  84.00 103.74 (SAD INT) 

16 .63 5-10 0 -.10 1,0,1 1.61 -0.57 27.97 34.04  43.04 48.71 SAD INT 

17 .05 0-2 1 -.05 0,0,0       CCP(P) 

18 .37 2-7 9 -.34 3,2,1 5.00 -3.46 13.05 24.16  117.26 124.84 SAD INT 

19 .28 1-6 5 -.23 3,2,1 2.57 -2.19 18.86 26.91  71.19 94.49 SAD INT 

20 .10 0-3 1 -.06 0,0,0 -0.71 -0.88 13.13 30.17  35.57 123.90 (SAD WST) 
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21 .02 0-1 0 -.02 0,0,0       CCP(P) 

22 .05 0-2 1 -.05 0,0,0       CCP(P) 

23 .01 0-1 0 -.01 0,0,0       CCP(P) 

24 1.0 0-0 0  .00 0,0,0       CCP(S) 

25 .44 2-8 3 -.18 2,2,3 1.42 -0.86 27.00 37.20  54.82 56.46 SAD INT 

26 .54 3-9 6 -.28 0,2,1 2.99 -1.43 25.22 29.39  70.31 71.14 SAD INT 

27 .17 0-4 2 -.14 0,0,0 1.96 -2.46 16.44 17.75  46.68 104.90 SAD WST 

28 .36 2-7 0 -.04 0,0,0 -0.22 -0.19 28.40 33.54  34.46 44.22 CCP(O) 

29 .31 1-6 6 -.28 2,1,0 4.36 -3.25 13.16 36.88  110.31 123.90 (SAD INT) 

 

Note: See Table 3 notes for explanations of column contents 
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Table 8. Reanalysis of Kalenscher et al. (2010), r = 20: Descriptive statistics, ML parameter estimation and goodness of fit (-2lnLL) of the 

models M0 (10), SAD (2), CCP (1), and RC (0) (number of parameters in parentheses) 

Part. mean 
cp 

CI N 
out
. 

B N 
WST 

a0 a1 M0 (10) SAD (2) CCP (1) RC (0) Category 

1 .46 6-14 6   -.38 3,2,1 2.93 -1.66 27.22 44.43  122.39 123.67 (SAD INT) 

2 .68 10-17 6   -.41 0,1,1 4.87 -1.89 20.84 37.63  132.12 157.15 (SAD INT) 

3 .94 17-20 0   -.01 0,0,0       CCP(S) 

4 .40 4-12 9   -.45 3,2,1 5.00 -3.28 19.19 32.17  185.89 193.94 SAD INT 

5 .66 9-17 3    -.16 0,1,1 1.77 -0.54 31.98 45.48  58.21 79.06 SAD INT 

6 .31 3-10 6    -.33 3,2,1 3.26 -2.56 21.27 40.86  134.35 163.97 (SAD INT) 

7 .69 10-17 6   -.37 0,1,1 4.42 -1.64 25.41 31.98  111.03 140.65 SAD INT 

8 .44 5-13 2    .07 0,0,0 -0.67 0.20 33.18* 57.17 59.21 62.59 NM 

9 .78 12-19 1   -.21 0,0,1 3.30 -0.97 27.25* 51.57  80.32 144.31 LS INT 

10 .55 7-15 7    -.39 1,2,1 3.43 -1.61 26.773 47.27  127.48 129.90 SAD INT 

11 .06 0-3 0     -.01 0,0,0       CCP(P) 

12 .74 12-19 2   -.22 0,0,1 3.87 -1.26 25.94* 43.00  94.14 142.18 LS INT 

13 .77 12-19 3   -.24 0,0,1 4.80 -1.54 22.49* 39.82  104.14 165.69 LS INT 

14 .54 7-15 3   -.20 1,0,0 1.46 -0.64 31.70 57.79  76.37 77.99 SAD INT 

15 ,950 17-20 1    .05 0,0,0       CCP(S) 

16 .50 6-14 1    -.07 0,0,0 0.42 -0.22 33.81* 49.04 51.47 51.49 NM 

17 .51 7-15 4   -.18 2,2,0 1.20 -0.57 32.45* 57.58 72.54 72.72 NM 

18 .16 0-6 1   -.09 0,0,0 -0.54 -0.62 27.25 30.86  38.99 140.38 SAD WST 

19 .63 8-16 3   -.19 0,1,1 1.80 -0.62 31.72 45.78  62.63 76.31 SAD INT 
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20 .77 12-19 6   -.37 0,1,1 5.00 -1.65 18.84 32.61  119.64 181.18 SAD INT 

21 .59 7-15 1    .03 0,0,0 0.18 0.08 33.64* 48.57  48.90 54.71 NM 

22 .39 4-12 5   -.26 2,1,0 1.58 -1.11 31.34 38.80  79.10 89.77 SAD INT 

23 .29 3-10 3   -.14 0,0,0 0.20 -0.57 31.36 41.57  52.95 87.58 SAD WST 

24 .57 7-15 3   -.15 1,0,0 1.21 -0.46 32.28 60.50  70.42 74.36 (SAD INT) 

25 .47 6-14 3   -.32 3,2,1 2.19 -1.22 29.47 41.54  93.52 94.50 SAD INT 

26 .75 12-19 3   -.05 0,0,0 1.53 -0.21 28.00 58.52  60.20 112.52 (CCP(O)) 

27 .07 0-3 0   -.05 0,0,0       CCP(P) 

28 .26 3-10 6   -.21 1,0,0 2.14 -2.00 23.82 36.53  98.67 146.71 SAD INT 

29 .22 2-9 3   -.14 0,0,0 0.63 -1.12 26.84 32.78  58.79 127.84 SAD WST 

30 .78 12-19 2    .04 0,0,1 1.79 -0.26 26.84 60.09  62.40 128.89 (CCP(O)) 

 
Note: See Table 3 notes for explanations of column contents 

* For the seven participants asterisked in the M0 column the cubic model was a good, and the best, fit. Inspection of the configuration of choice 
proportions revealed that intransitive preferences consistent with the LS heuristic were observed in three cases (classified as LS INT) and 
transitive preferences with a nonmonotonic relationship between choice proportion and dimension difference were observed in four cases 
(classified as NM).  
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Table 9. Percent of participants in each category (seven studies, total N = 129). 

Study  Category N 

  SAD/LS 

INT 

SAD 

WST 

CCP RC M0/NM UNKNOWN  

Tversky (1969) 27.8 5.6 5.6  5.6 55.6 18 

Montgomery (1977) 19.0    4.8 76.1 21 

Ranyard (1977) 25.0     75.0 8 

Tsai & Böckenholt (2006) 60.0   40.0   5 

Regenwetter et al. (2011) 22.2 16.7 44.4  16.7  18 

Cavagnaro & Davis-Stober (2014) 34.5 13.8 34.5  17.2  29 

Kalenscher et al. (2010) 46.7 6.7 13.3  33.3  30 

Frequency total  42 10 23 2 20 32 129 

Percent  32.6 7.8 17.8 1.6 15.5 24.8  
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Figures 
 

 

 

.  
 

Figure 1. Example dimension subjective differences as a function of difference level: linear for 

the payoff dimension, ĳs(į) = į, and nonlinear for the probability dimension, ĳp(į) = 

.4į2. 
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 Figure 2. Overall subjective difference functions of the SAD model predicting intransitive 

preferences (a, b) or transitive preferences (c, d). 
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Figure 3. Overall subjective difference functions for three versions of the CCP model predicting 

transitive preferences, and the random choice model. 
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