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Model Structure 

Microsimulation Model in Cancer of the Bowel (MiMiC-Bowel) is an individual patient simulation 

model built in the R programming language, which has been designed to enable comparison of the 

effectiveness, cost-effectiveness and resource use of different personalised screening and 

surveillance strategies for colorectal cancer (CRC). The model simulates the life course of patients 

representing the population of England, who each have a set of individual characteristics which 

determines their cancer risk and response to screening and surveillance. The model has a lifetime 

horizon and takes an NHS perspective. 

Underpinning the model is a CRC natural history module with nine mutually exclusive health states: 

Normal Epithelium; Low Risk Adenoma; High Risk Adenoma; CRC Dukes Stage A; CRC Dukes Stage B; 

CRC Dukes Stage C; CRC Dukes Stage D; CRC Death; Other Cause Death. In each time cycle of the 

model (set to one year as default) individuals have the probability of transitioning between health 

states as shown in Figure 1. Only one transition is possible within each time cycle. Low and high-risk 

adenoma health states are defined using the British Society of Gastroenterology (BSG) guidelines for 

endoscopic surveillance following adenoma removal 1. The high-risk adenoma health state includes 

persons with at least 3 small adenomas or at least one adenoma of size >1cm. The low-risk adenoma 

health state includes persons with 1-2 small (<1cm) adenomas. This means that the model does not 

simulate progression of individual adenomas, instead taking the perspective of an individual’s overall 

risk without having to define their exact status in terms of number, size and type of adenomas. Most 

CRC develops through adenomas; however, there is thought to be some development of CRC 

through serrated pathways, which is also reflected in the model structure by transition from normal 

epithelium directly to CRC. 

Figure 1: Structure of the CRC natural history model health states 

 

Once an individual develops CRC, they have a probability of progressing to the next stage. At each 

stage there is a probability that the individual will be diagnosed either through screening, 



surveillance or via symptomatic/chance presentation. Diagnosed CRC is not represented as a 

separate set of mutually exclusive health states in the model, but is flagged separately. This means it 

is possible for an individual to both progress to the next health state and be diagnosed within a 

single model cycle. However, it is assumed that CRC stops progressing after diagnosis. After CRC 

diagnosis individuals are also no longer eligible for the modelled screening and surveillance 

pathways, instead following a disease pathway which includes treatment costs, utility reductions 

and reduced survival compared to the general population. 

The model has two absorbing states. Whilst all individuals have a probability of dying from other 

causes, only those with CRC can die from CRC. It is possible to die from CRC Stage D in the model 

without prior diagnosis. In this case it is assumed that individuals are diagnosed within the same 

time cycle (i.e. just before or after death). It is also possible that individuals can die from CRC Stage D 

but are never diagnosed. It is assumed that this probability increases with age. In this case it is 

assumed that their death would be recorded as due to other causes, and therefore this is modelled 

through transition to other cause mortality. 

The screening, surveillance and symptomatic diagnosis modules of the model sit on top of the 

natural history model and feed into it (see Figure 2). Two types of screening are modelled; flexible 

sigmoidoscopy (FS) and Faecal Immunochemical Test (FIT), together with further investigation using 

colonoscopy or computerised tomography colonography (CTC). Whilst the screening and 

surveillance pathways are hard coded (see Screening and Surveillance sections for details), the 

model allows flexible specification of eligibility criteria, enabling a large number of different 

screening strategies, including personalised strategies, to be easily modelled. 

Figure 2: Model structure diagram showing how information feeds across the different model 

modules  

 

Following model setup, the model simulation progresses by first evaluating the natural history 

transitions that happen in that cycle (Figure 3). The next step is to decide who is diagnosed with CRC 

symptomatically, then if screening is selected, the screening and surveillance modules of the model 



are run. Finally, model outcomes are gathered. The process is repeated each cycle until the model 

time horizon is reached. In each model cycle, each individual may accumulate costs (from resource 

use related to screening and cancer treatment) and utility decrements (due to age, screening harms 

and cancer diagnosis). Costs, QALYs and other outcomes such as resource use and cancer cases are 

aggregated; half cycle correction and discounting is applied to costs, QALYs and life years, and 

incremental results are estimated.  

Figure 3: Model process diagram showing the order that events happen in the model 

 



The model can be run in various different modes including Deterministic, PSA, Calibration and 

Testing modes. These enable users to choose between different types of inputs and outputs 

reflecting the different model functions. Deterministic, Calibration and Testing modes all use mean 

parameter values in every model loop, whilst the PSA mode enables a user-defined number of 

random samples to be taken from each parameter distribution and used sequentially in model loops. 

Users can also separately decide the number of model loops that they wish to run. 

In terms of outputs, the Deterministic mode produces a single results table saving only outputs 

aggregated over the entire population, which maximises model speed and efficiency. In addition to 

this, the PSA mode produces a table of key results for each PSA loop. The Calibration mode only 

produces results that are relevant to calculating CRC and adenoma incidence and mortality, whilst 

the Testing mode produces a wide range of outputs including individual health state transitions, 

individual screening history and individual costs and utilities to enable thorough testing of model 

function.  



Model Population 

Baseline Phenotypic Characteristics 

The model baseline population is composed of individuals from the Health Survey for England (HSE) 

2014 2, an annual survey which is designed to provide a snapshot of the nation’s health. Individuals 

aged under 30 were excluded from the model as it was assumed that no individuals aged under 30 

would have yet developed adenomas or CRC. This resulted in a sample of 6,787 individuals. The 2014 

sample was chosen as this was the most recent that included estimates of health-related quality of 

life using EuroQol - 5 Dimensions (EQ-5D) 3. Other individual phenotypic attributes extracted from 

HSE 2014 for use in the model included age, sex, ethnicity, indices of multiple deprivation (IMD) 

quintile (a measurement of socioeconomic deprivation), smoking status, body mass index (BMI), 

physical activity (measured in weekly metabolic equivalents [METS]), alcohol consumption 

(measured in weekly units) and the individual survey weights. The survey weights have been 

calculated by the HSE to enable adjustment of the sample so that it matches national population 

estimates of age, sex and regional distribution, correcting for non-response, and thereby making the 

sample more representative of the English population. Given that the model is used to estimate 

resource use in the English population, it was essential that the survey weights were included in 

model outcomes. Table 1 summarises the individual characteristics extracted from HSE 2014. 

Table 1: Summary of individual characteristics extracted from HSE 2014 2, their coding in the model 

and the numbers with missing data. 

Characteristic 

(Unit) 

HSE 2014 

Survey Code 

How Coded in the Model Number with 

Missing Data 

Age (Years) Age90 Continuous integer 0 

Sex Sex Binary; 1 = Male, 0 = Female. 0 

Ethnicity origin2 Numeric; 1 = white; 2 = black; 3 = Asian; 4 = 

mixed; 5 = other 

27 

IMD Quintile qimd Numeric: 1 = least deprived; 5 = most 

deprived. 

0 

BMI (kg/m2) BMIval Continuous variable 953 

Smoking Status cigsta3 Split into two binary variables: Current 

Smoker (1 = yes; 0 = no); Former Smoker (1 = 

yes; 0 = no). 

20 

Alcohol Intake 

(Weekly Units) 

totalwu Continuous variable. 92 



Physical Activity 

(Weekly METS) 

TotmModWk 

TotmVigWk 

Single continuous variable calculated by 

combining minutes of moderate activity (4 

METS per minute) and vigorous activity (8 

METS per minute). 

1070 

996 

EQ-5D Mobility 

Selfcare 

UsualAct 

Pain 

Anxiety 

EQ-5D score calculated from responses to 

each question using UK value sets generated 

through time trade-off valuation 3. 

751 

772 

758 

755 

767 

weighting wt_int Continuous variable. 0 

HSE = Health Survey for England; IMD = Indices of Multiple Deprivation; BMI = Body Mass Index; 

EQ-5D = EuroQol 5 dimensions. 

 

Missing Data for Phenotypic Characteristics 

Values were missing for some of the variables in some individuals. For some of the variables with 

small numbers of missing data it was assumed that those with missing data belonged to the largest 

group. Therefore, it was assumed that those missing ethnicity data were white and those missing 

smoking data were never regular smokers. It was also assumed that individuals with missing physical 

activity data for either moderate or vigorous activity did not do any moderate or vigorous activity. 

Individuals with missing data for both of these categories were assumed to be inactive. 

For those missing data about alcohol consumption, data from an additional HSE variable called 

‘dnevr’ was used, representing whether an individual had always been a non-drinker. Those who had 

answered either that they had never been a drinker, or had previously been a drinker but stopped 

were assumed to drink zero units per week. All others with missing consumption data were assumed 

to drink the average weekly number of units drank by other alcohol drinkers in HSE 2014, which was 

12.77. 

A large number of individuals were missing data about one or more of the EQ-5D dimensions, 

meaning that their EQ-5D could not be calculated. To estimate these values, EQ-5D for all other 

individuals was calculated and a linear regression was performed using age, sex and IMD quintile as 

explanatory variables to predict EQ-5D (Table 2), given that all individuals had data for these three 

variables. All three coefficients were very highly significant (P = <0.0001) and adjusted R2 was 0.37 

indicating that 37% of the differences between individuals could be explained by these three 

variables. EQ-5D was then imputed for individuals with missing data using these variables. 



Table 2: Linear regression coefficients used to calculate missing EQ-5D values 

Coefficients Mean Standard Error 

Intercept 1.1041305 0.0172774 

Age -0.0036214 0.0002317 

Sex 0.0335711 0.0081017 

IMD Quintile -0.0282924 0.0028597 

 

A similar approach was used to estimate BMI in those with missing data about BMI (Table 3). In this 

case the only significant variable was IMD quintile. Sex was not significant and its removal improved 

the model. Age was significant but its removal reduced the predictive ability of the model so this was 

left in. Adjusted R-squared was only 0.06. However, the F statistic was highly significant indicating 

that the model was better at predicting BMI than just using the intercept (i.e. mean BMI value) 

alone. BMI was then imputed for individuals with missing data using these variables. 

Table 3: Linear regression coefficients used to calculate missing BMI values 

Coefficients Mean Standard Error 

Intercept 26.761749 0.381804 

Age 0.005334 0.005242 

IMD Quintile 0.288154 0.065263 

 

Modelling Changes in Phenotypic Characteristics by Age 

Several of the characteristics included in the baseline modelled population will change as a person 

ages. These include EQ-5D, BMI, alcohol consumption, physical activity levels and smoking status. 

Accurate modelling of individual level changes in these factors is extremely complex, but a simple set 

of methods was sought in order to be able to approximate changing risk and health benefits over 

time. 

Continuous Risk Factors (BMI, Alcohol Consumption and Physical Activity) 

A percentile method was used to model trajectories of continuous risk factors by age. Plots showing 

the mean BMI, physical activity (measured in weekly METS) and alcohol consumption (measured in 

weekly units) for each decile of the HSE 2014 population indicate that there are clear trends that it 

would be important to reflect in risk modelling (Figure 4, Figure 5 and Figure 6). Note that these 

population trends are unlikely to correlate exactly with individual level trajectories for two reasons. 

Firstly, unhealthy people (e.g. those with very high BMI, high alcohol consumption and low physical 



activity) are likely to die earlier which will shift all deciles down/up slightly compared to individual 

level trajectories. Secondly, population trends also include birth cohort differences due to social 

changes over time. This may have particular impact for the alcohol consumption trends as it is 

known that alcohol consumption has been falling amongst young people in recent years 4. 

Figure 4: Mean BMI for each decile of the HSE 2014 population 2 

 

Figure 5: Mean Physical Activity METS per week for each decile of the HSE 2014 population 2 

 



Figure 6: Mean alcohol units per week for each decile of the HSE 2014 population 2 

 

The percentile method was implemented in the model by assigning each person to the relevant 

decile for BMI, physical activity and alcohol units based on the surveyed values for these 

measurements at their surveyed age. BMI, physical activity and alcohol units for each individual 

were then altered to follow the trajectory corresponding to the relevant decile and current age of 

the individual in the model. Using deciles rather than smaller percentiles does mean that some 

individual level variation is removed from the model (i.e. everyone follows one of 10 predefined 

trajectories); however, this was constrained by the relatively small sample size of HSE 2014, to 

reduce the amount of noise in the trajectories. 

Smoking 

Data from HSE 2014 indicates that the number of current smokers reduces by age, whilst the 

number of former smokers increases, indicating that there is a general trend for smoking cessation 

from the age of 30. It would therefore be reasonable to assume that no individuals who were 

surveyed as non-smokers in HSE 2014 would start smoking after the age of 30. 

Modelling a change in a binary factor is complex, particularly in a multi-age model, but is likely to 

have little impact on the performance of risk models given that the difference in relative risk of CRC 

between current and former smokers is small (see the Modelling Individual Cancer Risk section). The 

trend for current smokers to become past smokers as they age was therefore not implemented in 

this version of the model; however, it may be incorporated into future model versions. 



Figure 7: The proportion of current and former smokers by age in the HSE 2014 population 2 

 

EQ-5D 

EQ-5D decreases with age, therefore age decrements were applied to each individual’s baseline EQ-

5D score reflecting their current age in the model, compared with their baseline age. It was assumed 

that age-related decrements were constant over time. The size of this decrement was calculated 

using data from a study that pooled several years of HSE data to estimate general population values 

of EQ-5D by age 5. Annual age decrement was calculated as the difference between EQ-5D score at 

ages 80-84 and 30-34, divided by 50, which resulted in a change of -0.00432 (95% CI: -0.00460; -

0.00404) for each additional year of age. This process was used both to reduce EQ-5D as individuals 

age beyond their surveyed age, and to increase EQ-5D in the cohort version of the model where 

individuals all start at age 30, which may be considerably younger than their surveyed age. EQ-5D at 

younger ages was constrained to a maximum of 1. 

 

Genetic Characteristics 

HSE 2014 does not contain any information about genetic characteristics. Huyghe and others (2019)6 

described identification of over 40 new genetic risk variants for CRC, using data from genome-wide 

small nucleotide polymorphism (SNP) genotyping of over 125,000 different individuals. When 

combined with previously reported risk variants, this resulted in 120 CRC risk loci with estimated per 

allele log odds ratios.  

Information about the frequency of each risk allele in the English population was obtained from UK 

Biobank 7, which also provided information about the correlation between risk alleles on each 

chromosome. Each individual from HSE 2014 was randomly assigned a continuous dosage of each 



risk allele between zero and two (corresponding to zero, one or two copies of the risk allele at a 

locus, and equivalent to the output from a genetic imputation algorithm), taking into account the 

correlations between risk alleles on the same chromosome, but assuming independence between 

risk alleles on different chromosomes and between genetic and phenotypic characteristics. This is 

because no data was available on correlation between genetic and phenotypic characteristics. 

Family History 

HSE 2014 does not contain any information about family history of CRC, which is a risk factor for CRC 

and included in many risk models. Family history of CRC can be defined in different ways, but for the 

purposes of this model was defined as having one or more first-degree relatives who had been 

previously diagnosed with CRC. Information about family history of CRC was obtained from UK 

Biobank 7. Family history is correlated with age (Figure 8); however, it would be incorrect to model 

individual risk levels changing over time due to changes in family history, when in fact it is the 

knowledge about familial risk that changes, not the risk itself. Instead, two different family history 

variables were modelled corresponding to true family history and known family history, with true 

family history used to influence modelled natural history of CRC and known family history used to 

calculate CRC risk in risk models. For both of these family history at a given age was estimated 

through fitting a linear model to all data points between the 36-40 and 56-60 age groups from the 

UK Biobank data (intercept = -0.07266 [95% CI: -0.083 to -0.0616] and age coefficient = 0.00337 

[95% CI: 0.0035 to 0.0032]).  

True family history was assigned randomly to 12.9% of individuals, corresponding to the proportion 

estimated to have a family history aged 60. Age 60 was chosen to represent the average age at 

which the familial relative risk for CRC used in the model had been calculated (see Modelling 

Individual Cancer Risk section). Known family history was assigned to a subset of those individuals 

with true family history, corresponding to the age at which a risk model might be used to estimate 

CRC risk (ranging between age 30 and 60, depending upon model user input). Individuals were 

randomly assigned to having family history as no evidence was available to correlate family history 

with other characteristics already included in the model.  



Figure 8: Graph showing increase in family history of CRC with age, from UK Biobank 7 

 

 

Single-Aged Cohort versus Multi-Aged Cohort 

The model was set up to enable a single-aged cohort to be modelled, in order to answer cost-

effectiveness questions. A starting age of 30 was chosen, as it could be assumed that all individuals 

aged 30 would be in the normal epithelium health state (in reality a very small percentage may have 

adenomas or CRC, but these individuals are likely to represent those with rare monogenic conditions 

predisposing them to CRC). The cohort was created by artificially setting the ages of all individuals 

from HSE 2014 to 30. At the same time, adjustments were made to individual BMI, alcohol 

consumption, physical activity and EQ-5D to reflect the change in age, based on the methods 

described above. Summary statistics for this population are shown in Table 4. The cohort was 

modelled over their lifetime to provide estimates of cost-effectiveness for fully rolled out screening 

strategies.  

For resource use questions, it is essential that the baseline population should represent the current 

population of England, i.e. a multi-aged cohort. In theory, this can be approximated using the HSE 

2014 population with survey weights (Table 4). Because baseline individuals start at a range of 

different ages, it would be necessary to simulate a starting health state for each individual, rather 

than assuming all individuals were in normal epithelium. This functionality has not yet been added to 

the model, but will be available in future model versions. 



Table 4: Summary statistics for the model population at baseline, for multi-aged and single-aged 

cohorts. All characteristics come from HSE 2014 2 apart from probability of family history, which 

comes from UK Biobank 7. 

Characteristic Mean (HSE 

2014) 

Standard 

Deviation 

Weighted Mean 

at Multi-Aged 

Cohort Model 

Start  

Weighted Mean 

at Single-Aged 

Cohort Model 

Start (Age 30) 

Age (years) 55.2 15.5 53.9 30 

BMI (kg/m2) 28.0 4.9 27.9 27.0 

Alcohol Consumption 

in Drinkers (units/wk) 

12.8 21.2 12.9 10.0 

Physical Activity in the 

Active (METS/wk) 

4621.8 6685.9 4560.4 5230.6 

EQ-5D Score 0.841 0.227 0.847 0.950 

 Number in 

HSE 2014 

Percentage in 

HSE 2014 

Weighted 

Percentage 

(Multi-Aged 

Cohort) 

Weighted 

Percentage 

Single-Aged 

Cohort) 

Male 3011 44.4% 48.3% 48.3% 

Ethnicity: White 6105 90.0% 88.6% 88.6% 

Ethnicity: Asian 395 5.8% 6.8% 6.8% 

Ethnicity: Black 164 2.4% 2.6% 2.6% 

IMD1 1546 22.8% 22.3% 22.3% 

IMD2 1424 21.0% 20.9% 20.9% 

IMD3 1346 19.8% 19.7% 19.7% 

IMD4 1289 19.0% 19.7% 19.7% 

IMD5 1182 17.4% 17.4% 17.4% 

Current Smoker 1134 16.7% 17.4% 17.4% 

Former Smoker 1909 28.1% 27.7% 27.7% 

Non drinker 1158 17.1% 17.2% 17.2% 

Non active 2888 42.6% 41.4% 41.4% 

Family History Age 30 NA NA 2.8% 2.8% 

Family History Age 35 NA NA 4.5% 4.5% 

Family History Age 40 NA NA 6.2% 6.2% 



Family History Age 45 NA NA 7.9% 7.9% 

Family History Age 50 NA NA 9.6% 9.6% 

Family History Age 55 NA NA 11.3% 11.3% 

Family History Age 60 

(known family history) 

NA NA 12.9% 12.9% 

  



CRC Natural History  

Calibration of unobservable parameters 

The natural history module of the model relies upon transitions between the 9 health states as 

shown in Figure 1, in addition to parameters for symptomatic/chance diagnosis. Transition 

probabilities cannot be directly observed, so are usually obtained through calibration against target 

data that can be observed.  

The model calibration fitted to several observed data sets: low-risk adenoma prevalence, high-risk 

adenoma prevalence, undiagnosed CRC, and CRC incidence. The calibration also applied two 

dependent data sets: diagnosed CRC by stage at diagnosis and undiagnosed CRC by stage. Because of 

data unavailability, only CRC incidence data were retrieved from English sources 8. The prevalence of 

low- and high risk adenoma and undiagnosed CRC in the population was estimated from the 

detection rates of lesions by single colonoscopy screening reported in the large population German 

study reported by Brenner (2013, 2014)9-11 adjusted by colonoscopy sensitivity and relative 

prevalence of advanced versus high risk adenomas12-14.  

Transition between precancerous health states:  Normal epithelium->Low risk adenoma; Low risk 

adenoma->high risk adenoma; high risk adenoma-> CRC_Dukes’ A; Normal Epithelium-> CRC_Dukes’ 

A (estimated separately for males and females to represent differing CRC incidence). 

CRC stage progression: CRC Dukes’ A -> CRC Dukes’ B; CRC Dukes’ B -> CRC Dukes’ C; CRC Dukes’ C -> 

CRC Dukes’ D 

CRC symptomatic diagnosis: CRC Dukes’ A -> CRC Dukes’ A diagnosed; CRC Dukes’ B -> CRC Dukes’ B 

diagnosed, CRC Dukes’ C -> CRC Dukes’ C diagnosed; CRC Dukes’ D -> CRC Dukes’ D diagnosed 

The main assumptions of the calibration process were the following:  

� Pre-cancer transitions and transitions to CRC are assumed to be sex and age-specific, while 

transitions between CRC stages and symptomatic presentation rates are assumed to be age and sex 

independent due to a lack of data to confirm otherwise. 

� 15% of CRC cases among men and 15% of CRC cases among women are assumed to develop 

through the serrated neoplastic pathway, this rate was reported in the British Society of 

Gastroenterology position statement 15. 

� The first cases of CRC in England in 200516 were among 15-19 years old, so it was assumed 

that the transition probability from normal epithelium to CRC stage A at age 15 is equal to zero and 



that it linearly increases to a maximum value at age 100 years. The transition rate at age 100 was 

determined within the first stage of the calibration process. 

� The annual probability that an individual is diagnosed increases with more advanced cancer 

stage. The probability of diagnosis at stages CRC A and B was assumed to be lower in older people 

who are more likely to have other comorbid conditions, so an age-related linear decrement in the 

probability of diagnosis was applied to individuals aged over 75. 

Calibration process 

The calibration used the Metropolis–Hastings algorithm to estimate the posterior probability 

distributions of model parameters. The starting parameter set was manually calibrated to receive an 

approximate fit to all independent data targets. For each data set, a measure of model fit was 

calculated as the sum squared error (SSE) between the model predictions (scaled to the same 

population size as the target data set) and the observed data. The objective function which we aim 

to minimise includes the total SSE from each of the target data sets. The SSE for each target data 

sets was adjusted by dividing by variance.  A parameter epsilon was used to determine the 

maximum step size for each iteration of the algorithm. The epsilon value was set to 10% of the 

parameters values. As the algorithm converges on the solution parameter set it is efficient to reduce 

the maximum step size. This tuning was achieved by using an epsilon multiplier, which was initially 

set to one and subsequently decreased by 20% if during the last 25 calibration cycles two or less 

parameter sets were accepted.  The probability of accepting a proposal set which increases the 

objective function by more than 5 is less than 10%.  

Calibration outcomes 

The calibration approach applied, allowed a good fit to each of the four main data sets (Figure 9 to 

Figure 14). 



Figure 9: Prevalence of low-risk adenoma predicted by the model and target data 

  

Figure 10: Prevalence of high-risk adenoma predicted by the model and target data 
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Figure 11: Prevalence of CRC predicted by the model and target data 

 

Figure 12: Incidence of CRC predicted by the model and target data 
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Figure 13: Incidence of CRC by stage among males predicted by the model and target data 

  

Figure 14: Incidence of CRC by stage among females predicted by the model and target data 
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The calibrated values of the parameters are reported in Table 5.  

Table 5: Calibrated parameter values 

Parameter Calibrated 

Mean Value 

Transition probability from normal epithelium to low-risk adenoma, male, age 37 0.0020 

Transition probability from normal epithelium to low-risk adenoma, male, age 47 0.0268 

Transition probability from normal epithelium to low-risk adenoma, male, age 57 0.0149 

Transition probability from normal epithelium to low-risk adenoma, male, age 67 0.0082 

Transition probability from normal epithelium to low-risk adenoma, male, age 77 0.0044 

Transition probability from normal epithelium to low-risk adenoma, male, age 87 0.0032 

Transition probability from low-risk adenoma to high-risk adenoma, male, age 37 0.0282 

Transition probability from low-risk adenoma to high-risk adenoma, male, age 47 0.0313 

Transition probability from low-risk adenoma to high-risk adenoma, male, age 57 0.0206 

Transition probability from low-risk adenoma to high-risk adenoma, male, age 67 0.0121 

Transition probability from low-risk adenoma to high-risk adenoma, male, age 77 0.0155 

Transition probability from low-risk adenoma to high-risk adenoma, male, age 87 0.0093 

Transition probability from high-risk adenoma to colorectal cancer, male, age 37 0.0092 

Transition probability from high-risk adenoma to colorectal cancer, male, age 47 0.0163 

Transition probability from high-risk adenoma to colorectal cancer, male, age 57 0.0181 

Transition probability from high-risk adenoma to colorectal cancer, male, age 67 0.0284 

Transition probability from high-risk adenoma to colorectal cancer, male, age 77 0.0502 

Transition probability from high-risk adenoma to colorectal cancer, male, age 87 0.0352 

Transition probability from normal epithelium to low-risk adenoma, female, age 37 0.0012 

Transition probability from normal epithelium to low-risk adenoma, female, age 47 0.0162 

Transition probability from normal epithelium to low-risk adenoma, female, age 57 0.0115 

Transition probability from normal epithelium to low-risk adenoma, female, age 67 0.0083 

Transition probability from normal epithelium to low-risk adenoma, female, age 77 0.0040 

Transition probability from normal epithelium to low-risk adenoma, female, age 87 0.0030 

Transition probability from low-risk adenoma to high-risk adenoma, female, age 37 0.0175 

Transition probability from low-risk adenoma to high-risk adenoma, female, age 47 0.0285 

Transition probability from low-risk adenoma to high-risk adenoma, female, age 57 0.0145 

Transition probability from low-risk adenoma to high-risk adenoma, female, age 67 0.0144 

Transition probability from low-risk adenoma to high-risk adenoma, female, age 77 0.0199 

Transition probability from low-risk adenoma to high-risk adenoma, female, age 87 0.0114 

Transition probability from high-risk adenoma to colorectal cancer, female, age 37 0.0047 

Transition probability from high-risk adenoma to colorectal cancer, female, age 47 0.0208 

Transition probability from high-risk adenoma to colorectal cancer, female, age 57 0.0272 

Transition probability from high-risk adenoma to colorectal cancer, female, age 67 0.0359 



Transition probability from high-risk adenoma to colorectal cancer, female, age 77 0.0650 

Transition probability from high-risk adenoma to colorectal cancer, female, age 87 0.0531 

Transition probability from normal epithelium to colorectal cancer 0.0006 

Annual decrement in symptomatic cancer A,B presentation among people older 

than 75 years 

0.0361 

Probability of death undiagnosed at stage D 0.0400 

Transition probability from colorectal cancer stage A to stage B 0.2932 

Transition probability from colorectal cancer stage B to stage C 0.5539 

Transition probability from colorectal cancer stage C to stage D 0.3500 

Probability of being symptomatic, colorectal cancer stage A 0.0203 

Probability of being symptomatic, colorectal cancer stage B 0.1429 

Probability of being symptomatic, colorectal cancer stage C 0.2741 

Probability of being symptomatic, colorectal cancer stage D 0.2500 

  



Modelling Individual Cancer Risk 

Modelling Individual Cancer Risk for Natural History Transitions  

Individualised cancer risk, based on phenotypic and genetic risk factors beyond that conferred by 

age and sex, was incorporated into the model through modification of the first transitions from 

normal epithelium to low risk adenoma (representing the adenoma-carcinoma pathway) and from 

normal epithelium to CRC Stage A (representing the serrated pathway). This approach was used for 

two reasons. Firstly, modification of a single transition probability rather than all three transitions 

leading to CRC through the adenoma-carcinoma pathway simplified the process of incorporating 

individual cancer risk considerably. Secondly, the evidence from Brenner et al (2013/2014 indicates 

that male/female differences in transition probabilities are only significant for the first transition 9 10, 

suggesting that differences in CRC risk are implemented through differences in adenoma risk. It 

appeared to be a reasonable assumption that this could be extended to differences in risk due to 

other characteristics. There is no information about how phenotypic and genetic risks impact on the 

serrated pathway compared with the adenoma-carcinoma pathway. However, it seems biologically 

plausible that the same risk factors could apply to both pathways, so it was assumed in the model 

that risk factors acted equally on both transitions. 

Modelling genetic risk for natural history transitions 

It was assumed that an individual’s true genetic risk of CRC was represented by all the risk alleles 

known about to date; i.e. the 120 alleles described in Huyghe et al (2019) 6. Genetic risk for each 

individual was calculated as the sum of the per allele log odds ratio estimates for each of the 120 

genetic risk loci multiplied by the dosage for each of the simulated risk alleles.  

prs = є(allele.freq * allele.logOR) 

Where prs = individual genetic risk score, allele.freq = dosage for each of the simulated risk alleles, 

allele.logOR = per allele log odds ratio estimate for each of the simulated risk alleles. 

Individual genetic risk was then standardised by subtracting the population weighted mean genetic 

risk score and dividing by the weighted risk score standard deviation as follows:  

stprs = (prs - wtdmean(prs)) / wtdsd(prs) 

Where stprs = individual standardised genetic risk score, prs = individual genetic risk score, 

wtdmean(prs) = weighted population mean of the genetic risk score and wtdsd(prs) = weighted 

population standard deviation of the genetic risk score. 

This was then converted into an individual relative risk using the following equation: 



Individual RR = exp (wtdsd(prs) * stprs) 

where stprs = individual standardised genetic risk score and wtdsd(prs) = weighted population 

standard deviation of the (non-standardised) genetic risk score. 

Modelling phenotypic risk for natural history transitions 

Relative risks for CRC relating to a range of different environmental risk factors were obtained from 

a recent study by Brown et al (2014) 17 calculating the fraction of cancer attributable to modifiable 

risk factors in the UK (Table 6). Risk factors for CRC included smoking, alcohol consumption, (lack of) 

physical activity, red meat consumption, (lack of) fibre consumption and BMI. The study looked at 

some other risk factors (e.g. air pollution, occupation, infections, radiation and oral contraceptives), 

but no data was found relating to these for CRC. Modifiable risk factors incorporated in the model 

were those for which information was available in HSE 2014 2; i.e. smoking, alcohol consumption, 

physical activity and BMI. Neither fibre nor red meat consumption were detailed in HSE 2014 and no 

simple method was available for imputing these from other HSE 2014 characteristics, so these were 

not included in the modelled CRC risk estimates.  

In addition to these modifiable phenotypic risk factors, family history of CRC and ethnicity were also 

included in phenotypic risk. Individuals having one or more first-degree relatives previously 

diagnosed with CRC have been found to have a risk of CRC that is around 2.2 fold greater than those 

without family history 18. Family history is likely to occur through a mixture of shared genetics and 

shared environment. The proportion of familial relative risk already accounted for by the Huyghe et 

al (2019) genetic risk factors described above was estimated in that study as 11.9% 6. To avoid 

double counting, familial risk was adjusted to remove this genetic component, resulting in a relative 

risk of 2.003. No evidence was available to inform the proportion of familial risk arising from each of 

the modifiable risk factors already incorporated in the model, so no further adjustments to familial 

risk were made. 

Ethnic differences in CRC incidence in England are very large, with most minority ethnic groups 

having a much lower risk of CRC than the white population. It is thought that this is likely to be 

partially due to differences in diet between white and non-white populations, but may also be 

partially genetic. Differences in risk by ethnic groups (white, black, south Asian and other) were 

taken from QCancer research 19, which is based on English primary care data. Data for each ethnic 

group used in the model was combined using a weighted average as follows: black = black African 

and Caribbean; Asian = Indian and Pakistani and Bangladeshi and other Asian; Other = Chinese and 

Other. 



In order to ensure that the overall risk in the modelled population remained unchanged (i.e. product 

of all relative risks equals 1), it was necessary to adjust relative risks for each risk factor using the 

following equation: 

Individual RR = Unit RR (from Table 6) ^ (Individual Value  - Population Average Value) 

Where individual value is the HSE 2014 data entry for that individual, by unit stated in Table 6, and 

population average value is the mean, weighted value in the HSE 2014 sample.  

For binary characterisics (e.g. current smoker), the individual value was considered to be 1 for an 

individual possessing that characteristics, and 0 for an individual not possessing that characteristics, 

with the population mean value representing the proportion of current smokers in the population. 

Individual relative risks for each phenotypic risk factor were multiplied together to produce a 

personalised risk of CRC due to phenotypic risk factors. This was then multiplied by each person’s 

individual genotypic risk to produce an overall personalised relative risk of CRC for each modelled 

individual. For each individual, a personalised probability of transition from normal epithelium to 

low risk adenoma, or from normal epithelium to CRC stage A was calculated by multiplying their 

personalised relative risk by the relevant calibrated age and sex specific transition probability. 

Calibration of relative risks for natural history transitions 

Relative risks described above represent the lifetime relative risk of CRC. However, application of the 

relative risks at the level of the transitions from normal epithelium to low risk adenoma and normal 

epithelium to CRC stage A does not translate into equivalent relative risk of CRC, so values had to be 

adjusted through calibration. 

A simple iterative process was chosen which incorporated the following steps: 

1. The model was run for 200 sets of individuals in HSE 2014 population using a starting set of 

relative risks to calculate personalised transitions from normal epithelium to low risk 

adenomas, and normal epithelium to CRC stage A for each individual. Initially this starting 

set was based on the published relative risks described in Table 6 and the default 

individualised genetic relative risks calculated from the Huyghe et al (2019) paper 6. 

2. Following model running, the weighted incidence of CRC in individuals with and without 

each characteristic was calculated and a modelled relative risk of CRC calculated. For genetic 

risk, the modelled relative risk was calculated as the weighted incidence in individuals with a 

Huyghe relative risk of above one divided by the weighted incidence in individuals with a 

Huyghe relative risk of below 1 (i.e. high genetic risk vs low genetic risk). 



3. Modelled relative risk was compared against the target (published) relative risk for each 

characteristic. Multipliers were calculated as target relative risk/modelled relative risk.  

4. Multipliers were applied to the starting set used for the last set of model runs, to create a 

new starting set of relative risks for each characteristic.  

This process was repeated multiple times until values converged. Convergence occurred within 10 

iterations for all relative risks. Lower and upper confidence intervals were estimated to be in 

proportion with target lower and upper confidence intervals for phenotypic risks, and were 

calculated directly for genetic risk from the standard deviation of the population distribution of risk. 

To simplify the calibration process, it was assumed that all risk factors were fixed over an individual’s 

lifetime, for modifiable risk factors taking the original value given in or imputed from the HSE 2014 

(i.e. no changes in BMI, alcohol units or physical activity). Table 6 shows both the published and 

calibrated relative risks. 

Table 6: Published and calibrated relative risks of CRC for phenotypic risk factors included in the 

model. Published RRs taken from Brown et al. (2014) 17 (all risk factors apart from ethnicity, family 

history and genetic risk) from Hippisley-Cox et al (2015)19 (ethnicity), from Lowery et al. (2016) 18 

(family history), and calculated from Huyghe et al (2019) 6 (genetic RRs). 

Risk Factor Description Sex Target (published)  Calibrated  

Mean Lower 

CI 

Upper 

CI 

Mean Lower 

CI 

Upper 

CI 

Smoking Current vs 

Never 

Male 1.22 1.07 1.39 1.38 1.12 1.72 

Female 1.22 1.07 1.39 1.38 1.12 1.72 

Former vs 

Never 

Male 1.14 1.05 1.25 1.19 1.06 1.35 

Female 1.14 1.05 1.25 1.19 1.06 1.35 

Overweight & 

Obesity 

Overweight 

vs Healthy 

Male 1.17 1.12 1.22 1.29 1.20 1.38 

Female 1.07 1.01 1.14 1.11 1.02 1.23 

Obese vs 

Healthy 

Male 1.38 1.32 1.44 1.74 1.62 1.88 

Female 1.17 1.06 1.30 1.33 1.11 1.61 

Alcohol (8g 

per unit) 

Light (<12.5g 

per day) vs 

Never 

Male 1 0.94 1.05 0.85 0.79 0.90 

Female 1 0.94 1.05 0.85 0.79 0.90 

Moderate 

(12.5-50g 

per day) vs 

Never 

Male 1.17 1.09 1.25 1.03 1.02 1.05 

Female 1.17 1.09 1.25 1.03 1.02 1.05 

Heavy (50g+ 

per day) vs 

Never 

Male 1.33 1.14 1.56 1.16 1.07 1.26 

Female 1.33 1.14 1.56 1.16 1.07 1.26 

Male 0.903 0.851 0.952 0.84 0.75 0.92 



Physical 

Activity 

(METS) 

>600 METS 

vs <600 mins 

per week 

Female 0.903 0.851 0.952 0.84 0.75 0.92 

Ethnicity Black vs 

White 

Male 0.73 0.56 0.97 0.57 0.34 0.95 

Female 0.70 0.52 0.96 0.65 0.45 0.95 

South Asian 

vs White 

Male 0.55 0.40 0.76 0.41 0.26 0.67 

Female 0.51 0.34 0.77 0.42 0.25 0.72 

Other vs 

White 

Male 0.64 0.46 0.89 0.43 0.23 0.80 

Female 0.75 0.55 1.04 0.70 0.47 1.04 

Family History 

(first degree 

relative with 

CRC, adjusted 

to remove 

genetic risk) 

Family 

history vs no 

family 

history  

Male 2.003 1.47 2.48 3.05 1.86 4.31 

Female 2.003 1.47 2.48 3.05 1.86 4.31 

Genetic risk 

calculated 

from data in 

Huyghes et al. 

2019 paper 

High genetic 

risk (RR > 1) 

vs low 

genetic risk 

(RR < 1) 

Both 1.071 NA NA 1.730 NA NA 

NA = Not Applicable (constant) 

 

Modelling Individual Cancer Risk for Risk Prediction  

A variety of different risk prediction scores were incorporated into the model to enable screening 

strategies based on risk stratification to be assessed. This included the Ma model for prediction of 

CRC risk based on phenotypic factors only 20, the Jeon model for prediction of CRC risk based on 

genetic factors only 21, and the Dunlop model for prediction of CRC risk based on genetic and 

phenotypic factors 22.  

Genetic risk is fixed, whilst phenotypic risk changes over the course of a person’s life. As a 

consequence of this, genetic risk scores were calculated just once in the model at population setup. 

Calculation of relative risk for the Jeon score was done in a similar way to that for the Huyghe 

genetic risk, using information about allele frequency from UK Biobank 7, and the odds ratio per risk 

allele from the Jeon paper 21. The Jeon score uses information about 57 SNPs. 

The Dunlop model uses a points-based scoring system to calculate absolute risk based on 10 SNPs, 

age, sex and family history, based on Scottish data 22. The genetic component of the risk score was 

calculated just once in the model at population setup, whilst calculation of the final risk score, 

including phenotypic risk, was performed annually within the model to reflect changes in age over 



time. Average risk for each age group was given in the Dunlop paper, so the absolute risk score given 

by the Dunlop model was converted to a relative risk by dividing the score by the age-specific 

absolute risk, and then adjusted to ensure that average risk over the whole weighted population was 

1. 

The Ma model is a Cox proportional hazards model for calculation of 10-year absolute CRC risk, 

which includes coefficients for age, BMI, physical activity, alcohol consumption and smoking status 

20. Alcohol consumption categories differ slightly from those used in the model; occasional 

consumption was assumed to equate to light consumption as defined in Brown et al. (2018) (<87.5g 

per week) 17. Calculation of the Ma risk score was performed annually within the model to reflect 

changes in population characteristics over time, using the following equation: 

10-Year Absolute Risk = (1 – baseline survival function ^ exp(є(ɴ * (value – mean value)))) 

Where value = individual value for each characteristic, mean value = population mean as given in Ma 

paper, ɴ = ɴ coefficient for that characteristic, baseline survival function = 10 year baseline survival 

function. 

Table 7: Ma model for 10-year absolute CRC risk-prediction 20 

Risk Factor Ȳ 

Coefficient 

Hazard Ratio 

(Mean) 

Hazard Ratio 

(Lower 95% CI) 

Hazard Ratio 

(Upper 95% CI) 

Age (Year) 0.080 1.08 1.07 1.10 

BMI (kg/m2) 0.047 1.05 1.02 1.08 

Physical Activity (MET hours 

per day) 

-0.019 0.98 0.97 0.99 

Alcohol Consumption: Never -0.163 0.85 0.56 1.28 

Alcohol Consumption: 

Occasional 

0 1 NA NA 

Alcohol Consumption: 

Regular  <300g/week 

0.358 1.43 0.98 2.09 

Alcohol Consumption: 

Regular >=300g/week 

0.659 1.93 1.32 2.83 

Smoking Status: Never 0 1 NA NA 

Smoking Status: Former 0.071 1.07 0.83 1.39 

Smoking Status: Current 0.238 1.27 1.01 1.60 



Baseline survival function at 

10 years 

0.9882 NA NA NA 

 

The Ma risk score is based on a population of Japanese men, in whom the absolute risk of CRC is 

considerably higher than in the UK population (Table 8) 16 20. The absolute risk score given by the Ma 

model was therefore converted to a relative risk by dividing the score by the absolute risk in a 

Japanese male population of the same age as the modelled individuals, and then adjusted to ensure 

that average risk over the whole weighted population was 1. 

An additional genetic plus phenotypic risk score was implemented in the model through combining 

the Ma and Jeon risk scores 20 21. This was achieved by simply multiplying together the individual 

relative risks obtained by each score separately.  

Following calculation of a CRC relative risk using any of the risk scores described above, it was 

necessary to convert this into an age at first FIT screen. The approach used was to base screening 

start age for all individuals on the age at which they were calculated to reach a user-defined 10-year 

absolute risk level, assuming that all risk factors apart from age and sex would remain constant. 

Absolute risk was obtained from CRC incidence rates per 100,000 population by age and sex from 

CRUK 16, and converted to 10-year absolute risk using the following equation.  

10-Year Absolute Risk = 1 - exp(-10 * rate / 100000) 

Screening start age was calculated as the age at which absolute risk was equal to user-defined risk 

divided by the individual relative risk score. 

Table 8: 10-year absolute CRC risk in Japanese and UK populations, from Ma et al (2010) 20 and 

derived from CRUK 16 respectively. 

Age Group Japanese Population UK Population (Male) UK Population (Female) 

40-44 0.5% 0.13% 0.12% 

45-49 0.9% 0.23% 0.21% 

50-54 1.4% 0.47% 0.38% 

55-59 1.9% 0.84% 0.61% 

60-64 2.7% 1.51% 0.91% 

65-69 3.0% 1.98% 1.19% 



Survival and Mortality 

CRC Mortality 

Individuals can either die from CRC or from other causes. Survival following CRC diagnosis is known 

to vary by age, sex, socioeconomic deprivation, diagnostic route, cancer stage, cancer location and 

time since diagnosis, and has also seen significant improvements in recent years, some of which may 

reflect an increase in diagnosis through screening, which has improved survival compared to 

symptomatic diagnosis 23-27. However, detailed and up-to-date information about CRC survival, 

taking all these variables into account, is not currently available for England. Instead, available 

information from a variety of sources was combined to produce an estimate of survival for the first 

ten years following CRC diagnosis by age, sex and stage. It was assumed that anyone surviving for 

ten years post-diagnosis was cured and would have no further risk of death from CRC. 

One and five year net CRC survival data by age group, sex and stage is available from the Office for 

National Statistics (ONS) based on data from adults diagnosed between 2013 and 2017 in England 28 

(Table 9).  

Table 9: Net one and five year survival by age group, sex and stage for 2013-2017 from ONS 28. 

Sex Age 

 

1 Year 5 Years 

Stage 

A 

Stage 

B 

Stage 

C 

Stage 

D 

All  Stage 

A 

Stage 

B 

Stage 

C 

Stage 

D 

All  

Male 15 to 44 99% 98% 94% 60% 87% 98% 86% 70% 19% 66% 

45 to 54 99% 99% 95% 60% 85% 96% 89% 73% 15% 62% 

55 to 64 99% 97% 95% 57% 86% 96% 88% 73% 14% 66% 

65 to 74 98% 95% 92% 48% 82% 94% 85% 69% 13% 63% 

75 to 79 95% 89% 82% 31% 68% 80% 76% 51% 5% 46% 

All ages 97% 93% 90% 44% 78% 90% 82% 64% 10% 57% 

Female 15 to 44 100% 99% 97% 61% 88% 98% 92% 79% 17% 70% 

45 to 54 100% 98% 96% 61% 87% 98% 89% 77% 17% 66% 

55 to 64 99% 98% 96% 55% 86% 96% 90% 77% 15% 67% 

65 to 74 99% 95% 91% 44% 81% 97% 86% 70% 12% 64% 

75 to 79 96% 88% 76% 24% 62% 85% 77% 49% 5% 44% 

All ages 98% 92% 86% 39% 74% 92% 83% 64% 10% 55% 

 



Whilst this data was sufficient to inform one and five year survival, a method was required to 

estimate survival for years two to four and six to ten post diagnosis. Data about net CRC survival for 

every year up to ten years after diagnosis from 2010/11 is available from CRUK 29 (Table 10). This is 

presented by sex, but not by age or stage, and is fairly similar to the ONS values for year one and five 

survival over all ages and stages. Therefore, it was assumed that the ratio between average five-year 

survival and other year survival would remain constant. Ratios of five-year survival to all subsequent 

years were derived using the following equation. 

Ratio(stage, age, year x/year 5) = 1 - ( (1 - Ratio(stage, age, year 5/ year 1)) / (1 - Ratio(year 5/year 1)) * (1 - Ratio(year x/year 5))) 

These ratios were then applied to the five-year survival by age, stage and sex to obtain survival for 

all other years by age, stage and sex (Figure 15). 

Table 10: Net survival up to ten years after diagnosis for 2010/11 from CRUK 29. Note that nine and 

ten-year survival in women is slightly higher than eight-year survival, so it was assumed in the 

calculations above that survival was identical in years eight to ten, to avoid negative mortality. 

Years after Diagnosis Men Women 

0 100.0% 100.0% 

1 77.4% 73.9% 

2 69.5% 66.3% 

3 64.5% 61.9% 

4 61.2% 59.5% 

5 59.2% 58.2% 

6 58.0% 57.5% 

7 57.2% 57.1% 

8 56.6% 57.0% 

9 56.3% 57.1% 

10 56.0% 57.2% 

 

Probability of dying due to CRC was calculated from the survival data as follows: 

CRC_mort(age, sex, stage, year) = 1 – (CRC_surv(age, sex, stage, year) / CRC_surv(age, sex, stage, year-1)) 

It was assumed that the probability of dying from CRC beyond ten years post diagnosis was 0. A 

multiplier was incorporated into the modelling of CRC mortality to enable model users to globally 

increase or decrease CRC mortality over all ages, sexes, stages and years since diagnosis. 



Figure 15: Imputed CRC survival by age, sex and stage.  

 

Some assumptions had to be made around classification of mortality in undiagnosed individuals with 

CRC. In practice, mortality from CRC will only be registered as such if diagnosis of CRC has occurred – 

either prior to death, or following death during a post-mortem. This means that individuals who die 

from CRC that never get diagnosed will be registered as dying from other causes, and therefore the 

death certificate data used in the model will reflect this under-diagnosis. This led to two logical 

alternatives that could be implemented in the model – either individuals who die when undiagnosed 



are assumed to die from other causes, or they die from CRC but are automatically diagnosed with 

CRC within the same model cycle. A combination of these two approaches was chosen, depending 

upon CRC stage, to reflect the available evidence that a small proportion of diagnoses are noted 

through death certificates only 30. For stages A-C, undiagnosed individuals were assumed to have a 

0% probability of dying from CRC in any given model cycle. For stage D, undiagnosed individuals 

were assumed to have the same probability of dying from CRC as those who are in the first year of 

diagnosis. Of those with undiagnosed stage D that died from CRC, a proportion were assumed to be 

diagnosed within the year of death, with the rest remaining undiagnosed. The proportion dying from 

CRC but remaining undiagnosed was obtained through calibration and was assumed to be zero for 

those aged under 75, then to increase linearly with age above 75. 

 

Other Cause Mortality 

All-cause mortality by age and sex was obtained from English life tables for 2016-2018 31. This 

includes mortality from CRC and mortality from other causes. Death registration summary statistics 

for England and Wales (2018) 32 were used to determine the proportion of all registered deaths that 

were due to CRC. It was assumed that CRC deaths included deaths due to ICD code C18: Malignant 

neoplasm of colon and ICD codes C19-21: Malignant neoplasm of rectosigmoid junction, rectum and 

anus. Anal cancer is not included in CRC, but it was not possible to separate this out from rectal 

cancer in death registration data. Other cause mortality was then calculated by subtracting CRC 

mortality from all-cause mortality using the following equation: 

Oth_Cause_Mort(age, sex) = All_Cause_Mort(age, sex) * (1 – (N_CRC_Deaths(age, sex) / N_All_Deaths(age, sex))) 



Screening 

As default the model can simulate the two different screening modalities that are currently used in 

England; Faecal Immunochemical Testing (FIT) and Flexible Sigmoidoscopy (FS). The screening 

pathways modelled reflect the pathways currently used in England; however, specification of 

eligibility criteria is flexible to enable a range of different screening strategies to be easily modelled.  

FIT Screening 

FIT Eligibility 

The modelled FIT screening pathway is shown in Figure 16. Eligible individuals are invited to FIT 

screening. The default eligibility criteria reflect the current eligibility in England and are specified as 

follows: 

• No history of CRC diagnosis 

• Not undergoing surveillance 

• Age 60, 62, 64, 66, 68, 70, 70 or 74. 

Figure 16: FIT screening pathway and follow-up investigations 

 



FIT Uptake 

Response to FIT screening varies depending upon individual characteristics. The English FIT pilot 

results included a multivariate analysis of adequate uptake which provided odds ratios for uptake by 

screening modality (gFOBT or FIT), age group, sex, screening episode, deprivation (IMD quintiles) and 

region 33. This indicates that uptake is lower in males, older age groups, more highly 

socioeconomically deprived groups and in screening non-responders. Model coefficients were 

calculated by taking the log of each odds ratio. Uptake in the reference group (gFOBT, male, age 59-

64, IMD1 [least deprived], first screening round, Midlands and North West Hub) was 53.6% (personal 

communication from Christopher Mathews). This information was used to calculate an intercept for 

the model using the formula: intercept = -LN((1/x)-1) where x = baseline proportion uptake with 

gFOBT. The intercept was then adjusted to represent country-wide FIT screening by adding the 

coefficient for FIT screening and half the coefficient for the Southern Hub region. Odds ratios and 

model coefficients are shown in Table 11.  

Table 11: Odds Ratios from Moss et al (2017) 33 and calculated model coefficients used to predict FIT 

uptake 

Variable Odds Ratio (95% CI) Coefficients (95% CI) 

Intercept NA 0.710 (0.627 to 0.802) 

Age 65-69 0.89 (0.88; 0.9) -0.117 (-0.128 to -0.105) 

Age 70+ 0.79 (0.78; 0.8) -0.119 (-0.121 to -0.118) 

Sex Female 1.15 (1.14; 1.16) 0.140 (0.131 to 0.148) 

Prevalent  non-responder 0.16 (0.156; 0.161) -1.833 (-1.858 to -1.826) 

Incident 6.55 (6.45; 6.54) 1.879 (1.864 to 1.878) 

IMD2 0.93 (0.91; 0.94) -0.073 (-0.094 to -0.062) 

IMD3 0.86 (0.85; 0.88) -0.151 (-0.163 to -0.128) 

IMD4 0.75 (0.73; 0.76) -0.288 (-0.315 to -0.274) 

IMD5 (most deprived) 0.55 (0.54; 0.55) -0.598 (-0.616 to -0.598) 

 

Given that the model will be used to assess the impact of screening at ages below 60, data from the 

Scottish Bowel Screening Programme 2017-18 was used to inform FIT uptake between ages 50 and 

60 34. FIT uptake in Scotland is 66% in people aged 60-64, but only 60% in people aged 55-59 and 

58% in people aged 50-54. This data was converted into log odds coefficients to be used in the 

regression in the same way as the other coefficients. It was assumed that individuals aged under 50 

would have the same uptake as those aged between 50 and 54. 



Table 12: Odds Ratios derived from the Scottish Bowel Screening Programme uptake data34 and 

calculated model coefficients used to predict FIT uptake 

Variable Odds Ratio (95% CI) Coefficients (95% CI) 

Age 50-54 0.694 (0.694; 0.695) -0.365 (-0.366 to -0.364) 

Age 55-59 0.778 (0.777; 0.778) -0.252 (-0.252 to -0.251) 

 

There is also evidence that uptake of screening may be lower in some ethnic minority groups. Whilst 

no evidence about this could be found specifically for FIT screening in England, there was evidence 

from gFOBT screening in England that people of Asian ethnicity have considerably lower uptake, 

even after adjusting for deprivation 35. No evidence could be found to inform uptake in other ethnic 

minority groups. 

Table 13: Odds ratios and calculated model coefficients for uptake of FIT in people of Asian ethnicity 

compared to non-Asian people 35. 

Variable Odds Ratio (95% CI) Coefficients (95% CI) 

Asian ethnicity  0.390 (0.353; 0.434)  -0.941 (-1.041 to -0.834) 

 

In the FIT pilot, individuals that did not send their FIT screening kit back were sent reminder letters. 

Amongst those that did return kits, around 2% required an additional kit to be sent before an 

adequate sample was received. These processes were not explicitly modelled, but were included in 

costings. 

FIT Sensitivity and False Positives 

Sensitivity of the FIT test is likely to depend upon a range of factors including FIT threshold, sex, age, 

screening round and test manufacturer. Published estimates of FIT sensitivity and specificity do exist 

and have been summarised in a meta-analysis by Lee et al (2014) 36. This calculated a mean 

sensitivity of 79% and specificity of 94% for CRC, but the included studies comprised a range of 

different FIT cut-off points, kit manufacturers, number of samples taken and study populations. 

These studies have estimated sensitivity through one of two methods, both of which are flawed. 

Some studies have compared FIT performance against a reference colonoscopy. However; 

colonoscopy sensitivity is not perfect, particularly for low risk adenomas, and depends upon 

colonoscopy quality. Other studies have calculated sensitivity based on the number of interval 

cancers occurring in the two years following the original test. However; this method will miss pre-

existing cancers that take more than two years to manifest symptomatically, or include cancers that 

have developed de novo since screening, which could either over or underestimate sensitivity. 



Furthermore, this method cannot inform sensitivity to adenomas. The differences between the 

population of the included studies and the screening population of England are substantial; many of 

the studies were carried out in Asian populations who are much younger than the English screening 

population, and the underlying CRC prevalence in the study populations is much higher than that 

estimated by the model. Given that the aim of the model was to make decisions around the current 

BCSP (using FIT screening from spring 2019), it was necessary that estimates of sensitivity were 

compatible with detection rates found in large scale UK studies, rather than using direct estimates 

from small, unrepresentative trials. 

The method used to calculate sensitivity was similar to that described previously for the ScHARR 

Bowel Cancer Screening cohort model 37. Following calibration of natural history transition 

probabilities, it was possible to use the model to estimate the underlying prevalence of LR 

adenomas, HR adenomas and CRC in the population for each age and sex, in the absence of 

screening. This was combined with published data about detection rates to estimate sensitivity for 

FIT, as sensitivity is calculated as detection rate divided by prevalence. Note that false positive rate, 

rather than specificity, is used in the model to calculate the risk of false positives in people with 

normal epithelium, so calculations of specificity were not directly required. 

Data about detection rates was available from a range of sources; however, only one English data 

source was available – the UK FIT Pilot 33. Data from individuals screened for the first time (prevalent 

round) in the UK FIT pilot was the most appropriate source to use to inform first round screening 

sensitivities given that it used the same population, test kit and test protocol as are now being used 

in the English BCSP. During the pilot, 3,933 individuals aged 60 were screened using FIT for the first 

time. The UK prevalent round FIT pilot data had some limitations. Firstly, the published data did not 

include information about detection rates for LR adenomas or about false positives. Secondly, all 

individuals were aged 60 at the prevalent screen, so no information about sensitivity at other ages 

could be gathered. Thirdly, the number of individuals diagnosed with CRC as a result of screening 

was low in the prevalent round (only 6 with FIT20), reducing the accuracy of estimates of CRC 

sensitivity. To investigate the accuracy of the sensitivity estimates and to investigate trends by age, 

sex, screening round and FIT threshold, a comparison of FIT pilot detection with data from other 

countries was carried out (see Appendix C for details). A series of steps were then undertaken to 

process the data in order to incorporate additional information from other data sources: 

1. Detection rates for CRC and HR adenoma at five different FIT thresholds were calculated 

from the data for prevalent first time screenees from the UK FIT pilot (Table 14) 33. Note that 

detection rates for CRC are based on very small numbers, and evidence from our 



international comparisons indicated that CRC detection rate was likely to be underestimated 

by UK FIT pilot data (and underestimated in our previous model). 

Table 14: Detection rates from prevalent first time screenees from the UK FIT pilot 33 

 
FIT20 FIT40 FIT100 FIT150 FIT180 

Detection Rate CRC 0.0015 0.0015 0.0008 0.0008 0.0008 

Detection Rate HR Adenoma 0.0150 0.0114 0.0071 0.0053 0.0051 

 

2. An Office for Data Release request was made to the FIT pilot study which enabled 

unpublished data about detection rates for CRC, HR adenomas, LR adenomas and false 

positives to be obtained for the age 59-64 age group (all screenees, N = 11,105). This was 

compared against the prevalent round data and was found to be similar for HR adenomas, 

but higher for CRC detection. The CRC detection rate was therefore re-estimated as a fixed 

proportion of the HR adenoma detection rate for each FIT threshold, to match the 

proportions from the ODR request data (Table 15). LR adenoma detection rates were 

calculated as a proportion of HR adenoma detection rates in the same way. False positive 

rates were estimated by calculating the numbers of individuals with LR adenoma, HR 

adenoma, CRC and therefore false positive results expected in the prevalent round using the 

new detection rates. Confidence intervals for each value were estimated based on the 

numbers of individuals in the prevalent round (not shown). 

Table 15: Estimated detection rates following adjustment using data from all screenees in FIT pilot. 

 
FIT20 FIT40 FIT100 FIT150 FIT180 

Estimated Detection Rate CRC 0.0020 0.0019 0.0017 0.0016 0.0016 

Detection Rate HR Adenoma 0.0150 0.0114 0.0071 0.0053 0.0051 

Estimated Detection Rate LR Adenoma 0.0163 0.0100 0.0048 0.0033 0.0028 

Estimated False Positive Rate 0.0216 0.0112 0.0040 0.0035 0.0017 

 

3. Published data about CRC and HR adenoma detection rates by sex are available from the FIT 

pilot for all screenees by FIT threshold 33. Separate estimates for male and female detection 

rates were calculated by assuming the same ratio male to female for each FIT threshold and 

disease state. Given the lack of published data about LR adenomas, they were assumed to 

follow the same male to female ratio as HR adenomas. The male to female ratio for false 

positives was estimated without taking LR adenomas into account. 

4. Sensitivity at the first screen was then calculated directly using the following formula: 



Sensitivity (disease state, sex, FIT threshold)    =  Detection Rate (disease state, sex, FIT threshold)              

Underlying Prevalence (disease state, sex) 

5. Detection rates by FIT threshold were found previously to follow a power curve distribution 

following the formula y = a*x^b; where a is the intercept, b is a parameter and x is the FIT 

threshold 37. Sensitivity and false positive rates were also found to fit a power curve with the 

same FIT threshold parameter but different intercept from the detection rate curves. Power 

curves were fitted in R and the intercept of those curves obtained in order to enable 

sensitivity and false positive rates to be estimated for any FIT threshold (Table 16 & Figure 

17).  

Table 16: Power curve parameters to calculate sensitivity and false positive rate by FIT threshold, sex 

and underlying disease state, together with calculated sensitivity at a threshold of FIT20 for age 60. 

 

Intercept  

(95% CI] 

FIT_Param  

(95% CI) 

FIT20 Sensitivity  

Male Sensitivity to CRC 0.526 (0.270; 0.867) -0.083 (-0.145; -0.054) 0.410 (0.175; 0.738) 

Male Sensitivity to HR 

Adenoma 

1.071 (1.047; 1.096) -0.487 (-0.591; -0.413) 0.249 (0.184; 0.328) 

Male Sensitivity to LR 

Adenoma 

0.841 (0.706; 1.207) -0.784 (-0.981; -0.654)  0.080 (0.037; 0.170) 

Male False Positive Rate 0.510 (0.361; 0.975) -1.02 (-1.293; -0.847) 0.024 (0.008; 0.077) 

Female Sensitivity to CRC 0.353 (0.176; 0.582 -0.171 (-0.232; -0.142) 0.211 (0.088; 0.380) 

Female Sensitivity to HR 

Adenoma 

1.205 (1.177; 1.233) -0.555 (-0.659; -0.481) 0.229 (0.169; 0.301) 

Female Sensitivity to LR 

Adenoma 

0.630 (0.529; 0.905) -0.852 (-1.05; -0.723) 0.049 (0.023; 0.104) 

Female False Positive Rate 0.538 (0.382; 1.029) -1.082 (-1.335; -0.909) 0.021 (0.007; 0.068) 

 



Figure 17: Curves indicating how FIT sensitivity and proportion of false positives varies by FIT 

threshold in males (green) and females (blue). Fitted power curves are shown by the dotted lines. 

 

 

6. The next step was to incorporate age and screening round into the sensitivity and false 

positive estimates. Our review of international data identified a Veneto study based on 

screening of over 123,000 individuals in Italy as the best source of data about these effects 

38. This study estimated the independent effects of age and screening round on detection 

rates using multivariable analysis. We also calculated similar age effects using an 

independent data source from the first round of the Dutch screening programme 39, and 

calculated an equivalent age effect for false positive rate, not included in the Veneto study. 

The Veneto data indicates that detection rates increase exponentially with age; however, 

prevalence also increases by age, so the age effect multipliers were converted into 

sensitivities using modelled prevalence. This analysis indicated that age had no significant 

impact on sensitivity of FIT to CRC, but that it did increase sensitivity to HR and LR 

adenomas. To account for changing prevalence by age, the false positive rate was first 

converted into specificity for two different ages using the following equation: 

Specificity (age, sex)  =  (1 - False Positive Rate (age))              

Underlying Prevalence (age, sex) 

The false positive rates were then estimated assuming identical underlying prevalence and 

the age effect multipliers recalculated (Table 17). 



Table 17: Age effect multipliers (age parameters) applied exponentially per year of age over 60 

 

For detection rates from 

Veneto study 38 � prevalence 

not considered (95% CI) 

Calculated for sensitivity taking 

prevalence by sex into account (95% CI) 

Male Female 

CRC 

Detection/Sensitivity 

1.077 (1.062; 1.093) 0.999 (0.985; 1.014) 1.008 (0.993; 1.023) 

HR Adenoma 

Detection/Sensitivity 

1.049 (1.042; 1.055) 1.027 (1.021; 1.034) 1.014 (1.007; 1.020) 

LR Adenoma 

Detection/Sensitivity 

1.041 (1.032; 1.049) 1.034 (1.026; 1.043) 1.026 (1.018; 1.035) 

False Positive Rate 1.048 ( 1.045; 1.051) 1.056 (1.040; 1.071) 1.056 (1.040; 1.072) 

 

7. A reduction in detection rates and false positives is seen in subsequent screening rounds, 

but prevalence is lower too, due to the impact of the first screen 38. The effect of a second 

screening round on sensitivity and false positive rates was calculated in a similar way to the 

age parameters, taking into account the underlying prevalence two years after a round of 

screening carried out using the screening sensitivities calculated in steps 1-6 above. This 

indicates that sensitivity does diminish in subsequent screening rounds. Once calculated and 

included in the modelling, the additional impact of a third screening round could also be 

calculated, although this was found to only be significant for CRC sensitivity and false 

positives. Note that these screening round multipliers have been calculated for a screening 

interval of two years; however, in the model we assume that they hold for subsequent 

screening rounds no matter how large the interval between an individual’s previous and 

subsequent screen. 

Table 18: Screening round multipliers (compared to previous round) 

 

Round 2 (95% CI) Round 3 (95% CI) 

Male Female Male Female 

Sensitivity to CRC 0.991  

(0.825; 1.177) 

1.016  

(0.847; 1.207) 

0.845  

(0.676; 1.081) 

0.863  

(0.690; 1.104) 

Sensitivity to HR 

Adenoma 

0.827  

(0.763; 0.909) 

0.829  

(0.764; 0.910) 

NS NS 

Sensitivity to LR 

Adenoma 

0.823  

(0736; 0.909) 

0.801  

(0.717; 0.885) 

NS NS 



False Positive 

Rate 

0.604  

(0.595; 0.613) 

0.634  

(0.624; 0.644) 

0.517  

(0.499; 0.526) 

0.550  

(0.531; 0.560) 

 

The estimated parameters enabled a personalised probability of a positive result at FIT screening to 

be calculated for each modelled individual based upon their age, sex, underlying disease state, 

screening history and selected FIT threshold, using the following equations: 

Prevalent Screening Round 

Probability(D, S, Age, FIT_Thresh) = Intercept(D, S) * (FIT_Thresh ^ Param(D, S)) * (Age_Param ^ (Age – 60)) 

Subsequent Screening Rounds 

Probability_Scr2(D, S, Age, FIT_Thresh)  = Probability_Scr1(D, S, Age, FIT_Thresh)  * Round2_Effect 

Probability_Scr3+(D, S, Age, FIT_Thresh)  = Probability_Scr2(D, S, Age, FIT_Thresh)  * Round3_Effect 

where D = Disease State and S = Sex. 

  



FS Screening 

FS Eligibility 

The modelled FS screening pathway is shown in Figure 18. All eligible individuals are invited to FS 

screening. The default eligibility criteria reflect the current eligibility in England and are specified as 

follows: 

• No history of CRC diagnosis 

• Not undergoing surveillance 

• Age 55. 

Figure 18: FS screening pathway and follow-up investigations 

 

FS Uptake 

FS uptake in the BCSP is currently 44% 40; however, it varies depending upon individual 

characteristics. A multivariate analysis of BCSP data by McGregor et al. (2016) 41 provided odds ratios 

for uptake by sex and socioeconomic deprivation (IMD quintiles). The multivariate analysis also 



included area-based ethnic diversity quintiles, locality and type of appointment offered as variables. 

However, with the exception of some of the local areas, these were not significant predictors and in 

any case could not be included in the model as they did not relate to the HSE 2014 baseline 

characteristics. Whilst the sample used for analysis is less up-to-date than current estimates, the 

overall uptake was very similar (43% rather than 44%) suggesting that uptake has not changed 

considerably over time. Model coefficients were calculated by taking the log of each odds ratio. 

Uptake in the reference group (female & IMD5 [most deprived]) was unknown, but was estimated 

from the reported data as 31.5%, assuming that the proportion female in the IMD5 group was the 

same as the proportion female in the total population. This information was used to calculate an 

intercept for the model using the formula: intercept = -LN((1/x)-1) where x = reference group uptake 

with FS. Odds ratios and model coefficients are shown in Table 19.  

Table 19: Odds Ratios from McGregor et al (2016) 41 and calculated model coefficients used to predict 

FS uptake 

Variable Odds Ratio (95% CI) Coefficients (95% CI) 

Intercept NA -0.778 (-0.870 to -0.689) 

Sex Male 1.15 (1.09; 1.21) 0.139 (0.083 to 0.194) 

IMD1 (least deprived) 2.05 (1.85; 2.27) 0.716 (0.614 to 0.818) 

IMD2 1.77 (1.60; 1.95) 0.569 (0.471 to 0.666) 

IMD3 1.44 (1.32; 1.58) 0.367 (0.274 to 0.460) 

IMD4 1.20 (1.09; 1.31) 0.181 (0.090 to 0.272) 

 

Currently, FS screening in the BCSP only relates to a single age group: age 55; however, uptake is also 

likely to vary by age. The UK Flexible Sigmoidoscopy Screening Trial (UKFSST) trialled FS in a range of 

ages from 55 to 65 42. Uptake was much higher than is currently found in the BCSP (73% at age 55), 

but tended to be slightly lower in older ages, corresponding to -2.7% per year of age above 55 

(Figure 19). Normalising this to the average 44% uptake in the BCSP resulted in an average reduction 

of 0.163% (95% CI 0.108% to 0.223%) per year of age above 55 (Table 20). It was assumed that 

uptake would reduce linearly for ages above 65 and increase linearly for ages under 55. 



Figure 19: Trends in FS uptake by age from the UKFSST 42 

 

Table 20: Odds ratios (normalised to BCSP mean uptake) and calculated model coefficients for uptake 

of FS in people per year of age greater than 55. 

Variable Odds Ratio (95% CI) Coefficients (95% CI) 

Asian ethnicity  0.994 (0.994; 0.994)  -0.0056 (-0.0055 to -0.0057) 

 

A study based on the UKFSST was also used to inform uptake by ethnicity, which was found to be 

considerably lower in people of Asian ethnicity than those of from either white or black ethnic 

groups 43. Again, results were normalised to BCSP uptake and model coefficients were calculated as 

log odds ratios. 

Table 21: Odds ratios (normalised to BCSP mean uptake) and calculated model coefficients for uptake 

of FS in people of Asian ethnicity compared to white people. 

Variable Odds Ratio (95% CI) Coefficients (95% CI) 

Asian ethnicity  0.681 (0.510; 0.876)  -0.385 (-0.673 to -0.132) 

 

Sensitivity and False Positives 

It is assumed that specificity of FS is 100% due to the nature of the test and therefore that the 

probability of false positives is zero. Sensitivity of FS to CRC, HR adenomas and LR adenomas is likely 

to vary by personal characteristics including age, sex and whether previously screened. Whilst 

published estimates of FS sensitivity using colonoscopy as a reference do exist, there are problems 

with these similar to those described above for FIT screening. Furthermore, given that individual 

adenomas are not modelled, the estimates of sensitivity need to include the overall outcomes of the 

test including detection of disease at any follow-up investigations that occur as a result of a positive 



FS result. It was therefore particularly important that sensitivity estimates were derived from UK 

large-scale screening data. A similar process to that described for estimating FIT sensitivity, based on 

dividing detection rates by modelled prevalence, was therefore carried out to estimate FS sensitivity. 

Data about detection rates of CRC and HR adenoma following FS in over 34,000 people are available 

from the BCSP 40. Unfortunately, the data about LR adenoma detection is incomplete. Separate data 

is available for men and women; however, as FS is only given at age 55, no information can be 

obtained through the BCSP about detection at other ages. Data about detection rates of all three 

disease states is available from the UKFSST for a total of over 40,000 patients aged 55 to 65, and by 

sex 42. For both these data sources, no patients have been previously screened, so no information is 

available about detection rates following previous screening. A graph of detection rates by age and 

sex is shown in Figure 20 to Figure 22. This indicates that slightly lower detection rates were found 

for CRC and HR adenomas in 55 year olds in the BCSP compared with the UKFSST. There is a lot of 

uncertainty around the CRC detection results due to small numbers (only about 10 for each age 

group in the UKFSST, and 58 in the BCSP). It was decided to use the BCSP data where available due 

to the larger numbers and the representation of a screening rather than a trial population, and use 

UKFSST results to inform the age trend and the LR adenoma results (for the latter it was assumed 

that there was no reduction in detection rate compared to the UKFSST). It is unclear whether the 

trends in detection rates by age are linear or exponential; however, given that an exponential trend 

seemed to fit FIT detection by age, this curve format was also used for FS detection by age. 



Figure 20: Trends in CRC detection rates following FS screening by age based on data from the 

UKFSST 42 

 

Figure 21: Trends in high risk adenoma detection rates following FS screening by age based on data 

from the UKFSST 42 

 



Figure 22: Trends in low risk adenoma detection rates following FS screening by age based on data 

from the UKFSST 42 

 

Sensitivity estimates were first performed for age 55, then the impact of the age effect on sensitivity 

calculated through comparison with sensitivity estimated aged 60. The parameters enabled a 

personalised probability of a positive result at FS screening to be calculated for each modelled 

individual based upon their age, sex and underlying disease state using the following equation: 

Probability(Disease State, Sex, Age) = Sensitivity_Age55(Disease State, Sex) * (Age_Param ^ (Age – 55)) 

Table 22: Parameters used to calculate FS sensitivity by age, sex and disease state 

 
Sensitivity_ Age55 (95% CI) Age_Param (95% CI) 

Male Sensitivity to CRC 0.438 (0.295; 0.581) 1.034 (0.969; 1.140) 

Male Sensitivity to HR Adenoma 0.486 (0.447; 0.526) 0.988 (0.972; 1.005) 

Male Sensitivity to LR Adenoma 0.394 (0.369; 0.418) 0.999 (0.988; 1.011) 

Female Sensitivity to CRC 0.366 (0.213; 0.519) 0.947 (0.927; 0.969) 

Female Sensitivity to HR Adenoma 0.380 (0.329; 0.431) 0.947 (0.927; 0.969) 

Female Sensitivity to LR Adenoma 0.321 (0.294; 0.348) 0.978 (0.964; 0.994) 

  



Further Investigation with Colonoscopy and CTC 

All individuals testing positive with FIT or FS go on to be invited to further investigations. It is 

assumed that criteria for further investigation would be the same for FIT as currently for gFOBT in 

the BCSP. For FS, the data from the BCSP is unclear about the eligibility criteria for further 

investigation; in the UKFSST no-one with LR adenoma was investigated further 42 whilst a proportion 

of those with LR adenoma or other abnormalities also appear to be invited in the BCSP and it is 

unclear why. The total number of people requiring further investigation in the BCSP 2014/15 was 

1,544 40; slightly higher than the sum total found to have CRC, HR, or LR adenomas (1,377), and 

therefore it was assumed in the model that all individuals found to have adenomas of any risk level 

would get further investigation.  

CTC Referral 

It is assumed in the model that all FS positives are suitable for colonoscopy, whereas a proportion of 

FIT positives are not suitable and are instead referred to CTC. The proportion referred to CTC 

through the BCSP increases with age as shown in (Table 23) 40. It was assumed that the rate of 

referral for patients aged under 60 would be the same as for the 60-61 age group, whilst for patients 

aged over 74 it would be the same as for the 72-74 age group. 

Table 23: The proportion of patients referred to CTC rather than colonoscopy after a FIT positive 

result, from BCSP data (2014/15) 40 

Age Group Proportion Referred to CTC (95% CI) 

Age 60-61 3.2% (2.8% to 3.5%) 

Age 62-63 3.7% (3.3% to 4.1%) 

Age 64-65 4.5% (4.1% to 4.9%) 

Age 66-67 4.4% (4.0% to 4.8%) 

Age 68-69 4.7% (4.3% to 5.2%) 

Age 70-71 5.3% (4.8% to 5.9%) 

Age 72-74 6.1% (5.5% to 6.7%) 

 

Uptake 

Data about uptake rates for CTC and colonoscopy following either FIT or FS were obtained from a 

variety of sources. The only UK source of uptake data in FIT positives comes from the UK FIT pilot 33. 

This reported that overall uptake of adequate further investigations (CTC plus colonoscopy) was 

85.7% in FIT positives compared with 85.0% in gFOBT positives. Given the similarity between overall 

uptake in gFOBT and FIT positives, it was therefore thought reasonable to use BCSP data to inform 



uptake rather than FIT pilot data, given that BCSP data is based on larger numbers and reports 

uptake by age, sex, screening round and modality (CTC vs colonoscopy). 

BCSP data from over 200,000 gFOBT positive 2011 to 2015 was used to inform uptake of 

colonoscopy following FIT 33. Similar to FIT pilot estimates, overall uptake was 85%, but the data also 

indicated that uptake varies by age, sex and screening round (Figure 23). Uptake tends to be lower in 

older people, and is considerably lower in the prevalent (first) screening round than in incident 

(subsequent) screening rounds. There is also a significant difference between the sexes for the 

prevalent round, with males taking up colonoscopy more than females; in incident screening rounds 

there is no significant difference between male and female uptake.  

Figure 23: Colonoscopy uptake in FIT positive patients by age, sex and screening round from BCSP 

data 33 

 

Whilst this BCSP data excerpt did not include information about other personal characteristics, there 

is some evidence that colonoscopy uptake in the BCSP varies by deprivation and ethnicity. A study by 

Morris et al (2012) 44 of 24,000 gFOBT positive individuals within the BCSP included a multivariate 

analysis which found that there was significantly lower uptake of colonoscopy in the most deprived 

quintile of the population. However; this trend did not appear to continue in less deprived quintiles. 

Other independent variables included in the model were age and sex (grouped into under and over 

65 for each sex), percentage of the population who were non-white, population density and self-

assessed health. The only other significant variables were proportion non-white and the age over 65 

* female variable. However, the fact that three of the variables could not be incorporated into 

MiMic-Bowel (as they were based on populations rather than individuals), and the low significance 

of most of the variables (probably due to the relatively low sample size), meant that the BCSP data 

was preferred for use in the model.  



To calculate model coefficients for colonoscopy uptake in FIT positives from the BCSP data, linear 

trend lines were fitted to each curve in Excel and intercept and slope calculated. The coefficients 

used to predict colonoscopy uptake are shown in Table 24. 

Table 24: Calculated model coefficients used to predict colonoscopy uptake in FIT positives 

Variable Coefficients (95% CI) 

Intercept 1.169 (1.167 to 1.171) 

Prevalent Screen 0.099 (0.071 to 0.128) 

Age -0.00453 (-0.00463 to -0.00449 

Age * Prevalent Screen -0.00227 (-0.00277 to -0.00171) 

Female Sex * Prevalent Screen 0.056 ( 0.049 to 0.062) 

Age * Female Sex * Prevalent Screen -0.0012 (-0.0014 to -0.0011) 

 

CTC usage in the BCSP was reported in a publication by Plumb et al. (2013) 45, which indicated that 

99.2% of those referred to CTC took it up. No information was provided about differences by age, 

gender or screening round, so a fixed uptake rate was used for all individuals. 

BCSP data was not used to inform uptake of follow-up colonoscopy in FS positives, as the number of 

colonoscopies attended was not recorded in this excerpt. Instead, information from the UKFSST was 

used, which indicated that 96.25% of FS positives referred to colonoscopy took it up 42. No 

information about differences in colonoscopy uptake by personal characteristics were reported. The 

much higher uptake rate compared with gFOBT positives is likely to be due to colonoscopy being a 

similar process to FS and patients having already been identified to have abnormality and therefore 

being more motivated to follow it up further. However, it cannot be excluded that this could be an 

overestimate of actual uptake in the BCSP, given the trial conditions and the slightly different 

eligibility criteria for further investigation used. 

Inadequates 

Not all further investigations lead to an adequate result. It was assumed that 7% of colonoscopies 

had to be repeated (taken from NHS BCSP data 40), and that a further investigation (assumed to be a 

single colonoscopy) was required in 35% of CTC patients 45. No evidence was found to inform 

differences in inadequacy rates by personal characteristics. 

 Sensitivity and Specificity 

It was assumed that colonoscopy specificity for adenomas and CRC is 1. Colonoscopy sensitivity 

however is not perfect. Sensitivity of colonoscopy to CRC was estimated from a population-based 



study which used an interval cancer approach to determine the underlying true incidence of CRC, 

assuming that sojourn time was three years 46. Estimated sensitivity to CRC was 96.6%, which was 

used directly in the model. There are inaccuracies with using the interval cancer method, which may 

underestimate or overestimate sensitivity depending upon the accuracy of estimated sojourn time, 

local detection rates and the rate of de novo development of cancer within the interval period. It is 

also possible that this is an underestimate of sensitivity in the BCSP, as colonoscopy quality is known 

to be particularly high in England due to the long and well-regulated training procedure and has also 

improved over time. However, this was the best data available for CRC sensitivity. No evidence was 

found to inform differences in sensitivity by personal characteristics. 

A 2006 meta-analysis investigated colonoscopy sensitivity for adenomas, measured by tandem 

same-day colonoscopy 13.  This incorporated data from six studies with 465 patients in total. 

Estimated miss rates were 2.1% for polyps larger than 1cm in diameter and 23.5% for polyps under 

1cm in diameter. This data was used in the model to calculate sensitivity (1 – miss rate) for LR 

adenomas (Table 25). HR adenomas are defined both through size and number of lesions, and the 

calculated value for sensitivity of 97.9% based on adenoma size alone is actually higher than that 

used in the model for CRC sensitivity, so was not thought to be valid for representing HR adenoma 

sensitivity in the model. Instead, an alternative estimate was found from a 2013 study comparing 

the diagnostic accuracy of CTC and colonoscopy14. Colonoscopy sensitivity was estimated at 92.5% 

for HR adenomas based on the proportion of adenomas that were not detected with initial 

colonoscopy but were found through CTC and later confirmed through a second colonoscopy where 

the colonoscopist was able to view the CTC images. 

Sensitivity of CTC to CRC and HR adenomas was calculated from the SIGGAR1 study which included a 

multicentre, randomised trial comparing CTC with colonoscopy in patients with symptoms 

suggestive of CRC 47. It was reported that the relative risk for detection of CRC using CTC rather than 

colonoscopy was 0.98, whilst the relative risk for detection of HR adenomas using CTC was 0.82, 

although neither of these two values were significant. In the absence of further data it was assumed 

that the relative risk of detection of low risk adenomas was the same as that of high risk adenomas. 

These relative risks were multiplied by colonoscopy sensitivity for each disease type to obtain values 

for sensitivity of CTC. Sensitivity estimates used in the model are shown in Table 25. CTC specificity 

came from a separate study 

A systematic review of the effectiveness, diagnostic accuracy and harms of CRC screening was 

recently carried out to inform the US Preventive Services Task Force 48. The review included seven 

studies, none from the UK, which estimated the sensitivity and specificity of CTC screening. The 



weighted mean specificity was calculated as 88% for adenomas ш 6mm, or 91% for adenomas ш 

10mm. CTC specificity in the model was assumed to be 88% for all disease types. 

Table 25: Values used in the model for sensitivity and specificity of colonoscopy and CTC  

Parameter Value (95% CI) 

Colonoscopy Sensitivity to CRC 0.966 (0.962 to 0.969) 

Colonoscopy Sensitivity to HR adenoma 0.925 (0.894 to 0.952) 

Colonoscopy Sensitivity to LR adenoma 0.765 (0.733 to 0.796) 

Colonoscopy Specificity 1 

CTC Sensitivity to CRC 0.946 (0.606 to 1.472) 

CTC Sensitivity to HR adenoma 0.803 (0.490 to 1.277) 

CTC Sensitivity to LR adenoma 0.627 (0.381 to 1.018) 

CTC Specificity 0.881 (0.873 to 0.889) 

 

  



Endoscopy Complications 

The model includes a small risk of complications associated with colonoscopy, FS and CTC; including 

perforation, major bleed and death. Given the very small numbers involved, a single estimate for the 

probability of each harm was applied to all individuals in the model. Incidence of hospitalisation for 

bleeding and perforation following FS with or without polypectomy were taken from the UKFSST 42. 

In total, 12 patients suffered a major bleed out of the 40,621 who underwent FS. No individuals 

undergoing FS without polypectomy suffered perforation whereas only one individual out of 9,494 

patients undergoing polypectomy suffered perforation.  

The rate of perforation for colonoscopy was taken from a more recent study of 130,831 patients 

undergoing colonoscopy in the BCSP 49. This reported a colonoscopy perforation rate of 0.031% 

without polypectomy, and 0.091% with polypectomy, with an average of 2.3 polypectomies per 

patient. The rate of bleeding requiring transfusion (represented in the model as hospitalisation) was 

0.04%. Gatto et al (2003) 50 report that the incidence of death subsequent to a perforation within 14 

days of a procedure was 4 out of 77 colonoscopic perforations (5.2%) and 2 out of 31 sigmoidoscopic 

perforations (6.5%). This study refers to a Medicare population, so the cases may be older and in 

worse health than the English screening population; however, no alternative source was identified.  

Risk of perforation following CTC is even lower than for colonoscopy. A rate of 0.02% was assumed, 

in line with results from a systematic review and meta-analysis of the data 51. No individuals died 

following perforation in any of the included studies, so mortality rate following CTC was assumed to 

be 0%. Endoscopy complications are summarised in Table 26. 

Table 26: Probability of endoscopy harms 

Parameter Value (95% CI) 

FS with polypectomy probability of perforation 0.000105 (0.000003 to 0.00039) 

FS without polypectomy probability of perforation  0 

FS probability of hospitalisation for bleeding 0.000295 (0.00015 to 0.00048) 

FS probability of death following perforation 0.0645 (0.0818 to 0.1722) 

Colonoscopy with polypectomy probability of perforation 0.00091 (0.00061 to 0.00128) 

Colonoscopy without polypectomy probability of perforation  0.00031 (0.00014 to 0.00054) 

Colonoscopy probability of hospitalisation for bleeding 0.0004 (0.0003 to 0.00052) 

Colonoscopy probability of death following perforation 0.0519 (0.0145 to 0.1111) 

CTC probability of perforation 0.0002 (0.00007 to 0.00039) 

CTC probability of death following perforation 0 



Surveillance 

The default surveillance pathway in the model follows current NHS BCSP guidelines (Figure 24) 1. The 

model natural history includes only two adenoma health states; low risk and high risk. All individuals 

detected with high risk adenomas are eligible for surveillance; however, these high risk individuals 

are first divided further into intermediate risk and high risk categories. Intermediate risk is defined 

as 3-4 small adenomas or one adenoma of at least 1cm in diameter, whereas high risk is defined as 

either five or more small adenomas, or three or more adenomas of which one is at least 1cm in 

diameter. Those at high risk are eligible for surveillance after one year, whilst those at intermediate 

risk are eligible for surveillance after three years. As the model natural history does not explicitly 

model these as two separate health states, a different method was required to determine which 

individuals would be assigned to high risk and which to intermediate risk adenoma categories.  

Figure 24: Surveillance pathway recommended by NHS BCSP guidelines and replicated in the model 

 

No data was available to inform the proportions of high risk versus intermediate risk detected after 

FIT screening; however, the NHS BCSP records this by age and sex after gFOBT screening 40. The 

proportion of high risk adenomas found (compared with all high and intermediate risk adenomas) 

was plotted by age for males and females separately using data from 44,000 individuals screened 

between 2011 and 2015 (Figure 25). This indicated that male sex and age are both predictors for 

high-risk adenomas. Screening round did not appear to be a predictor for the proportion high risk 

(not shown). The age trend appeared to be reasonably linear, enabling estimation of regression 

coefficients for calculating individualised probabilities of having a high risk adenoma (Table 27). 



Figure 25: Plot showing the proportion of individuals with high risk (rather than intermediate risk) 

adenomas by age and sex, following gFOBT screening in the BCSP, 2001 to 2015 40 

 

Table 27: Regression coefficients used in the model to predict the probability that an individual has a 

high risk adenoma rather than an intermediate risk adenoma following detection through screening. 

Variable Mean Lower 95% CI Upper 95% CI 

Intercept -0.0458 -0.0588 -0.0328 

Male Sex -0.0463 -0.055 -0.0376 

Age 0.0058 0.0057 0.0059 

Age*Male Sex 0.0024 0.0023 0.0024 

 

Individuals who are invited to surveillance colonoscopy may or may not attend. Uptake of 

surveillance colonoscopy was assumed to be 82.5% in line with data from the BCSP 40. In line with 

the BCSP guidelines, individuals in the model who do not attend are invited back for another 

surveillance colonoscopy after the interval relevant to their risk status has passed (i.e. after a further 

three years if they were previously classified as intermediate risk). Individuals found to have high risk 

adenomas at surveillance will undergo polypectomy and then be reinvited after one year. Individuals 

found to have low or intermediate risk findings will undergo polypectomy and then be reinvited 

after three years. Individuals who do not have any adenomas upon surveillance will be reinvited 

after three years; however, if they were originally high risk and then have three consecutive clear 

colonoscopies, or were originally medium risk and then have two consecutive clear colonoscopies 

they are assumed to be very low risk and return to routine screening. Any modelled individual who is 

diagnosed with cancer during surveillance is removed from the screening and surveillance pathway 



and instead follows a disease pathway which includes treatment costs, utility reductions and 

reduced survival compared to the general population. 

Whilst it is known from a study by Bressler et al (2007) that not all adenomas are cleared from the 

bowel upon polypectomy (particularly low risk adenomas) 46, the current model structure 

incorporating only a limited number of health states, rather than individual adenomas, does not 

enable this to be represented. Instead, the Bressler data is used to inform colonoscopy sensitivity 

(i.e. whether or not adenomas are detected), and then it is assumed that polypectomy that takes 

place during screening and surveillance returns all detected individuals back to the normal 

epithelium health state. This is likely to mean that the people undergoing surveillance in the model 

are healthier than in practice, whilst more unhealthy people are returned to the screening pool, 

although it is unclear what impact this would have on model comparisons of different screening 

strategies. Future versions of the model will simulate individual adenomas, enabling colonoscopy 

sensitivity estimates to be applied to each individual adenoma and allowing incomplete adenoma 

clearance upon polypectomy to be simulated. This will be essential for accurate comparison of 

different surveillance strategies. 

Surveillance data from the BCSP indicates that individuals who are undergoing surveillance have a 

much higher risk of developing CRC and adenomas than individuals in the general population 

(personal communication from Stuart Bonnington). It is thought that this is partly due to incomplete 

clearance of adenomas from the bowel during polypectomy (as discussed above), and partly due to 

surveilled individuals being at higher risk of adenoma and CRC development than individuals in the 

general population. However, it was decided that this data should not be used to adjust the natural 

history transition probabilities in people undergoing surveillance, as this could result in surveillance 

inadvertently increasing cancer risk in the model, whereas in reality surveillance should reduce risk. 

This was particularly important given that one of the objectives of MiMiC-Bowel was to enable 

evaluation of different surveillance strategies. If natural variation in cancer risk is accurately 

represented in the model, then individuals who are at high risk due to environmental and genetic 

factors will be those most likely to be picked up with adenomas during screening and therefore to 

undergo surveillance. This should mean that those undergoing surveillance will naturally transition 

faster to adenomas and cancers than individuals in the general screening population.  

  



Utilities 

Utility decrements due to age were calculated as described in the Modelling Changes in Phenotypic 

Characteristics by Age section, and are shown in Table 28. 

A recent review and meta-analysis of CRC utilities by Djalalov et al (2014) was used to estimate 

utility multipliers for CRC 52. The meta-analysis included a linear mixed-effects model for utilities that 

took into account differences in utility measurements by cancer site, stage, time since surgery, 

measurement instrument and method of administration. The reference case was chosen for cancer 

site (colorectal cancer) and method of administration (interviewer), whilst EQ-5D was chosen as the 

measurement instrument. The model indicated that individuals with stage D cancer would have a 

0.19 lower utility than individuals with stage A-C cancer. The model also indicated that utility 

increased after surgery, with values given for before surgery, three months after surgery, one year 

after surgery and more than one year after surgery. This meant that it was possible to estimate 

utilities in the first year after diagnosis (which would likely include treatment with surgery), and for 

subsequent years. The three months after surgery values were chosen to represent the first year 

after surgery, and the more than one year after surgery values were chosen to represent subsequent 

years.  

The values described above are absolute utilities rather than multipliers or decrements. However, no 

average age is given against which to compare values from the general population. An analysis from 

Ara & Brazier (2011) indicates that the average utility of people with a history of cancer is 14% lower 

than that for the general population or for people without a cancer history, and that this doesn’t 

change significantly with age 5. Given that the utility value estimated in the Djalalov model for mixed 

stages, more than one year after surgery is 0.86 52, this implies that it would be reasonable to use 

the Djalalov values as utility multipliers rather than as absolute utilities (which would overestimate 

health related quality of life in cancer). The utility multipliers used in the model by stage and year 

since diagnosis are presented in Table 28. 

There may be a small utility decrement associated with undergoing a screening test; however, such a 

decrement is likely to only last a short period of time. There is no data available for utility values 

during a screening test, so no utility decrement due to screening test was included within the 

modelling. 

Screening harms are associated with transient reductions in utility. It was not possible to find utility 

decrements relating specifically to screening adverse events. As an alternative, utility decrements for 

bleeding were estimated by assuming they would be similar to a major gastrointestinal bleed and 



used the value from Dorian et al. (2014) of 0.1511 for two weeks, i.e. a total QALY loss of 0.00581 in 

the year of occurrence 53. Values for perforation were assumed to be the same as for stomach 

ulcer/abdominal hernia/rupture taken from Ara and Brazier (2011) 5. The disutility value was 0.118 

for one month, i.e. total QALY loss of 0.00983 over a year. 

Individual utility values were modelled annually by first applying the total age decrement calculated 

using the baseline age and EQ-5D for each individual, then applying multipliers due to CRC, then 

applying any transient screening harm decrements. Any individual with utility values greater than 1 

had utility adjusted to 1, whilst any individual with utility values lower than -0.594 had utility 

adjusted to -0.594, reflecting the upper and lower bounds of the EQ-5D score. 

Table 28: A summary of utility decrements and multipliers used in the model 

 Utility Change (95% CI) Multiplier or 

Decrement 

Age -0.00432 (-0.00460; -0.00404) Decrement 

CRC Stage A-C Year 1 0.87 (0.67; 1.07) Multiplier 

CRC Stage A-C Subsequent Years 0.92 (0.76; 1.08) Multiplier 

CRC Stage D Year 1 0.68 (0.42; 0.93) Multiplier 

CRC Stage D Subsequent Years 0.73 (0.51; 0.94) Multiplier 

Bowel Perforation -0.00983 (-0.01058; -0.00917) Decrement 

Intestinal Bleed -0.00581 (-0.00883; -0.00279) Decrement 

  

  



Costs 

Screening and Further Investigation Costs 

FIT screening programme costs were taken from the ScHARR bowel cancer screening cohort model, 

which used costings from the Southern screening hub 37. Previously, costs of individual components 

were combined to give for example separate costs for FIT non-compliers, FIT compliers with normal 

results and FIT compliers with positive results. Costs were structured in a slightly different way for 

MiMiC-Bowel to enable each individual to accumulate costs as they travelled along the screening 

pathway, gathering one cost for being invited, and then separately gathering the additional costs of 

complying (e.g. the cost of processing the test kit) and then getting a positive test (e.g. the cost of an 

appointment with a specialised screening practitioner to discuss further investigation) (Table 29).  

For FS screening, costs from the Southern screening hub were used to estimate all screening costs in 

a similar way to that described for FIT screening, apart from the cost of the FS exam itself, which was 

costed using NHS Reference Costs 2017/18 54. Southern Hub screening costs were inflated from 

2008/09 values to 2013/14 values using the Hospital and Community Health Services (HCHS) pay and 

prices index, and then to 2017/18 values using the new Health Services Index 55. 

Table 29: Screening costs taken from Southern Hub Costings 37, inflated to 2017/18 values 

Screening Procedure Components Included in Costing Cost (95% CI) 

FIT Invite FIT kit, invitation letter, reminder letters in non-

responders, helpline costs, postage, packaging, staff 

costs and overheads. 

£7.45  

(£6.71; £8.20) 

Additional Costs of 

FIT Normal Result 

FIT processing, retests (required in 3% of people), 

normal result letter to patient & GP 

£1.09  

(£0.98; £1.19) 

Additional Costs of 

FIT Positive Result 

Additional costs of positive result letter to patient & 

GP. Specialised screening practitioner appointment. 

£10.23  

(£9.21; £11.25) 

FS Invite Invitation letter, bowel preparation kit, reminder 

letters in non-responders, helpline costs, postage, 

packaging, staff costs and overheads. 

£5.82  

(£5.24; £6.40) 

Additional Costs of 

FS Normal Result 

Normal result letter to patient & GP with postage. FS 

procedure NOT included. 

£1.14  

(£1.03; £1.26) 

Additional Costs of 

FS Positive Result 

Positive result letter to patient & GP with postage. 

Specialised screening practitioner appointment. FS 

procedure NOT included. 

£11.37  

(£10.24; £12.51) 

 



Individuals undergoing further investigations (CTC or colonoscopy) or surveillance colonoscopy incur 

further costs relating to these procedures and the harms arising from these procedures. All further 

investigations and screening harms were costed using NHS Reference costs 2017/18 54. Previous 

versions of NHS Reference costs have provided interquartile ranges, allowing calculation of a 

standard error if it is assumed that the interquartile range is distributed symmetrically around the 

mean. However, the 2017/18 version does not include this. Interquartile ranges from NHS Reference 

costs 2016/17 were therefore combined with the mean from NHS Reference costs 2017/18 to 

provide an estimate of interquartile ranges around the new mean that were proportional to the 

2016/17 values. 

No cost was assigned to invitation to further investigations or surveillance. For CTC, all costs were 

assumed to be incurred upon attending CTC and no additional costs were given for a positive result. 

The cost for CTC was estimated from diagnostic imaging CTC costs relating to CTC for more than 

three areas (Table 30). Different costs were incurred for FS and colonoscopy with and without 

polypectomy. Individuals who did not have any adenomas or cancer detected were assumed to have 

a diagnostic FS or colonoscopy (without polypectomy) whereas those diagnosed with adenomas 

were assumed to have therapeutic FS or colonoscopy (with polypectomy). All of these were costed 

as day case procedures. People diagnosed with cancer were also costed as though they had 

therapeutic FS/colonoscopy – whilst these individuals will not have a polyp removed, they will likely 

have some tissue removed for biopsy instead. Cost of biopsy (costed as histopathology and histology 

within direct access pathology services) was assumed to be incurred by all individuals diagnosed 

with cancer and those with adenomas removed. In individuals with cancer, a single biopsy was 

costed, whilst in those with adenomas removed, the cost of biopsy was multiplied by an estimate of 

the average number of adenomas removed during screening, given as 2.3 in a study of the NHS BCSP 

49. Note that this estimate comes from gFOBT screening rather than FIT or FS screening; however, no 

other data informing this could be found.  

Individuals who suffer screening harms are also expected to incur costs of these harms. Perforation 

from CTC, FS or colonoscopy was calculated as a weighted average of the cost of major large 

intestine procedures with CC score of 0 to 3+, 19 years and over. Bleed from FS or colonoscopy was 

calculated as a weighted average of the cost of gastrointestinal bleed without interventions, with 

single intervention and with multiple interventions. All harms were costed as non-elective short-stay 

procedures. 



Table 30: Costs of screening, further investigation and harm taken from NHS Reference Costs 

2017/18 54 

Procedure Description Cost (Interquartile Range) 

Diagnostic FS FS without polypectomy, Day case £402 (£316; £472) 

Therapeutic FS FS with polypectomy, Day case £512 (£420; £595) 

Diagnostic Colonoscopy Colonoscopy without polypectomy, Day 

case 

£525 (£406; £601) 

Therapeutic Colonoscopy Colonoscopy with polypectomy, Day 

case 

£641 (£508; £735) 

Biopsy Histopathology and histology £33 (£12; £38) 

CTC Scan CT scan of more than three areas £139 (£69; £191) 

Bowel Perforation Weighted average of major large 

intestine procedures with CC score 0-3+ 

£1,554 (£472; £2,295) 

Intestinal Bleed Weighted average of gastrointestinal 

bleed without intervention or with 

single or multiple intervention 

£474 (£391; £532) 

 

CRC Treatment Costs 

Cancer treatment costs were taken from a 2016 costing study by Laudicella et al (2016) that used 

population based, patient level data to estimate the costs of treating four different types of cancer, 

including colorectal cancer, in each year following diagnosis in England 56. The study is limited in that 

it groups early stage (Dukes A & B) and later stage (Dukes C & D), and groups individuals aged 18-64 

or 65+, rather than providing data on a wider range of ages. However, it has two advantages. Firstly, 

it reports costs for up to nine years following diagnosis, which enables treatment costs to be 

allocated to the year they are incurred (rather than assuming they are all incurred in the first year 

after diagnosis), and should mean that most costs of relapse are incorporated. Secondly, costs 

include all healthcare costs incurred by individuals and not those specifically incurred through 

colorectal cancer treatment. This has the advantage that healthcare costs indirectly attributed to 

cancer are included (for example extra care required to treat unrelated conditions in individuals with 

cancer), but the disadvantage that completely unrelated healthcare costs that would also be 

incurred in individuals without cancer are also included. The study does not estimate healthcare 

costs in individuals without cancer as comparison, but does estimate healthcare costs for the three 

years prior to cancer diagnosis. This means that cancer-related healthcare costs over the nine years 

following diagnosis could be estimated by subtracting the three-years pre- diagnosis costs from the 



costs for each year post-diagnosis. Costs in the year immediately prior to diagnosis were significantly 

higher than costs two or three years prior to diagnosis suggesting that these might represent the 

costs of diagnosis. These costs were not included in the model to avoid double counting the costs of 

diagnosis through screening and surveillance. The costing study was carried out in 2010, so costs 

were inflated to 2013/14 values using the Hospital and Community Health Services (HCHS) pay and 

prices index, and then to 2017/18 values using the new Health Services Index 55. 

Table 31: CRC�related healthcare costs from Laudicella et al 2016 56, inflated to 2017/18 values. 

 Age 18-64 Age 65+ 

Stage A-B Stage C-D Stage A-B Stage C-D 

Year One £16,302 £21,051 £15,233 £16,625 

Year Two £3,826 £6,895 £3,508 £5,242 

Year Three £3,175 £4,713 £2,860 £4,047 

Year Four £2,452 £3,850 £2,379 £3,169 

Year Five £2,206 £2,748 £2,414 £2,965 

Year Six £1,509 £2,300 £2,440 £2,816 

Year Seven £1,569 £2,680 £2,217 £1,800 

Year Eight £1,438 £2,055 £2,458 £2,338 

Year Nine £1,239 £1,413 £2,052 £1,818 

 

 



Appendix A: Parameter Table 

No Parameter Name Mean 95% CI Distribution Source 

1 CRC Relative Risk Current Smoker 1.38 1.12 1.72 Lognormal Calibrated based on Brown et al. 2018 17 

  2 CRC Relative Risk Former Smoker 1.19 1.06 1.35 Lognormal 

3 CRC Relative Risk Overweight Males (BMI 25-29.99) 1.29 1.20 1.38 Lognormal 

4 CRC Relative Risk Overweight Females (BMI 25-29.99) 1.11 1.02 1.23 Lognormal 

5 CRC Relative Risk Obese Males (BMI >=30) 1.74 1.62 1.88 Lognormal 

6 CRC Relative Risk Obese Females (BMI >=30) 1.33 1.11 1.61 Lognormal 

7 CRC Relative Risk Light Alcohol Drinker (<12.5g per day) 0.85 0.79 0.90 Lognormal 

8 CRC Relative Risk Moderate Alcohol Drinker (12.5-50g per day) 1.03 1.02 1.05 Lognormal 

9 CRC Relative Risk Heavy Alcohol Drinker (>50g per day) 1.16 1.07 1.26 Lognormal 

10 CRC Relative Risk High Physical Activity (150+ mins per week) 0.84 0.75 0.92 Lognormal 

11 CRC Relative Risk Black Ethnicity Males 0.57 0.34 0.95 Lognormal Calibrated based on Hippisley-Cox et al. 

201519 12 CRC Relative Risk Black Ethnicity Females 0.65 0.45 0.95 Lognormal 

13 CRC Relative Risk Asian Ethnicity Males 0.41 0.26 0.67 Lognormal 

14 CRC Relative Risk Asian Ethnicity Females 0.42 0.25 0.72 Lognormal 

15 CRC Relative Risk Other Ethnicity Males 0.43 0.23 0.80 Lognormal 

16 CRC Relative Risk Other Ethnicity Females 0.70 0.47 1.04 Lognormal 

17 CRC Relative Risk Family History (genetic risk subtracted) 3.05 1.86 4.31 Lognormal Calibrated based on Lowery et al. 2016 18 

18 Multiplier used for genetic risk 1.73 NA NA Constant Model calibration 

19 Coefficients for proportion with family history: Intercept -0.073 -0.08 -0.06 Normal Calculated from UK Biobank data 7 

 20 Coefficients for proportion with family history: Age 0.003 0.0032 0.0035 Normal 

21 Transition probability: Norm to LR Adenoma Age 35 Male 2.01E-03 NA NA Correlated set Model calibration 

22 Transition probability: Norm to LR Adenoma Age 45 Male 2.68E-02 NA NA Correlated set Model calibration 

23 Transition probability: Norm to LR Adenoma Age 55 Male 1.49E-02 NA NA Correlated set Model calibration 

24 Transition probability: Norm to LR Adenoma Age 65 Male 8.17E-03 NA NA Correlated set Model calibration 

25 Transition probability: Norm to LR Adenoma Age 75 Male 4.36E-03 NA NA Correlated set Model calibration 



26 Transition probability: Norm to LR Adenoma Age 85 Male 3.15E-03 NA NA Correlated set Model calibration 

27 Transition probability: Norm to LR Adenoma Age 35 Female 1.15E-03 NA NA Correlated set Model calibration 

28 Transition probability: Norm to LR Adenoma Age 45 Female 1.62E-02 NA NA Correlated set Model calibration 

29 Transition probability: Norm to LR Adenoma Age 55 Female 1.15E-02 NA NA Correlated set Model calibration 

30 Transition probability: Norm to LR Adenoma Age 65 Female 8.28E-03 NA NA Correlated set Model calibration 

31 Transition probability: Norm to LR Adenoma Age 75 Female 4.01E-03 NA NA Correlated set Model calibration 

32 Transition probability: Norm to LR Adenoma Age 85 Female 3.05E-03 NA NA Correlated set Model calibration 

33 Transition probability: LR to HR Adenoma Age 35 Male 2.82E-02 NA NA Correlated set Model calibration 

34 Transition probability: LR to HR Adenoma Age 45 Male 3.13E-02 NA NA Correlated set Model calibration 

35 Transition probability: LR to HR Adenoma Age 55 Male 2.06E-02 NA NA Correlated set Model calibration 

36 Transition probability: LR to HR Adenoma Age 65 Male 1.21E-02 NA NA Correlated set Model calibration 

37 Transition probability: LR to HR Adenoma Age 75 Male 1.55E-02 NA NA Correlated set Model calibration 

38 Transition probability: LR to HR Adenoma Age 85 Male 9.27E-03 NA NA Correlated set Model calibration 

39 Transition probability: LR to HR Adenoma Age 35 Female 1.75E-02 NA NA Correlated set Model calibration 

40 Transition probability: LR to HR Adenoma Age 45 Female 2.85E-02 NA NA Correlated set Model calibration 

41 Transition probability: LR to HR Adenoma Age 55 Female 1.45E-02 NA NA Correlated set Model calibration 

42 Transition probability: LR to HR Adenoma Age 65 Female 1.44E-02 NA NA Correlated set Model calibration 

43 Transition probability: LR to HR Adenoma Age 75 Female 1.99E-02 NA NA Correlated set Model calibration 

44 Transition probability: LR to HR Adenoma Age 85 Female 1.14E-02 NA NA Correlated set Model calibration 

45 Transition probability: HR to Cancer Age 35 Male 9.24E-03 NA NA Correlated set Model calibration 

46 Transition probability: HR to Cancer Age 45 Male 1.63E-02 NA NA Correlated set Model calibration 

47 Transition probability: HR to Cancer Age 55 Male 1.81E-02 NA NA Correlated set Model calibration 

48 Transition probability: HR to Cancer Age 65 Male 2.84E-02 NA NA Correlated set Model calibration 

49 Transition probability: HR to Cancer Age 75 Male 5.02E-02 NA NA Correlated set Model calibration 

50 Transition probability: HR to Cancer Age 85 Male 3.52E-02 NA NA Correlated set Model calibration 

51 Transition probability: HR to Cancer Age 35 Female 4.69E-03 NA NA Correlated set Model calibration 

52 Transition probability: HR to Cancer Age 45 Female 2.08E-02 NA NA Correlated set Model calibration 

53 Transition probability: HR to Cancer Age 55 Female 2.72E-02 NA NA Correlated set Model calibration 

54 Transition probability: HR to Cancer Age 65 Female 3.59E-02 NA NA Correlated set Model calibration 



55 Transition probability: HR to Cancer Age 75 Female 6.50E-02 NA NA Correlated set  Model calibration 

56 Transition probability: HR to Cancer Age 85 Female 5.31E-02 NA NA Correlated set Model calibration 

57 Transition probability: Norm to CRC Dukes A Age 15 Male 0 NA NA Correlated set Model calibration 

58 Transition probability: Norm to CRC Dukes A Age 101 Male 5.77E-04 NA NA Correlated set Model calibration 

59 Transition probability: Norm to CRC Dukes A Age 15 Female 0 NA NA Correlated set Model calibration 

60 Transition probability: Norm to CRC Dukes A Age 101 Female 5.74E-04 NA NA Correlated set Model calibration 

61 Transition probability: Dukes Stage A to B undiagnosed 2.93E-01 NA NA Correlated set Model calibration 

62 Transition probability: Dukes Stage B to C undiagnosed 5.54E-01 NA NA Correlated set Model calibration 

63 Transition probability: Dukes Stage C to D undiagnosed 3.50E-01 NA NA Correlated set Model calibration 

64 Proportion CRC_D deaths undiagnosed as a function of age > 75 0.04 NA NA Correlated set Model calibration 

65 Symptomatic presentation with CRC Dukes A 2.03E-02 NA NA Correlated set Model calibration 

66 Symptomatic presentation with CRC Dukes B 1.43E-01 NA NA Correlated set Model calibration 

67 Symptomatic presentation with CRC Dukes C 2.74E-01 NA NA Correlated set Model calibration 

68 Symptomatic presentation with CRC Dukes D 2.50E-01 NA NA Correlated set Model calibration 

69 Symptomatic presentation annual decrement in those aged > 75 3.61E-02 NA NA Correlated set Model calibration 

70 Average number of adenomas present in patient with at least 

one adenoma  

2.3 2.3 2.3 Lognormal Rutter et al 2014 (note based on gFOBT 

screening) 49 

71 Proportion of advanced adenoma classified as high risk 

coefficients: Intercept 

-0.0458 -0.0583 -0.0323 Normal NHS BCSP data 2014/15 (note based on 

gFOBT screening) 40 

 72 Proportion of advanced adenoma classified as high risk 

coefficients: Male 

-0.0463 -0.0553 -0.0379 Normal 

73 Proportion of advanced adenoma classified as high risk 

coefficients: Age 

0.0058 0.0057 0.0059 Normal 

74 Proportion of advanced adenoma classified as high risk 

coefficients: Male * Age 

0.0024 0.0023 0.0024 Normal 

75 FIT Uptake Regression Coefficients: Intercept 0.7096 0.6269 0.8023 Normal UK FIT Pilot (Moss et al 2016) 33 

 76 FIT Uptake Regression Coefficients: Age 65+ -0.1165 -0.1278 -0.1054 Normal 

77 FIT Uptake Regression Coefficients: Age 70+ -0.1192 -0.1206 -0.1178 Normal 

78 FIT Uptake Regression Coefficients: Sex Female 0.1398 0.1310 0.1484 Normal 

79 FIT Uptake Regression Coefficients: Previous non responder -1.8326 -1.8579 -1.8264 Normal 

80 FIT Uptake Regression Coefficients: Incident 1.8795 1.8640 1.8779 Normal 



81 FIT Uptake Regression Coefficients: IMD2 -0.0726 -0.0943 -0.0619 Normal 

82 FIT Uptake Regression Coefficients: IMD3 -0.1508 -0.1625 -0.1278 Normal 

83 FIT Uptake Regression Coefficients: IMD4 -0.2877 -0.3147 -0.2744 Normal 

84 FIT Uptake Regression Coefficients: IMD5 most deprived -0.5978 -0.6162 -0.5978 Normal 

85 FIT Uptake Regression Coefficients: Age 50-54 -0.3647 -0.3659 -0.3635 Normal Scottish FIT Data 2017-1834 

86 FIT Uptake Regression Coefficients: Age 55-59 -0.2516 -0.2519 -0.2512 Normal 

87 FIT Uptake Regression Coefficients: Asian -0.9406 -1.0405 -0.8345 Normal Szczepura et al 2008 35 (note based on 

gFOBT screening England) 

88 FS Uptake Regression Coefficients: Intercept -0.7780 -0.8701 -0.6889 Normal McGregor et al 2016 41 

 89 FS Uptake Regression Coefficients: Males 0.1389 0.0834 0.1939 Normal 

90 FS Uptake Regression Coefficients: IMD1 least deprived 0.7158 0.6141 0.8180 Normal 

91 FS Uptake Regression Coefficients: IMD2 0.5687 0.4713 0.6663 Normal 

92 FS Uptake Regression Coefficients: IMD3 0.3667 0.2738 0.4600 Normal 

93 FS Uptake Regression Coefficients: IMD4 0.1807 0.0899 0.2716 Normal 

94 FS Uptake: Per Year of Age above 55 -0.00163 -0.00223 -0.00108 Normal UKFSST 42, normalised to BCSP mean uptake 

95 FS Uptake: Asian -0.384 -0.673 -0.132 Normal Robb et al 2008 43 (note based on gFOBT 

screening) 

96 Colonoscopy uptake after FIT coefficients: Intercept 1.1691 1.1666 1.1715 Normal NHS BCSP data 2014/15 (note based on 

gFOBT screening) 40 

 
97 Colonoscopy uptake after FIT coefficients: Prevalent screen 0.0993 0.062799 0.1372 Normal 

98 Colonoscopy uptake after FIT coefficients: Female * Prevalent 0.0555 0.0473 0.0638 Normal 

99 Colonoscopy uptake after FIT coefficients: Age -0.00453 -0.00473 -0.00457 Normal 

100 Colonoscopy uptake after FIT coefficients: Age * Prevalent -0.00227 -0.00287 -0.00153 Normal 

101 Colonoscopy uptake after FIT coefficients: Age * Female * 

Prevalent 

-0.0012 -0.0014 -0.001 Normal 

102 Colonoscopy uptake after FS 0.9625 0.950 0.974 Beta UKFSST 42 

103 CTC uptake after FIT 0.9920 0.988 0.995 Beta Plumb et al  2013 45 

104 Surveillance colonoscopy uptake 0.825 NA NA Constant 
 

105 Proportion CTC of all referrals Age 60-61 0.0315 0.028 0.035 Beta NHS BCSP data 2014/15 40 

 106 Proportion CTC of all referrals Age 62-63 0.03697 0.033 0.041 Beta 

107 Proportion CTC of all referrals Age 64-65 0.04495 0.041 0.049 Beta 



108 Proportion CTC of all referrals Age 66-67 0.04424 0.040 0.048 Beta 

109 Proportion CTC of all referrals Age 68-69 0.04700 0.043 0.052 Beta 

110 Proportion CTC of all referrals Age 70-71 0.05309 0.048 0.059 Beta 

111 Proportion CTC of all referrals Age 72-74 0.06071 0.055 0.067 Beta 

112 FIT probability second kit sent 0.02 0.018 0.022 Beta Murphy and Gray 2015 57 

113 FS repeat test rate 0.02065 0.019 0.022 Beta UKFSST 42 

114 Colonoscopy repeat test rate 0.06963 0.068 0.071 Beta NHS BCSP data 2014/15 40 

115 CTC additional investigation rate 0.35445 0.337 0.372 Beta Plumb et al  2013 45 

116 Colonoscopy (with polypectomy) perforation rate 0.00091 0.001 0.001 Beta Rutter et al 2014 49 

117 Colonoscopy (without polypectomy) perforation rate 0.00031 0.000 0.001 Beta Rutter et al 2014 49 

118 FS (with polypectomy) perforation rate 0.000105 0.000 0.000 Beta UKFSST 42 

119 FS (without polypectomy) perforation rate 0 NA NA Constant 

120 CTC perforation rate 0.0002 0.00007 0.00039 Beta Bellini et al 2014 51 

121 Colonoscopy probability of hospitalisation for bleeding 0.0004 0.000 0.001 Beta Rutter et al 2014 49 

122 FS probability of hospitalisation for bleeding 0.000295 0.000 0.000 Beta UKFSST 42 

123 Colonoscopy probability of death following perforation 0.05195 0.015 0.111 Beta Gatto et al 2003 

 124 FS probability of death following perforation  0.06452 0.008 0.172 Beta 

125 CTC probability of death following perforation 0 NA NA Constant Bellini et al 2014 51 

126 Colonoscopy Sensitivity for LR adenomas 0.7651 0.733 0.796 Beta Van Rijn et al 2006 13 

 127 Colonoscopy Sensitivity for HR adenomas 0.9791 0.943 0.997 Beta 

128 Colonoscopy Sensitivity for CRC 0.9656 0.962 0.969 Beta Bressler et al 2007 46 

129 Colonoscopy Specificity 1 NA NA Constant Assumption due to nature of the test 

130 CTC Sensitivity for LR adenomas 0.6274 0.381 1.018 Beta Assumption  based on detection rates 

relative to colonoscopy in Atkin et al. 2013 
47 

131 CTC Sensitivity for HR adenomas 0.8029 0.490 1.277 Beta 

132 CTC Sensitivity for CRC 0.9463 0.606 1.472 Beta 

133 CTC Specificity 0.8812 0.8729 0.8893 Beta Lin et al 2015 48 

134 FS Sensitivity for LR adenomas Male Intercept 0.394 0.369 0.418 Beta Calculated from UKFSST detection rates and 

modelled prevalence 42 135 FS Sensitivity for LR adenomas Male Age Param 0.999 0.988 1.011 Normal 



136 FS Sensitivity for HR adenomas Male Intercept 0.486 0.447 0.526 Beta Calculated from NHS BCSP 2014/15 

detection rates and modelled prevalence 40 

137 FS Sensitivity for HR adenomas Male Age Param 0.988 0.972 1.005 Normal Calculated from UKFSST detection rates and 

modelled prevalence 42 

138 FS Sensitivity for CRC Male Intercept 0.438 0.295 0.581 Beta Calculated from NHS BCSP 2014/15 

detection rates and modelled prevalence 40 

139 FS Sensitivity for CRC Male Age Param 1.034 0.969 1.140 Normal Calculated from UKFSST detection rates and 

modelled prevalence 42 140 FS Sensitivity for LR adenomas Female Intercept 0.321 0.294 0.348 Beta 

141 FS Sensitivity for LR adenomas Female Age Param 0.978 0.964 0.994 Normal 

142 FS Sensitivity for HR adenomas Female Intercept 0.380 0.329 0.431 Beta Calculated from NHS BCSP 2014/15 

detection rates and modelled prevalence 40 

143 FS Sensitivity for HR adenomas Female Age Param 0.947 0.927 0.969 Normal Calculated from UKFSST detection rates and 

modelled prevalence 42 

144 FS Sensitivity for CRC Female Intercept 0.366 0.213 0.519 Beta Calculated from NHS BCSP 2014/15 

detection rates and modelled prevalence 40 

145 FS Sensitivity for CRC Female Age Param 0.916 0.910 1.106 Normal Calculated from UKFSST detection rates and 

modelled prevalence 42 

146 FS Specificity 1 NA NA Constant Assumption due to nature of the test 

147 FIT Sensitivity LR adenomas Males: Power Curve Intercept 0.841 0.7057 1.2074 Beta Calculated from Moss et al. 2016 detection 

rates and modelled prevalence 33 148 FIT Sensitivity LR adenomas Males: Power Curve FIT_Param -0.784 -0.9810 -0.6540 Normal 

149 FIT Sensitivity LR adenomas Males: Age effect > 60 1.034 1.0259 1.0428 Normal Calculated from Zorzi et al. 2018 estimates 

of age effects on detection rates 38 150 FIT Sensitivity LR adenomas Males: Round 2 effect 0.823 0.7362 0.9094 Normal 

151 FIT Sensitivity LR adenomas Females: Power Curve Intercept 0.630 0.5288 0.9050 Beta Calculated from Moss et al. 2016 detection 

rates and modelled prevalence 33 152 FIT Sensitivity LR adenomas Females: Power Curve FIT_Param -0.852 -1.0500 -0.7230 Normal 

153 FIT Sensitivity LR adenomas Females: Age effect > 60 1.026 1.0179 1.0347 Normal Calculated from Zorzi et al. 2018 estimates 

of age effects on detection rates 38 154 FIT Sensitivity LR adenomas Females: Round 2 effect 0.801 0.7166 0.8852 Normal 

155 FIT Sensitivity HR adenomas Males: Power Curve Intercept 1.071 1.0818 1.1313 Beta Calculated from Moss et al. 2016 detection 

rates and modelled prevalence 33 156 FIT Sensitivity HR adenomas Males: Power Curve FIT_Param -0.487 -0.5910 -0.4130 Normal 

157 FIT Sensitivity HR adenomas Males: Age effect > 60 1.027 1.0207 1.0336 Normal Calculated from Zorzi et al. 2018 estimates 

of age effects on detection rates 38 158 FIT Sensitivity HR adenomas Males: Round 2 effect 0.827 0.7626 0.9086 Normal 

159 FIT Sensitivity HR adenomas Females: Power Curve Intercept 1.205 1.2165 1.2731 Beta 



160 FIT Sensitivity HR adenomas Females: Power Curve FIT_Param -0.555 -0.6590 -0.4810 Normal Calculated from Moss et al. 2016 detection 

rates and modelled prevalence 33 

161 FIT Sensitivity HR adenomas Females: Age effect > 60 1.014 1.0072 1.0200 Normal Calculated from Zorzi et al. 2018 estimates 

of age effects on detection rates 38 162 FIT Sensitivity HR adenomas Females: Round 2 effect 0.829 0.7638 0.9100 Normal 

163 FIT Sensitivity CRC Males: Power Curve Intercept 0.526 0.2702 0.8675 Beta Calculated from Moss et al. 2016 detection 

rates and modelled prevalence 33 164 FIT Sensitivity CRC Males: Power Curve FIT_Param -0.083 -0.1450 -0.0540 Normal 

165 FIT Sensitivity CRC Males: Age effect > 60 0.999 0.9852 1.0141 Normal Calculated from Zorzi et al. 2018 estimates 

of age effects on detection rates 38 166 FIT Sensitivity CRC Males: Round 2 effect 0.991 0.8259 1.1768 Normal 

167 FIT Sensitivity CRC Males: Round 3 effect 0.845 0.6758 1.0813 Normal 

168 FIT Sensitivity CRC Females: Power Curve Intercept 0.353 0.1764 0.5820 Beta Calculated from Moss et al. 2016 detection 

rates and modelled prevalence 33 169 FIT Sensitivity CRC Females: Power Curve FIT_Param -0.171 -0.2320 -0.1420 Normal 

170 FIT Sensitivity CRC Females: Age effect > 60 1.008 0.9935 1.0226 Normal Calculated from Zorzi et al. 2018 estimates 

of age effects on detection rates 38 171 FIT Sensitivity CRC Females: Round 2 effect 1.016 0.8467 1.2065 Normal 

172 FIT Sensitivity CRC Females: Round 3 effect 0.863 0.6900 1.1040 Normal 

173 FIT False Positives Males: Power Curve Intercept 0.510 0.3616 0.9747 Beta Calculated from Moss et al. 2016 detection 

rates and modelled prevalence 33 174 FIT False Positives Males: Power Curve FIT_Param -1.020 -1.2930 -0.8470 Normal 

175 FIT False Positives Males: Age effect > 60 1.056 1.0401 1.0714 Normal Calculated from Zorzi et al. 2018 estimates 

of age effects on detection rates 38 176 FIT False Positives Males: Round 2 effect 0.604 0.5952 0.6135 Normal 

177 FIT False Positives Males: Round 3 effect 0.517 0.4994 0.5261 Normal 

178 FIT False Positives Females: Power Curve Intercept 0.538 0.3816 1.0287 Beta Calculated from Moss et al. 2016 detection 

rates and modelled prevalence 33 179 FIT False Positives Females: Power Curve FIT_Param -1.082 -1.3550 -0.9090 Normal 

180 FIT False Positives Females: Age effect > 60 1.056 1.0404 1.0717 Normal Calculated from Zorzi et al. 2018 estimates 

of age effects on detection rates 38 181 FIT False Positives Females: Round 2 effect 0.634 0.6244 0.6436 Normal 

182 FIT False Positives Females: Round 3 effect 0.550 0.5311 0.5596 Normal 

183 Utility decrement age 0.00432 0.00404 0.0046 Normal Ara & Brazier 2010 5 

184 Utility multiplier CRC Yr1 Stage A-C 0.87 0.67 1.07 Normal Djalalov et al 2014 52 

 185 Utility multiplier CRC Yr1 Stage D 0.68 0.42 0.93 Normal 

186 Utility multiplier CRC Yr2+ Stage A-C 0.92 0.76 1.08 Normal 

187 Utility multiplier CRC Yr2+ Stage D 0.73 0.51 0.94 Normal 



188 Annual utility decrement perforation (based on 1 month data) -0.0098 -0.0106 -0.0092 Normal Ara & Brazier 2010 5  

189 Annual utility decrement bleeding (based on 2 week data) -0.0058 -0.0088 -0.0028 Normal Dorian et al. 2014 53 

190 CRC Treatment Costs: Dukes' A & B, Age <64, Year 1 £16,302 £13,264 £19,649 Gamma Laudicella et al. 2016 56, Excess costs 

compared with pre cancer, inflated to 

2017/18 

 

191 CRC Treatment Costs: Dukes' A & B, Age <64, Year 2 £3,826 £3,113 £4,611 Gamma 

192 CRC Treatment Costs: Dukes' A & B, Age <64, Year 3 £3,175 £2,583 £3,827 Gamma 

193 CRC Treatment Costs: Dukes' A & B, Age <64, Year 4 £2,452 £1,995 £2,955 Gamma 

194 CRC Treatment Costs: Dukes' A & B, Age <64, Year 5 £2,206 £1,795 £2,659 Gamma 

195 CRC Treatment Costs: Dukes' A & B, Age <64, Year 6 £1,509 £1,228 £1,818 Gamma 

196 CRC Treatment Costs: Dukes' A & B, Age <64, Year 7 £1,569 £1,276 £1,891 Gamma 

197 CRC Treatment Costs: Dukes' A & B, Age <64, Year 8 £1,438 £1,170 £1,733 Gamma 

198 CRC Treatment Costs: Dukes' A & B, Age <64, Year 9 £1,239 £1,008 £1,494 Gamma 

199 CRC Treatment Costs: Dukes' A & B, Age 65+, Year 1 £15,233 £12,395 £18,361 Gamma 

200 CRC Treatment Costs: Dukes' A & B, Age 65+, Year 2 £3,508 £2,855 £4,229 Gamma 

201 CRC Treatment Costs: Dukes' A & B, Age 65+, Year 3 £2,860 £2,327 £3,447 Gamma 

202 CRC Treatment Costs: Dukes' A & B, Age 65+, Year 4 £2,379 £1,936 £2,867 Gamma 

203 CRC Treatment Costs: Dukes' A & B, Age 65+, Year 5 £2,414 £1,964 £2,910 Gamma 

204 CRC Treatment Costs: Dukes' A & B, Age 65+, Year 6 £2,440 £1,985 £2,941 Gamma 

205 CRC Treatment Costs: Dukes' A & B, Age 65+, Year 7 £2,217 £1,804 £2,672 Gamma 

206 CRC Treatment Costs: Dukes' A & B, Age 65+, Year 8 £2,458 £2,000 £2,962 Gamma 

207 CRC Treatment Costs: Dukes' A & B, Age 65+, Year 9 £2,052 £1,669 £2,473 Gamma 

208 CRC Treatment Costs: Dukes' C & D, Age <64, Year 1 £21,051 £17,128 £25,373 Gamma 

209 CRC Treatment Costs: Dukes' C & D, Age <64, Year 2 £6,895 £5,610 £8,311 Gamma 

210 CRC Treatment Costs: Dukes' C & D, Age <64, Year 3 £4,713 £3,835 £5,681 Gamma 

211 CRC Treatment Costs: Dukes' C & D, Age <64, Year 4 £3,850 £3,132 £4,640 Gamma 

212 CRC Treatment Costs: Dukes' C & D, Age <64, Year 5 £2,748 £2,236 £3,312 Gamma 

213 CRC Treatment Costs: Dukes' C & D, Age <64, Year 6 £2,300 £1,872 £2,772 Gamma 

214 CRC Treatment Costs: Dukes' C & D, Age <64, Year 7 £2,680 £2,181 £3,231 Gamma 

215 CRC Treatment Costs: Dukes' C & D, Age <64, Year 8 £2,055 £1,672 £2,477 Gamma 

216 CRC Treatment Costs: Dukes' C & D, Age <64, Year 9 £1,413 £1,150 £1,704 Gamma 



217 CRC Treatment Costs: Dukes' C & D, Age 65+, Year 1 £16,625 £13,526 £20,037 Gamma 

218 CRC Treatment Costs: Dukes' C & D, Age 65+, Year 2 £5,242 £4,265 £6,318 Gamma 

219 CRC Treatment Costs: Dukes' C & D, Age 65+, Year 3 £4,047 £3,293 £4,878 Gamma 

220 CRC Treatment Costs: Dukes' C & D, Age 65+, Year 4 £3,169 £2,579 £3,820 Gamma 

221 CRC Treatment Costs: Dukes' C & D, Age 65+, Year 5 £2,965 £2,413 £3,574 Gamma 

222 CRC Treatment Costs: Dukes' C & D, Age 65+, Year 6 £2,816 £2,291 £3,394 Gamma 

223 CRC Treatment Costs: Dukes' C & D, Age 65+, Year 7 £1,800 £1,465 £2,170 Gamma 

224 CRC Treatment Costs: Dukes' C & D, Age 65+, Year 8 £2,338 £1,902 £2,818 Gamma 

225 CRC cTreatment Costs: Dukes' C & D, Age 65+, Year 9 £1,818 £1,479 £2,191 Gamma 

226 Cost of FIT invite £7.45 £6.74 £8.16 Uniform Southern Hub screening costings model 

inflated to 2017/18 37 

 
227 Additional cost of FIT performed £1.09 £0.98 £1.19 Uniform 

228 Additional cost of FIT positive result £10.23 £9.26 £11.20 Uniform 

229 Cost of FS invite £5.82 £5.27 £6.37 Uniform 

230 Cost of FS attend diagnostic (not including FS exam) £1.14 £1.04 £1.25 Uniform 

231 Cost of FS attend therapeutic (not including FS exam) £11.37 £10.29 £12.45 Uniform 

232 Cost of FS (without polypectomy) £402 £320 £469 Uniform NHS reference costs 17/18 (IQR estimated 

from 16/17) 54 

 
233 Cost of FS (with polypectomy) £512 £425 £591 Uniform 

234 Cost of COL (without polypectomy) £525 £412 £597 Uniform 

235 Cost of COL (with polypectomy) £641 £515 £730 Uniform 

236 Cost of CTC £121 £97 £141 Uniform 

237 Cost of treating bowel perforation (major surgery) £1,554 £526 £2,258 Uniform 

238 Cost of admittance for bleeding (overnight stay on medical ward) £474 £395 £529 Uniform 

239 Pathology cost £32.75 £13.11 £37.31 Uniform 



Appendix B: Comparison of FIT Detection Rates across Studies  

To investigate the accuracy of the FIT sensitivity estimates based on the UK FIT pilot and to 

investigate trends by age, sex, screening round and FIT threshold, a comparison of UK FIT pilot 

detection with data from other countries was carried out. This included data from the Italian 

screening programme (and from Veneto specifically), the Dutch screening programme, the Swedish 

FIT pilot and a US large scale study 33 38 39 58-61.  

Detection by age 

Only two studies reported detection rates of CRC by age, and one reported detection rates of HR 

adenomas by age. However, we were also able to obtain unpublished information about detection 

rates for all three disease types from the UK FIT pilot through an ODR request. The slope of increase 

appears to be reasonably linear but varies depending between screening studies so for CRC may be 

as small as 0.007% (US data) 60 or as large as 0.039% (Dutch data) 39 per year of age (Figure 26). 



Figure 26: Trends in detection rates following FIT screening by age 

 

The Dutch data was from the first round of a new screening programme, so represented a previously 

unscreened population 39; whilst the US and UK data was from mixed screening populations, 

including individuals who had previously been screened 33 60. Given that lower detection rates are 

observed in subsequent screening rounds, it is likely that the slope represented by the Dutch data is 

the most accurate representation of the age effect, independent from other effects.  

It is important to note that whilst detection rate does appear to increase with age, prevalence also 

increases with age, therefore the sensitivity may not change with age. 

Detection by sex and FIT threshold 

In all screening studies where male and female data is gathered separately, detection rate is higher 

in males than females (Figure 27). As with age, it is unclear how much of this difference is related to 

the difference in underlying prevalence between men and women. 



Figure 27: Trends in detection rates by FIT threshold and sex 

 

The absolute values are very different between studies, which is likely to be due to the different 

average ages represented in each study and the differing mixture of first time screening and 

subsequent screening, in addition to country-specific differences in prevalence and FIT test kit. 

Detection rate decreases as FIT threshold rises, in a non-linear way. The curve appears to be steeper 

for LR adenomas than HR adenomas, and for HR adenomas than CRC. Our previous model used data 

from the prevalent round of the UK FIT pilot only (shown as UK prevalent on the graphs) 33. There is 

extremely high uncertainty around the estimates of CRC detection due to the small numbers 

involved in the pilot. The plots indicate that whilst HR adenoma detection rates for the UK FIT pilot 

prevalent round fall roughly between the separate male and female detection rates for all screening 

rounds in the UK FIT pilot, and close to the male detection rates for Sweden 59, CRC detection rates 

are much lower, indicating that the prevalent round data could be underestimating CRC detection. 



Detection by screening round 

There is large variation between studies in differences by screening round (Figure 28). For the UK 

and Italian studies data is not provided by actual screening round and instead is reported as either 

prevalent (first screen) or incident (subsequent screen) round 33 61; the incident screen has been 

represented on the graph as screen two, but in fact will contain individuals who have been screened 

two or more times.  

The general trend is for detection rates to be reduced in subsequent screening rounds; however, the 

data from the Veneto screening programme 38, which is most comprehensive in terms of providing 

information about a large number of screening rounds, shows the detection rate for CRC flat-lining 

after the third screen, and actually increasing for HR and LR adenoma. This is likely due to 

confounding with age. Indeed, the authors have performed multivariate analysis adjusting for age 

which indicates that CRC detection rates are likely to keep reducing until screening round three, 

whilst HR and LR adenoma detection rates are likely to flat-line after the second screen rather than 

increase. 

 



Figure 28: Trends in detection rates following FIT screening by screening round 
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