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Abstract
Growth in urban population, urbanisation, and economic development has increased the demand for water, especially in water-scarce regions.
Therefore, sustainable approaches to water management are needed to cope with the effects of the urbanisation on the water environment. This
study aimed to design novel configurations of tidal-flow vertical subsurface flow constructed wetlands (VFCWs) for treating urban stormwater. A
series of laboratory experiments were conducted with semi-synthetic influent stormwater to examine the effects of the design and operation
variables on the performance of the VFCWs and to identify optimal design and operational strategies, as well as maintenance requirements. The
results show that the VFCWs can significantly reduce pollutants in urban stormwater, and that pollutant removal was related to specific VFCW
designs. Models based on the artificial neural network (ANN) method were built using inputs derived from data exploratory techniques, such as
analysis of variance (ANOVA) and principal component analysis (PCA). It was found that PCA reduced the dimensionality of input variables
obtained from different experimental design conditions. The results show a satisfactory generalisation for predicting nitrogen and phosphorus
removal with fewer variable inputs, indicating that monitoring costs and time can be reduced.
© 2020 Hohai University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

According to the United Nations (2018), over 55% of the
world's population lives in urban areas, a proportion that is
expected to increase to about 68% by 2050. With increasing
urbanisation, the demand for water increases, especially in
water-scarce regions. Therefore, to increase water availability,
interventions such as a reduction in water consumption,
reclamation of water sources, and sustainable treatment of
wastewater (recycling and reuse) have been proposed. Con-
structed wetlands (CWs) have been increasingly used in
wastewater treatment, partly because the construction and
maintenance costs of CWs are relatively low. Additionally,
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CWs can hold and treat variable volumes of wastewater, thus
mitigating extreme weather conditions (floods and droughts)
associated with climate change. Moreover, the process of
pollutant removal in CWs occurs through a combination of
biological, chemical, and physical processes (Wynn and Liehr,
2001; Lee et al., 2002; Langergraber et al., 2008), which en-
ables CWs to treat various types of wastewater. However,
understanding such multifaceted processes is complex and
requires advanced analytical tools such as computational
models (Langergraber, 2007). Previous modelling studies on
the pollutant removal in CWs were mainly based on hydraulics
and nutrient biogeochemistry (Kadlec, 2000; Wynn and Liehr,
2001; Langergraber and Simunek, 2005; Langergraber et al.,
2008; Akratos et al., 2009). Likewise, the ecological behav-
iour in polluted water bodies was explored by integrating
hydrodynamic models and neural networks to collate physical,
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chemical, and biological interactions that underpinned the
different processes (Lin et al., 2008).

More recently, numerical models, such as AQUASIM,
HYDRUS, and STELLA, have been used to describe
contaminant adsorption phenomena in CWs treating municipal
wastewater (Mburu et al., 2012, 2014). Those studies show
that obtaining boundary conditions to represent wastewater
treatment in CWs as well as to describe treatment processes
can be challenging. Additionally, due to the different model-
ling and wetland design criteria, it is difficult to compare the
performance of different CWs. Specifically, HYDRUS is un-
able to simulate CWs operated through a tidal-flow strategy
due to the inflexibility of the model to varying boundary
conditions in a single modelling scenario. For instance, while
Lucas et al. (2015) demonstrated that HYDRUS could predict
the biologically influenced removal processes of ammonia
nitrogen ðNHþ

4 -NÞ, it was unable to model the removal of
orthophosphate ðPO3�

4 -PÞ using the same technique.
However, methods such as the artificial neural network

(ANN) model have emerged as powerful data mining tools.
ANNs can identify complex patterns from various data for-
mats, which has led to the increase of ANN implementations
in multiple fields, including tumour and cancer detection in the
healthcare sector, audio and image recognition in digital ac-
cessories such as smartphones, and machine language trans-
lation on internet search engines. ANNs perform best when
dealing with nonlinear univariate and multivariate data. In
hydro-environmental studies, ANNs have been used to predict
the biochemical oxygen demand (BOD) and suspended solids
(SS) concentrations in the effluent of a wastewater treatment
plant (Hamed et al., 2004); BOD and chemical oxygen de-
mand (COD) removal in horizontal subsurface flow con-
structed wetlands (HFCWs) (Akratos et al., 2008); stormwater
quality (May and Sivakumar, 2009; May et al., 2009); and the
removal of PO3�

4 -P, total nitrogen (TN), and total phosphorus
(TP) in HFCWs (Akratos et al., 2009). For the design of CWs,
the mechanistic models can be limited by several factors,
including the operational strategy deployed to the wetland
treatment system and the difficulties in measuring the defini-
tive boundary conditions. There is a need to develop simple
yet effective methods for evaluating the overall performance
of a pollution control strategy when designing CWs. Specif-
ically, the black-box nature of wastewater treatment in CWs
makes the ANN approach an appropriate modelling technique,
but its performance depends on the selection of input variables
and the network architecture accounting for the size, nature,
and type of the input data. To make the ANN-based simula-
tions more effective, the multiple variables in large datasets
need to be grouped to identify the relationships among the
variables using multivariate methods such as principal
component analysis (PCA) (Herngren et al., 2006;
Gunawardana et al., 2014), which describes the complete
data matrix with a reduced number of principal components by
transforming the original variables into a new orthogonal set
of principal components for defining the relationships among
the variables. The aim of this study was to develop an ANN
model to optimise the novel configurations of vertical
subsurface flow constructed wetlands (VFCWs) for treatment
of stormwater and to predict nitrogen and phosphorus removal
using influent-effluent data obtained from laboratory
experiments.

2. Methods

In order to develop a model based on ANN, a series of
laboratory experiments were carried out over a continuous
period of two years (2014e2016) using eight pilot-scale
VFCWs. VFCWs are wastewater treatment systems designed
as pre-treatment units in horizontal flow beds (Seidel, 1965).
VFCWs are common in Austria, Denmark, France, and the
UK, and are deployed in treating stormwater. They are
preferred to HFCWs because VFCWs have minimal land re-
quirements. VFCWs usually contain macrophytes rooted in
the bed media (gravel or loamy sand) compacted to a depth
between 0.6 m and 1.0 m (Fig. 1). VFCWs are mostly inter-
mittently dosed (Langergraber et al., 2008) and can be oper-
ated either as planted or unplanted, with some studies
reporting that planted VFCWs had enhanced pollutant removal
rates (Taylor et al., 2011). Plants are reported to provide
favourable environments that facilitate the growth of microbial
populations and the release of oxygen into the treatment sys-
tem (Wang et al., 2012; Wu et al., 2015), thus enabling the
biological removal of nitrogen and phosphorus (Zhu et al.,
2012). Driven by gravity, wastewater in VFCWs flows down
gradually through the media bed, thus enabling oxygen to
transfer from the atmosphere into the media. Oxygen facili-
tates the nitrification of nitrogen products (Cooper et al.,
1996), leading to better removal of organics, SS, and
NHþ

4 -N. However, VFCWs are not suitable for denitrification
as NHþ

4 -N is usually converted into nitrate nitrogen ðNO�
3 -NÞ.
2.1. Experimental setup
Eight pilot-scale VFCW units were set up on the roof of
South Building at the School of Engineering of Cardiff
University. Each VFCW unit used in the experiments was
moulded from a structured-wall high-density polyethene
(HDPE) pipe with a height of 1 000 mm and a diameter of
400 mm. Each unit was sealed off at the bottom using an
HDPE plastic fitted with a drainage tap at the centre (Fig. 1).
Different biofilter media were used to configure the VFCW in
various design units. All the units were planted with Typha
latifolia.

In this paper the results from six VFCW units out of eight
are presented because the data collected from the other two
VFCW units that were intermittently operated are not sufficient
for the ANN modelling technique. Units 1, 4, 5, and 7 were
filled with loamy sand, while units 2 and 8 contained fine gravel
and blast furnace slag media, respectively (Table 1). Semi-
synthetic stormwater was used to conduct the experiments
partly because of the complex logistics of procuring large
volumes of natural stormwater, and the absence of SS, colloidal
matter, and artefacts in synthetic stormwater (Akratos and
Tsihrintzis, 2007).



Fig. 1. Experimental setup of VFCW units (units: mm).
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Semi-synthetic stormwater was prepared by mixing natural
sediment with tap water dechlorinated using sodium thio-
sulphate. Natural sediment was collected from a stormwater
pond in Nant y Briwnant (Cardiff) and from gulley pots in the
car park at the School of Engineering of Cardiff University.
Sediments were wet-sieved through a 1 mm-diameter sieve,
and hence the particle sizes were comparable to those in pre-
treated stormwater (FAWB, 2009). Contaminant concentra-
tions in the resulting slurry were analysed in the Characteri-
sation Laboratories for Environmental Engineering Research
(CLEER), at the School of Engineering of Cardiff University.
In some cases laboratory-grade chemicals (K2HPO4, NH4Cl,
Pb(NO3)2, ZnSO4$7H2O, CuCl2$2H2O, Cd solution
(1 000 mg/L), Cr(NO3)3, NiCl2$6H2O, and FeCl2$4H2O) were
added to attain influent pollutant concentrations typical of UK
urban areas.
2.2. Operation, sampling, and analysis
Table 1

Media configurations in VFCW units.

Unit Primary media Transition media Drainage media

1, 4, 5, 7 Loamy sand Sharp sand Fine gravel

2 Fine gravel Medium gravel Coarse gravel

8 Blast furnace slag Sharp sand Fine gravel
All six VFCW units were tidal-flow operated on three
consecutive days of each experimental week. Tidal flow is a
technique used to operate VFCWs, and it is characterised by
the unidirectional movement of wastewater (Lavrova and
Koumanova, 2013). The feeding of the semi-synthetic storm-
water stops as the surface is fully submerged and flooded. The
media bed holds the wastewater until a set time is reached, and
then it starts to drain downward. Loads of semi-synthetic
influent stormwater were slowly and gently dosed on the
media surfaces of each VFCW units. The treatment cycle is
completed when effluents are fully drained from the filtration
bed, and air (oxygen) is drawn in and allowed to diffuse into
voids in the biofilters (Bruch et al., 2014).

The VFCW units are usually designed based on the
wetland-watershed area ratio (WWAR), where the surface area
is determined as a percentage of the size of the watershed area.
However, because the design of stormwater VFCWs varies
with the amount of rainfall received and the treatment re-
quirements in different catchments, there are no specific
WWAR design codes. Nevertheless, standard guidelines and
recommendations have typical WWARs of 1%e5%; while
WWARs of 2%e3% are recommended in the UK (Ellis et al.,
2003). Thus, any WWAR that minimises land requirements
without compromising performance can be used, especially
where retrofitting of the system is planned.

In this study, units 1, 2, 4, and 8 were operated at a 2.5%
WWAR, while units 5 and 7 had 5.0% and 1.5% WWARs,
respectively. The VFCW units with WWARs of 2.5%, 5.0%,
and 1.5% received stormwater loads in batches of 22.5 L,
11.3 L, and 37.6 L, respectively, and the stormwater was held
in the VFCW units for 24 h. Before feeding the VFCW units,
300 mL of the influent stock was taken, and in-situ measure-
ments of pH, temperature, and electrical conductivity (EC)
were recorded with a multi-parameter HANNA Probe (Model
HI 991301). After the 24-h retention period, effluent samples
were collected using the outlet tap on each VFCW unit.
Effluent in-situ readings were taken, and the effluent samples
prepared for analysis and storage at 4�C in a fridge in the
CLEER laboratory. Chemical water parameters such as the
concentrations of TN, NHþ

4 -N, nitrite nitrogen ðNO�
2 -NÞ,

NO�
3 -N, PO

3�
4 -P, TP, and total suspended solids (TSS) were

analysed using a spectrophotometer (Hach Lange DR3900)
based on pollutant specified standard methods (APHA, 2012).
Similarly, the analysis of heavy metals such as Cu, Pb, Cd, Cr,
Ni, and Fe was carried out in the CLEER laboratory using the
inductively coupled plasma optical emission spectrometer
(ICP-OES, Optima 210 DV, PerkinElmer).
2.3. Data
Data for the daily and weekly influent-effluent pollutant
concentrations were converted into monthly averages to obtain
representative treatment efficiency of each VFCW unit. The
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monthly data were considered good indicators because it took
nearly three months for the VFCWs to attain treatment sta-
bility. Thus, the initial experimental data (0e150 d) were
excluded from the analysis. All the experimental data were
pre-processed and examined to establish trends, relationships,
and data dependencies.

Exploratory data analysis revealed multiple nonlinear
combinations among the variables (27 in total, including
derived variables such as the percentage reduction), which
followed exponential patterns. The complexity and nonline-
arity exhibited by the dataset also suggested that ANNs are a
suitable analytical tool. Significant differences were found in
the means of the variables, and some variables exhibited non-
normal distribution. The dataset comprising pH, EC, temper-
ature, and the concentrations of TN, NHþ

4 -N, NO
�
2 -N, NO

�
3 -N,

PO3�
4 -P, and TP was re-scaled to achieve normal distribution

and data components that could suitably explain the variance
of the inputs. Due to the size and nonlinearity of the variables,
PCA was used to extract the principal components (Herngren
et al., 2006; Gunawardana et al., 2014), and the principal
components were consequently used in the simulation to build
ANNs to predict the performance of different designs.
2.4. Artificial neural networks
Wastewater treatment in CWs is often described as black-
box and exhibits nonlinear characteristics. Consequently, the
performance of CWs can be simulated using ANNs. ANNs are
a form of artificial intelligence, which imitate the functioning
of the biological nervous system. ANNs perform complex
computations through training on inputs to produce outputs.
Thus, ANNs can be used to model environmental systems, in
which the key processes are challenging to quantify.

Although ANNs can be implemented through various
network architectures, multi-layer perceptron (MLP) ANNs
have been applied (Lin et al., 2008; Akratos et al., 2009;
Abyaneh, 2014; Bagheri et al., 2015; Li et al., 2015; Lyu
et al., 2018). MLPs consist of three distinct layers: input,
hidden, and output layers (Fig. 2). The input and output layers
can operate with any number of input variables such that
neurons in both the input and hidden layers assess output re-
sponses concerning the weighted sum of inputs based on the
activation function (Dawson et al., 2006). In this study, inputs
were extracted using the PCA module in SPSS IBM 23
(George and Mallery, 2016), while the ANNs were
Fig. 2. MLP networks with two hidden layers.
implemented in winGamma (Jones et al., 2000). All the PCA-
extracted variables for modelling TN and TP removal had no
direct relationship with the outputs. The reliability of the ANN
model was enhanced by eliminating derived inputs (percent-
age reductions) from the PCA. Similarly, the effect of inputs
on the outputs (local sensitivity analysis) was evaluated using
the model built from all the extracted principal components.
Equally, to ensure a uniform modelling process, the experi-
mental data were standardised, randomised, and partitioned
into training (70%) and validation (30%), so that each data
point could influence both the training and validation pro-
cesses. Subsequently, underfitting or overfitting were mini-
mised through application of the Gamma statistic and M-test,
respectively (Jones et al., 2000). The algorithm implemented
in winGamma is a modified Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method, in which the BFGS adjusts network
weights and thresholds to minimise training and prediction
errors. Accordingly, the root mean square error (RMSE) was
used to assess both the training (TRMSE) and validation
(VRMSE) errors. Similarly, the coefficient of determination
(R2) and the Nash-Sutcliffe efficiency (NSE) were used to
evaluate the precision and efficiency of the ANN model,
respectively.

3. Results and discussion

Table 2 shows the experimental data, including the mean
values of each parameter and the standard deviation (SD),
where n is the number of the samples, and C means the con-
centration. The results measured from six units, namely units
1, 4, 2, 8, 5, and 7, are presented. units 1 and 4 represent the
experimental control units operated at a 2.5% WWAR with
loamy sand media. Similarly, units 2 and 8 were operated at a
2.5% WWAR, but with fine gravel and blast furnace slag
media, respectively, while units 5 and 7 underwent experi-
ments carried out at 5.0% and 1.5% WWARs, respectively,
using the loamy sand. It can be noted that some parameters,
mostly the heavy metals in the effluent, had concentrations
below the detection limit (bdl) of the measuring instruments.
3.1. Design performance
Fig. 3 shows the percentage changes of pH, EC, Fe con-
centration, and Zn concentration measured in the effluent against
the influent in different media over a period of 369 d from the
154th day of the experiments. The results from two settings of
loamy sand media in units 1 and 4 (denoted as LS-1 and LS-4),
fine gravel (FG), and blast furnace slag (BFS) media are
included, where the influent values are also indicated for
reference.

As shown in Fig. 3(a), the influent stormwater had pH values
ranging from 7.0 to 8.0 with a high degree of consistency in the
procedure used in preparing the semi-synthetic stormwater. The
measured pH values for all media were highly consistent. The
pH values in loamy sand (LS-1 and LS-4) were measured at
around 90% of that of influent, while the pH in fine gravel was
largely kept the same level as the influent. However, the pH



Table 2

Influent and effluent stormwater qualities.

Parameter Influent Unit 1 Unit 4 Unit 2 Unit 8 Unit 5 Unit 7 n

pH 7.5 ± 0.3 6.9 ± 0.2 6.8 ± 0.3 7.5 ± 0.3 8.5 ± 0.5 7.0 ± 0.2 6.9 ± 0.2 183

Temperature (�C) 16.4 ± 4.0 16.4 ± 3.0 15.2 ± 4.0 15.5 ± 3.0 15.0 ± 4.0 15.3 ± 4.0 15.2 ± 4.0 183

EC (mS/cm) 0.35 ± 0.03 0.62 ± 0.04 0.61 ± 0.06 0.37 ± 0.04 0.47 ± 0.08 0.57 ± 0.06 0.57 ± 0.05 183

C(TSS) (mg/L) 167 ± 31 15 ± 11 7 ± 3 8 ± 3 9 ± 4 15 ± 9 11 ± 9 183

CðPO3�
4 -PÞ (mg/L) 0.83 ± 0.10 0.11 ± 0.10 0.11 ± 0.10 0.22 ± 0.10 0.23 ± 0.10 008 ± 0.04 0.16 ± 0.10 183

C(TP) (mg/L) 1.04 ± 0.10 0.22 ± 0.10 0.22 ± 0.10 0.35 ± 0.10 0.30 ± 0.10 0.16 ± 0.06 0.26 ± 0.10 183

CðNO�
2 -NÞ (mg/L) 0.01 ± 0.02 bdl bdl bdl bdl bdl bdl 183

CðNO�
3 -NÞ (mg/L) 0.01 ± 0.10 0.24 ± 0.30 0.17 ± 0.20 0.72 ± 0.40 0.20 ± 0.20 0.2 ± 0.40 0.29 ± 0.20 195

CðNHþ
4 -NÞ (mg/L) 1.02 ± 0.20 0.12 ± 0.10 0.10 ± 0.04 0.07 ± 0.03 0.07 ± 0.03 0.12 ± 0.04 0.13 ± 0.10 195

C(TN) (mg/L) 5.45 ± 1.00 1.10 ± 0.60 1.09 ± 0.58 1.11 ± 0.60 1.18 ± 0.53 1.24 ± 1.00 1.59 ± 0.80 183

C(Fe) (mg/L) 3.35 ± 0.90 0.11 ± 0.10 0.04 ± 0.10 0.09 ± 0.10 0.043 ± 0.04 0.108 ± 0.10 0.06 ± 0.10 234

C(Zn) (mg/L) 0.43 ± 0.20 0.11 ± 0.10 0.11 ± 0.10 0.02 ± 0.02 0.01 ± 0.02 0.10 ± 0.05 0.06 ± 0.10 234

C(Cu) (mg/L) 0.15 bdl bdl bdl bdl bdl bdl 156

C(Pb) (mg/L) 0.6 0.005 0.001 0.11 0.000 3 0.000 7 bdl 156

C(Cr) (mg/L) 0.03 bdl bdl bdl bdl bdl bdl 144

C(Cd) (mg/L) 0.004 bdl bdl bdl bdl bdl bdl 159

C(Ni) (mg/L) 0.097 bdl bdl bdl bdl bdl bdl 156
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value in blast furnace slag was higher than in the influent,
which was due to the high pH level in the media. Nevertheless,
it exhibited a decreasing trend. This clearly indicated that the
effluent pH level depended on the influent pH, as well as the
primary media type. Consequently, the pH values are found to
be significantly lower in loamy sand and fine gravel as
compared to blast furnace slag ( p ¼ 0.000, where p is the
measure of statistical significance at a 5% confidence level, the
probability of rejecting the null hypothesis) because the pre-
dominantly alkaline chemical composition of blast furnace slag
changed significantly due to dilution and washout caused by
repeated dosing and treatment events.
Fig. 3. Percentage changes of pH, EC, Fe concentration, and Zn
As shown in Fig. 3(b), the influent EC varied between
0.3 mS/cm and 0.4 mS/cm, with an average of 0.35 mS/cm.
The mean effluent EC values from the experiments were
measured as 0.37 mS/cm, 0.47 mS/cm, and 0.59 mS/cm in fine
gravel, blast furnace slag, and loamy sand VFCW units,
respectively, which were all higher than influent EC, with a
significant increase of effluent EC by 150%e200% in loamy
sand media and 120%e155% in blast furnace slag media from
that in fine gravel media ( p ¼ 0.000), which was almost the
same as the influent EC. The results indicated a significant
difference in the efficiency with which the primary media
filtered the suspended solids.
concentration in effluent against influent in different media.



Table 3

Cumulative mass removal rate of pollutants in different VFCW units.

Unit Removal rate (%)

TSS PO3�
4 -P TP NHþ

4 -N TN Fe Zn

1 91.4 87.2 80.2 88.6 81.0 96.9 76.4

4 95.8 87.3 80.3 91.3 81.2 98.9 76.8

2 95.5 73.9 67.3 93.7 80.1 97.3 96.1

8 94.5 73.1 72.1 93.4 79.1 98.8 98.6

5 95.6 95.0 92.4 94.2 88.6 98.4 88.5

7 89.9 71.2 62.2 79.9 56.3 97.0 80.3

19Christopher Kiiza et al. / Water Science and Engineering 2020, 13(1): 14e23
The concentrations of some pollutants in effluents exhibited
values below the respective limits of detection, as evidenced
by the heavy metals Cu, Pb, Cd, Cr, and Ni, which were
almost completely removed. However, the removal rate of Fe
was significant in all media, exceeding 90%, as shown in
Fig. 3(c), with higher removal rates in loamy sand media. The
removal rate of Zn, as shown in Fig. 3(d), was also significant,
exceeding 55% in all the media types. There was a substan-
tially high removal efficiency (up to 95%) for the period of
around 318 d, particularly for the fine gravel and blast furnace
slag media, and then a slight decrease to reach a steady
reduction of 70%e80%. Therefore, the removal rates of both
Fe and Zn were high in general.

Fig. 4 shows the percentage changes of the concentrations
of Fe, Zn, TP, and TN in units 1, 5, and 7, representing the
WWARs of 2.5%, 5.0%, and 1.5%, respectively. It was found
that the lower WWAR resulted in higher removal rates of Fe
and Zn, as shown in Fig. 4(a) and (b) toward the end of the
experiments, exhibiting a statistically significant difference
( p ¼ 0.000). The measurements also show that WWARs had
little effect on the removal of Fe, but the effect of the WWAR
on the removal of Zn was significant ( p ¼ 0.001). Although
there is no monotonic increasing trend for the removal of Zn
related to a higher WWAR, the cumulative mass load removal
of Zn shows that the Zn removal rate was higher at a 1.5%
WWAR (85.0%) and at a 2.5% WWAR (82.0%) in comparison
with the 5.0% WWAR (71.0%). However, the effects of the
WWAR on the removal of TN and TP, as shown in Fig. 4(c)
and (d), were less evident, despite the significant reduction
mostly being below 20%. Of the three cases, LS-5 was the
most efficient media in the removal of TP and TN.

In the experiments, the influent temperature ranged between
6.8�C and 256�C and it was found that in general the effluent
Fig. 4. Percentage changes of Fe, Zn, TP, and TN concen
temperature was about 1�C lower than that of the influent
without significant differences between the various designs.
Influent TSS used in this study was highly variable between
79 mg/L and 290 mg/L (with an average of 167 mg/L), much
lower than the 4 000 mg/L used in the VFCWs investigated
by Torrens et al. (2009) and the 400 mg/L to 700 mg/L of
Abdelhakeem et al. (2016). The effluent TSS in all VFCWs
ranged from 7 mg/L to 15 mg/L, which was significantly lower
than the influent TSS. Consequently, the cumulative mass
removal rates of TSS almost reached 90% in all VFCWs,
demonstrating adequate filtering capacity of loamy sand, fine
gravel, and blast furnace slag primary biofilters. However,
significant differences in TSS removal were found between
different media, with the removal rates in the blast furnace slag
media and fine gravel media higher than the average value in
the loamy sand media (Table 3). The WWARs were also found
to be a significant factor in TSS removal, with the highest
removal rate at a 5.0% WWAR, compared to that at the 1.5%
WWAR and the average value at the 2.5% WWAR, similar to
the Fe and Zn removal.
trations in loamy sand media with different WWARs.
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3.2. Total nitrogen removal
Fig. 5. Predictions of TN removal in Unit 1 with ANN model.

Table 5

ANN models for predicting TN removal in VFCW Unit 8.

Model Network input variables TRMSE VRMSE R2 NSE

1 IOP, ESS, ETR, EN3, EFe, ITP,

EZn, IN2

0.042 0.174 0.25 0.21

2 IOP, ESS, ETR, EN3, EFe, ITP,

EZn

0.042 0.086 0.53 0.40

3 IOP, ESS, ETR, EN3, EFe, ITP 0.039 0.099 0.54 0.51

4 IOP, ESS, ETR, EFe, ITP 0.050 0.074 0.67 0.63

5 IOP, ESS, ETR, EFe 0.053 0.068 0.71 0.65

6 IOP, ESS, ETR 0.068 0.072 0.68 0.44

Note: IOP means influent PO3�
4 -P, ESS means effluent SS, ETR means

effluent temperature, EN3 means effluent NO�
3 -N, EFe means effluent Fe, and

ITP means influent TP.
The ANN-based models were built, using optimal inputs, to
predict the removal of nitrogen and phosphorus nutrients. The
selection of the optimal input parameters was achieved using
PCA, local sensitivity analyses, and training and validation
techniques. The details of the models are presented.

For TN removal, the models used different combinations of
input parameters extracted from PCA, including influent SS,
effluent Zn, effluent pH, influent NHþ

4 -N, influent Fe, influent
NO�

3 -N, and influent NO�
2 -N. The performance of the ANN

models for the various simulated scenarios is listed in Table 4
for Unit 1 in terms of TRMSE, VRMSE, R2, and NSE. The
results clearly show the different effects of different combi-
nations of inputs on the outputs as determined through local
sensitivity analyses. Models 1 and 2 had comparable TRMSE
and VRMSE values.

However, masking input influent NO�
2 -N resulted in de-

clines in R2 (8.6%) and NSE (17.7%) in the outputs of Model 2
(Table 4). Likewise, fewer inputs (models 3e7) did not
improve the performance of the ANN model greatly. The
variations of the outputs (TN removal) are mainly attributed to
influent NO�

3 -N, suggesting that influent NO�
3 -N is key to TN

removal in Unit 1. A comparison of the experimental and
predicted TN removal rates in Unit 1 is shown in Fig. 5.

Similarly, ANN-based models were built to predict TN
removal in units 2, 4, 5, 7, and 8 using the approach applied to
Unit 1. For the models built for TN removal in units 4, 7, and
8, a similar number of predictors and low R2 and NSE values
were obtained. TN removal predictions in Unit 8, as shown in
Table 5, had low NSE, which could suggest inconsistencies in
the TN removal mechanism in blast furnace slag media. In fine
gravel media (Unit 2), the TN removal rate was found to be
consistently low (not shown here), which could be due to the
limited TN removal mechanism, while in the loamy sand units,
the relationship between TN removal and other inputs was
variable even between the control units 1 and 4.

In summary, predictions of TN removal in all VFCWs
brought R2 higher than 0.65, revealing a strong correlation
with the experimental data. However, the NSE was variable.
Specifically, the model for predicting TN removal in Unit 5,
despite containing more input variables, had a higher error
margin than the prediction errors produced by other models,
Table 4

ANN models for predicting TN removal in VFCW Unit 1.

Model Network input variables TRMSE VRMSE R2 NSE

1 ISS, EZn, EpH, IAM, IFe, IN3, IN2 0.042 0.059 0.81 0.79

2 ISS, EZn, EpH, IAM, IFe, IN3 0.066 0.068 0.74 0.65

3 ISS, EZn, EpH, IAM, IFe, IN2 0.046 0.101 0.50 0.39

4 ISS, EZn, EpH, IAM, IN3 0.049 0.077 0.69 0.65

5 ISS, EpH, IAM, IN3 0.060 0.083 0.65 0.59

6 ISS, EZn, EpH, IN3 0.048 0.173 0.20 0.06

7 ISS, EZn, EpH, IAM 0.048 0.136 0.30 0.20

Note: ISS means influent SS, EZn means effluent Zn, EpH means effluent pH,

IAM means influent NHþ
4 -N, IFe means influent Fe, IN3 means influent

NO�
3 -N, and IN2 means influent NO�

2 -N.
while the model for TN removal in Unit 2 had fewer inputs
and produced fewer errors with modest R2 and NSE values, as
listed in Table 6. Comparatively, in blast furnace slag media,
the ANN model had the lowest accuracy.

Generally, the data obtained from all VFCW units yielded
ANN models with fewer input variables than the inputs
identified through PCA, suggesting that TN removal can be
monitored indirectly. Moreover, the ANN models predicted
the TN removal rate with both TRMSE and VRMSE of less
than 4% in all designs as shown in Table 5. Therefore, the
generalisations derived by ANNs are satisfactory with regard
to removal in the tidal-flow VFCWs. Nonetheless, better
models could be developed using nonlinear data reduction
techniques than PCA.
3.3. Predicting total phosphorus removal
Predictions of TP removal were derived from the inputs
listed in Table 7 for Unit 1. Nitrogen species constituted the
most predictors, as well as influent SS and influent Fe, rein-
forcing the theory that TP and SS removal tend to occur
through similar mechanism of filtration and sedimentation.
Nonetheless, the ANN models created from different inputs
gave variable output ranges. Except for Model 6, in which
effluent TN was masked, the rest of the ANN models had low
values of TRMSE and VRMSE. Thus, effluent TN signifi-
cantly influenced the precision and reliability of the models.
Unfortunately, no remarkable improvements in ANN perfor-
mances were observed when the number of input variables
was reduced.



Table 6

Performance of ANNs in predicting TN removal in units 1, 2, 4, 5, 7, and 8 in comparison with experimental results.

Unit Network input variables Experimental

removal rate (%)

Predicted

removal rate (%)

Error (%) R2 NSE

1 ISS, EpH, IAM, IN3 78.14 76.97 �1.17 0.65 0.59

2 IpH, ETR, IAM 61.87 61.70 �0.17 0.70 0.60

4 EOP, IOP, EEC 80.06 78.49 �1.57 0.73 0.54

5 ESS, EEC, EN3, ISS, IN2, IFe 73.07 71.41 �1.66 0.71 0.69

7 EOP, ISS, IZn 73.03 72.04 �0.99 0.73 0.61

8 IOP, ESS, ETR 78.95 77.42 �1.53 0.68 0.44

Note: IpH means influent pH, EOP means effluent PO3�
4 -P, EEC means effluent EC, and IZn means influent Zn.

Table 8

Predicting TP removal in units 1, 4, 5, and 7.

Unit Network input variables TRMSE VRMSE R2 NSE

1 ESS, ETN, ISS, IAM, EN2 0.038 0.047 0.74 0.73

4 IpH, EZn, EEC, ESS, IN3, EFe 0.032 0.052 0.73 0.62

5 ESS, EN3, ETN, ISS, EpH 0.024 0.024 0.83 0.80

7 ETN, ITR, ISS, EAM, IAM 0.050 0.048 0.83 0.81

Note: EAM means effluent NHþ
4 -N, and ITR means influent temperature.
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The same procedure was applied to other VFCW units to
examine the performance of the models in predicting TP
removal with several input variable combinations. All the
models exhibited robust generalisations with both TRMSE and
VRMSE. TP removal obtained by the ANN models for units 5
and 7 showed better performance. Additionally, apart from
Unit 4, TP removal representative models of all the other
VFCW units were developed from fewer inputs relative to
their respective standard models. Thus, regarding the media
types, loamy sand VFCW units 1, 4, 5, and 7 produced good
results, as shown in Table 8, while both blast furnace slag and
fine gravel VFCW units produced weak models.

Table 8 shows the comparisons of the predicted TP removal
rate from the best model with the experimental data in units 1,
4, 5, and 7 for the loamy sand with different WWARs where
units 1 and 4 are the control units. It is clear that the TP
removal rates predicted by the model agree with the experi-
mental data in general. Among the loamy sand VFCW units,
the differences in performance could be attributed to variations
in WWARs. At a 2.5% WWAR (units 1 and 4) the TP removal
models performed well, but the TP removal rates attained by
the 5.0% (Unit 5) and 1.5% (Unit 7) WWARs were better,
judged by the values of R2 and NSE. Thus, the cumulative TP
mass removal rate was highest at a 5.0% WWAR (92%), fol-
lowed by a 2.5% WWAR (80%), and lowest at a 1.5% WWAR
(62%), as shown in Table 3. Similarly, the differences in the
removal of TP for different VFCW units were found to be
Table 7

ANN models for predicting TP removal in Unit 1.

Model Network input variables TRMSE VRMSE R2 NSE

1 ESS, ETN, ISS, IAM, EN2,

IFe, IN3

0.038 0.043 0.76 0.75

2 ESS, ETN, ISS, IAM, EN2 0.038 0.047 0.74 0.73

3 ESS, ETN, ISS, IAM, EN2,

IN3

0.047 0.042 0.75 0.69

4 ESS, ETN, ISS, IAM, EN2 0.033 0.062 0.66 0.65

5 ESS, ETN, ISS, IAM, IFe,

IN3

0.033 0.073 0.58 0.56

6 ESS, ISS, IAM, EN2, IFe,

IN3

0.029 0.110 0.20 0.13

7 ETN, ISS, IAM, EN2, IFe,

IN3

0.039 0.086 0.57 0.52

8 ESS, ETN, ISS, EN2, IFe,

IN3

0.044 0.048 0.69 0.64

Note: ETN means effluent TN, and EN2 means effluent NO�
2 -N.
significant ( p ¼ 0.000). Furthermore, the Tukey post hoc test
revealed that TP removal rate was significantly lower at a
1.5% WWAR in comparison with the 2.5% and 5.0%
WWARs. Thus, the ANN models for predicting TP removal
reflect these variations, and the results suggest that a lower TP
removal rate occurs through specific removal mechanism. This
explained the consistency observed, with the higher TP
removal rate indicating the involvement of various factors and
removal processes.
3.4. Discussion of ANN models for predicting TN and TP
removal
The extracted principal components revealed that although
all six VFCW units treated the same influent stormwater, each
VFCW unit produced data specific to its design. Consequently,
the developed ANN models had varying generalisations.
Additionally, the principal components extracted to predict TN
removal and TP removal differed for different VFCW units.
This suggests that the relationships between the input and
output variables are dependent on factors such as air temper-
ature, and design and operation variables.

The initial objective to develop ANN models was to predict
the removal rates of time-consuming and costlier-to-monitor
pollutants (heavy metals, TP, and TN) from the relatively
cheaper-to-monitor parameters (pH, temperature, and con-
ductivity). However, the exploratory data analyses revealed
significant differences between the means of the input vari-
ables. Moreover, most of the variables exhibited non-normal
distribution.

Additionally, temperature, pH, and EC had a weak relation
with the target outputs (TN removal and TP removal), which
may be an indication that physical water quality is insufficient
to characterise the dynamics of TN and TP removal in the
VFCWs. Thus, PCA was found to be necessary to reduce the
dimensions of the data and to identify the most significant
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inputs for building ANN models subsequently. VFCW units
configured using loamy sand media yielded reliable model
performances for TN and TP removal. However, fine gravel
and blast furnace slag media exhibited extremely nonlinear
patterns, which likely influenced the quality of the ANNs.

The best performing models of the VFCW units investi-
gated in this study produced ANNs with considerably low
training and validation error margins for TN removal, resulting
in satisfactory generalisations. Furthermore, predictions of TN
removal had all R2 values greater than 0.65, indicating a strong
correlation between the predicted and experimental data.
Except for units 1 and 5, the ANN models for predicting the
TN removal rate in units 2, 4, 7, and 8 required few input
variables, and the predictions were least reliable in Unit 8,
perhaps because of the various TN removal mechanisms.
Therefore, the long-term monitoring of the performance of TN
removal in VFCWs can be achieved with ANNs. Similarly, it
is possible to build more reliable ANN models for predicting
TN removal by identifying significant input variables using
nonlinear data reduction methods instead of PCA. ANN
models for predicting TP removal contained more input vari-
ables than the TN removal models, suggesting that TP removal
in VFCWs is more stochastic than TN removal.

However, no reliable model was developed for the fine
gravel and blast furnace slag VFCWs, and only loamy sand
VFCWs produced consistent or predictable TP removal.
Nevertheless, ANN model predictions revealed meaningful
variations in TP reduction in the loamy sand VFCWs. The
differences in TP removal could be attributed to changes in
WWARs. Thus, the models for TP removal with the 2.5%
WWAR (units 1 and 4) performed better when compared with
the models for Unit 5 (5.0% WWAR) and Unit 7 (1.5%
WWAR). This shows that TP removal was consistent at higher
WWARs as the influents were held longest due to the larger
surface area available to small inflow volumes, while for lower
WWARs (1.5% WWAR), less water could be withheld for a
shorter treatment time, resulting in a lower reduction of TP.
Although different media may yield different TN and TP
removal performances, the results showed that the fine gravel
and blast furnace slag media exhibited high nonlinearity,
which in turn may influence the quality of the ANN models
generated.

The results of the ANN models built from data of the
control units 1 and 4 (loamy sand VFCWs) showed no sig-
nificant difference in TN and TP removal rates, which in-
dicates that the long-term pollutant removal in VFCWs can be
strongly influenced by the primary media type and WWARs.

4. Conclusions

A series of laboratory experiments were continuously carried
out over a two-year period. The water quality of effluents from
six pilot-scale VFCW units, which were fed with semi-synthetic
influent stormwater, was analysed. ANN models for predicting
TN and TP removal in the VFCW units were developed from
the most significant influent-effluent input variables identified
through innovative exploratory data analyses.
The results show that primary media distinctly affected the
changes in pH, EC, and removal of TP and TN in the inves-
tigated designs. However, all the media adequately reduced the
pollutants in the stormwater. Specifically, blast furnace slag
media attained higher removal rates of more pollutants than
loamy sand and fine gravel media. However, loamy sand was
most effective in removing TP, especially at a 5.0% WWAR,
while fine gravel had the same efficiency in removing TN. The
differences in the performance of loamy sand VFCWs were
found to relate to the WWAR, but further study may be
required to establish this relation for fine gravel and blast
furnace slag media.

Similarly, the results of the ANN models for predicting TP
and TN removal revealed satisfactory generalisations, showing
agreement between the predicted and experimental data. Thus,
ANNs are a useful tool for modelling pollutant removal in
VFCWs. Furthermore, implementing nonlinear data reduction
techniques could improve the reliability of the ANN models
and reduce simulation time, as well as reduce input-output
data requirements. Moreover, future research should imple-
ment other ANN optimisation strategies like the radial basis
function and machine learning.

However, scaling up the results from this study can be
challenging, as the physical processes that convert rainfall to
runoff are variable and challenging to replicate. Assumptions
were also made for the hydraulic loading volumes derived
from average annual rainfall rather than the rainfall intensity,
and the retention time used in this study (24 h) excluded the
situations of longer (> 24 h) rainfall events. Therefore, field
studies must be conducted to complement the findings of this
study before scaling up for engineering applications. None-
theless, this study highlighted the effect of long and fixed
retention time on pollutant removal in tidal-flow VFCWs.
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