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Above-ground biomass (AGB) is an essential descriptor of forests, of use in

ecological and climate-related research. At tree- and stand-scale, destructive but

direct measurements of AGB are replaced with predictions from allometric models

characterizing the correlational relationship between AGB, and predictor variables

including stem diameter, tree height and wood density. These models are constructed

from harvested calibration data, usually via linear regression. Here, we assess

systematic error in out-of-sample predictions of AGB introduced during measurement,

compilation and modeling of in-sample calibration data. Various conventional bivariate

and multivariate models are constructed from open access data of tropical forests.

Metadata analysis, fit diagnostics and cross-validation results suggest several model

misspecifications: chiefly, unaccounted for inconsistent measurement error in predictor

variables between in- and out-of-sample data. Simulations demonstrate conservative

inconsistencies can introduce significant bias into tree- and stand-scale AGB predictions.

When tree height and wood density are included as predictors, models should be

modified to correct for bias. Finally, we explore a fundamental assumption of conventional

allometry, that model parameters are independent of tree size. That is, the same

model can provide predictions of consistent trueness irrespective of size-class. Most

observations in current calibration datasets are from smaller trees, meaning the existence

of a size dependency would bias predictions for larger trees. We determine that

detecting the absence or presence of a size dependency is currently prevented by model

misspecifications and calibration data imbalances. We call for the collection of additional

harvest data, specifically under-represented larger trees.

Keywords: tropical forests, above-ground biomass, allometry, prediction, error, uncertainty

1. INTRODUCTION

Above-ground biomass, AGB, is central to assessments of forest state and change because of its
relationship with the carbon cycle, and ecosystem services including net primary production (Field
et al., 1998; Pan et al., 2011; Costanza et al., 2014; Martin et al., 2018). The above-ground biomass
of a particular tree, at a given point in time, is the result of lifetime cumulative gross primary
production Pg , respiration, r, and loss, d (Roberts et al., 1993).
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To measure the AGB of a tree would require: (i) its
harvesting flush with the ground, (ii) the removal of water
through drying, and (iii) its mass measured via weighing.
These destructive measurements are necessarily limited due to
their difficulty. Instead, measurements of AGB are replaced
at the tree- and stand-scale with estimates predicted from
allometrics (Picard et al., 2012). Allometric models exploit the
correlational relationships that exist between AGB, and more
readily measurable tree parameters (e.g., stem diameter, D,
tree height, H, and wood density, ρ). These relationships are
discovered empirically, from calibration data where AGB has
been directly measured via destructive harvest, concurrent with
measurement of the predictor variables.

The conventional approach formodeling such calibration data
is a combination of ordinary least squares (OLS) linear regression
and log-log transformation. OLS is favored because of broad
coverage in the wider statistical literature and its long history in
the field of allometry since introduction in the 1900s (Lapicque,
1907; Huxley, 1932). The log-log transformation is undertaken
because AGB is usually observed to scale with predictor variables
such as D according to a power law (Brown, 1997), and it is a
convenient approach for modeling the multiplicative nature of
plant growth: variance in AGB normally increases with tree size
(Kerkhoff and Enquist, 2009).

Once an allometric model has been constructed from
some underlying in-sample calibration data, an out-of-sample
prediction of tree AGB is made by inputting the measurements
of the predictor variables of that tree into the model. Stand-scale
AGB is estimated by summing predictions for every tree inside a
particular forest stand.

For tropical forests, these models are most often constructed
at the population-scale because of diversity (Gibbs et al.,
2007), implying calibration data must represent upwards of
40 000 species (Slik et al., 2015). Occasionally, more constrained
models of tropical forests are available, where calibration data
were acquired exclusively from either a geographic subsection
of the tropics, or from a specific plant taxa (Basuki et al., 2009).
However, in the interests of consistency, or because of the general
unavailability of these more specific models, pan-tropical models
are usually preferred.

A number of pan-tropical models exist (Henry et al., 2013),
but a few have become particularly prominent (e.g., Brown et al.,
1989; Chave et al., 2005, 2014; Feldpausch et al., 2012), and their
subsequent predictions of stand-scale AGB are the cornerstone
to multiple activities across the environmental sciences. One
example usage of these predictions is to calibrate remotely sensed
signals from earth observation instruments, fromwhich regional-
and global-scale AGB products are derived (Saatchi et al., 2011;
Baccini et al., 2012; Avitabile et al., 2016). Another example is
their provision of reference AGB stocks to intergovernmental
initiatives on climate change, such as the UN-REDD program
(Angelsen et al., 2012).

Such example applications of allometry will usually require
error in out-of-sample predictions of stand-scale AGB be
well-understood. Throughout this paper, we use ISO 5725
and BIPM definitions to describe concepts of random error,
systematic error, total error, precision, trueness, accuracy, bias

and uncertainty (ISO-5725-1:1994(en), 1994; Menditto et al.,
2007; JCGM-200:2012, 2012). These definitions are described
below and illustrated in Figure 1.

Total error then, is the allometric-derived prediction of tree-
or stand-scale AGB minus the true (or reference) value of AGB.
Total error is the sum of two components: (i) systematic error,
which describes predictable non–zero mean offsets from the
true value, and (ii) random error, which describes unpredictable
zero mean offsets from the true value. Trueness, precision,
and accuracy are qualitative terms describing the effect on the
performance of a prediction by systematic, random and total
error respectively. These qualitative performance characteristics
are quantitatively expressed as a bias, standard deviation and
uncertainty respectively. That is, the uncertainty of a prediction
should account for both systematic and random error.

Error in out-of-sample allometric predictions is potentially
introduced during the selection, measurement and modeling of
the in-sample calibration data, as well as in the measurement of
the out-of-sample data. Possible sources of random error include:
(R1) noise in the measurement of the in-sample calibration data,
(R2) variance in the subsequently constructed model, which
arises from the stochastic nature of plant allometry, and (R3)
noise in the measurement of the out-of-sample data. Possible
sources of systematic error include: (S1) biased measurement
of the in-sample calibration data, (S2) bias introduced by the
selected modeling methods, (S3) the possibility that the in-
sample data are unrepresentative of the out-of-sample data, and
(S4) biased measurement of the out-of-sample data.

The gold standard for quantifying these uncertainties in out-
of-sample tree- or stand-scale predictions is direct measurement
via destructive harvest. However, across tropical forests, direct
measurement at the stand-scale has never been undertaken.
Aside from the difficulties associated with large-scale destructive
harvest, this is perhaps also due to the so-called “fallacy
of misplaced concreteness” (Clark and Kellner, 2012). That
is, uncertainty associated with these predictions is often
ignored as a result of erroneously deeming them reference
measurements, rather than the estimates they are. Indeed,
only a small body of literature has considered uncertainty in
out-of-sample pan-tropical predictions of AGB (Chave et al.,
2004; Molto et al., 2013; Picard et al., 2015a; Réjou-Méchain
et al., 2017). As outlined below, the focus of these studies
has been on the precision of predictions (i.e., the effect
of random error), with particular attention to sources R2
and R3.

Chave et al. (2004), using an OLS model constructed from
a compilation of pan-tropical calibration data, found relative
uncertainty to approximate 5–10% at the 1 ha stand-scale
(Chave et al., 2014), when accounting for source R2 using the
standard error of the regression, and R3 using a Taylor series
expansion. Réjou-Méchain et al. (2017), using the same model
and calibration data, but perturbing the parameters of the model
via a Bayesian framework to simulate further error arising from
R2, found relative uncertainty to approximate 10% at the 1 ha
stand-scale (Chave et al., 2019). Picard et al. (2015a) considered
R2 still further, and cognisant of the multiple, nominally suitable
allometric models available, estimated their aggregate variance
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FIGURE 1 | Definition of the terms used in this paper to describe the concept of error in out-of-sample pan-tropical allometric AGB predictions (ISO 5727 and BIPM

definitions) (ISO-5725-1:1994(en), 1994; JCGM-200:2012, 2012). The upper chart, adapted by permission from Springer Nature: (Menditto et al., 2007) defines the

relationships between error type and associated performance characteristic. The lower plot illustrates the effect on predictions from improving trueness, precision,

and accuracy.
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using Bayesian model averaging, from which relative uncertainty
was found to approximate 44% at the 1 ha stand-scale.

Whilst the contribution to uncertainty by random error has
received some attention, the contribution by systematic error
has received considerably less. Here, we focus on systematic
error in allometric-derived pan-tropical predictions of AGB,
with particular attention to sources S1, S2, and S4. That is, we
focus on bias introduced during the measurement and modeling
of the in-sample calibration data, and measurement of the
out-of-sample data.

Initially, we undertake a review of the metadata of existing
pan-tropical calibration data, to note the measurement methods
particular to destructive harvest experiments. We then review
the underlying assumptions of OLS modeling necessary to justify
unbiased predictions of out-of-sample AGB. Using open access
pan-tropical calibration data, we construct several conventional
models, and test whether these assumptions are met using
various fit diagnostics and statistical tests.We assess and compare
the precision, trueness and accuracy of predictions from these
models using bootstrapping and cross-validation.

We identify several potential sources of bias, simulate
their likely influence, and discuss their implication for OLS
predictions of tree- and stand-scale AGB. We suggest some
recommendations for quantifying and minimizing bias during
the measurement and compilation of calibration data. We also
discuss approaches for minimizing bias during the modeling of
calibration data.

Finally, we consider one aspect of error source S3: the
possibility that in-sample data are unrepresentative of out-
of-sample data. We assess whether pan-tropical allometry is
independent of tree size; that is, an assumption of conventional
pan-tropical allometry is that the model parameters necessary
for predicting the AGB of a tree are constant regardless of tree
size. This is necessary to consider because calibration datasets
are often imbalanced (i.e., the majority of observations will be
from small trees, with relatively few large trees) (Duncanson
et al., 2015; Jucker et al., 2017). If pan-tropical allometrics are
dependent on tree size, these imbalances will introduce a bias into
predictions of AGB for under-represented size classes.

2. METHODS

2.1. Pan-Tropical (In-sample) Calibration
Data
2.1.1. Characteristics
In this paper, we consider the Chave et al. calibration dataset
(Chave et al., 2014). These open access data are currently the
most comprehensive available, compiled frommany independent
destructive harvest experiments over 7 decades, from 58 sites
spanning the tropics, with measurements of AGB (kg), D (m),
H (m) and ρb (kgm−3)1 obtained from 4004 trees. Figure 2
illustrates these data, presenting a scatter plot of AGB against D,
and histograms displaying the distributions of the 4 variables.

It is worth noting two characteristics of the dataset; the first is
non–constant variance in AGB. That is, for a given value ofD, the

1ρb describes dry mass divided by wet volume.

range of values taken by AGB is not constant across scale; rather,
this range increases as D increases. The second characteristic of
these data is their non–uniform distribution, with the majority
collected from relatively small trees. Some statistics illustrating
this: AGB ranges from 1 to 76064 kg; themedian andmean values
are 98 and 1,134 kg; the first and third quartiles are 22 kg and
491 kg; 5.7 and 2.7% of these data (by stem count) have AGB >

5,000 and 10,000 kg, respectively.

2.1.2. Metadata Review
In the results section, we report the protocol employed for
measuring these calibration data. This is undertaken by reviewing
the metadata of some of the individual studies contributing to
the compiled dataset. Data considered were those published in
English-language peer-reviewed journals, i.e., a total of 26 studies
representing 65.3% of the full data (by stem count) (Edwards
and Grubb, 1977; Yamakura et al., 1986; Saldarriaga et al., 1988;
Martinez-Yrizar et al., 1992; Brown et al., 1995; Fromard et al.,
1998; Araújo et al., 1999; Nelson et al., 1999; Ketterings et al.,
2001; Mackensen et al., 2000; Cairns et al., 2003; Brandeis et al.,
2006; Burger and Delitti, 2008; Nogueira et al., 2008; Kenzo et al.,
2009; Djomo et al., 2010; Henry et al., 2010; Niiyama et al., 2010;
Ebuy et al., 2011; Ryan et al., 2011; Alvarez et al., 2012; Vieilledent
et al., 2012; Colgan et al., 2013; Mugasha et al., 2013; Goodman
et al., 2014; Ngomanda et al., 2014).

For the measurement of D, the measurement device, point
of measurement and buttress treatment are recorded. For the
measurement of H, the measurement device and whether
measurement was made in situ or post-felling are noted. For
the measurement of AGB, the methods for measuring wet mass
and the subsequent conversion to dry mass are recorded. Finally,
the methods used in each study for the measurement of ρb are
also recorded.

2.2. Modeling Calibration Data
2.2.1. Ordinary Least Squares Linear Regression
The conventional approach for constructing a model to predict
AGB from these calibration data is ordinary least squares (OLS)
linear regression. An OLS model takes the form:

y = Xβ + ε (1)

Where, y, is a nx1 vector of n observations of the dependant
variable (e.g., AGB); ε, is a nx1 vector of unobserved random
error in y; X, is a nxp design matrix of observations of the
predictor variables (e.g., D, where p is the number of included
predictor variables plus a constant term); and, β , is a px1 vector
of the unknown population parameters.

The closed-formOLS solution to estimating β is minimization
of the sum of the squared differences between observations and
predictions of the dependant variable:

β̂ = (XTX)−1XTy (2)

Although ε are unobserved, they are estimated, and then
represented by, the residuals of the model fit, e, ei = yi −
ŷi (i = 1, ..., n). The standard error of the regression, s, which is
the OLS estimate of the standard deviation of ε, σ , which itself
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FIGURE 2 | Illustrations of the 4004destructively harvested trees comprising the Chave et al. (2014) compilation of pan-tropical calibration data. In the upper plot,

AGB is plotted against D, the dominant predictor variable in most allometric models; it can be seen that variance in AGB is non–constant. The lower histograms

present the distributions of the 4measured variables across these data. It is noted observations are non–uniformly distributed across the range of each variable, with

the majority collected from relatively small trees.

is necessary for frequentist tests of statistical significance (e.g.,
prediction/confidence intervals), is defined as:

s =

√√√√ 1

(n− p)

n∑

i=1

e2i = σ̂ (3)

2.2.2. Assumptions and Finite-Sample Properties of

Ordinary Least Squares
For β̂ to be an unbiased estimate of β (i.e., the expected value of
β̂ is β , E[β̂] = β), the following three assumptions must be met
(Hayashi, 2000):

1. Linearity: a linear relationship exists between X and y.
2. Strict exogeneity: the expected mean of ε, conditional on

X, is zero; which in practice, implies ε is expected to have
an unconditional zero mean, and that it is expected X is
uncorrelated with ε:

E[ε] = 0 (4)

E[XTε] = 0 (5)

3. Absence of perfect collinearity: meaning the relationship
between the predictor variables is not deterministic,
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which would prevent the necessary inversion of X in
Equation 2.

For σ̂ to have unbiased properties, E[σ̂ ] = σ , and for β̂ to be
efficient (i.e., the variance in their estimate is the minimum), the
following two assumptions must be met:

4. Absence of autocorrelation: errors, εi (i = 1, ..., n), are
uncorrelated.

5. Homoscedasticity: εi (i = 1, ..., n), have constant variance,
Var(ε) = σ 2.

Finally, one further assumption is sometimes associated
with OLS:

6. Normality: the error term is normally distributed:

ε ∼ N(0, σ 2) (6)

A normal error term is not required for either β̂ or σ̂ to retain
unbiased properties, but a non–normal ε potentially invalidates
t- and F-tests, or the consistency of tests of models selection, such
as the Akaike information criterion, whose underlying likelihood
function usually expects a normally distributed ε. However, even
in such circumstances, if the model is correctly specified as
above (assumptions 1–5), a non–normally distributed ε is often
dismissed when n is sufficiently large by invoking central limit
theorem (Pek et al., 2018).

2.2.3. Predictive Modeling
It is now necessary to consider these assumptions in the context
of predicting out-of-sample AGB. These assumptions have been
derived with the classical application of regression in mind:
causal understanding (Shmueli, 2010). That is, β̂ are interpreted
as explaining the relationship of the predictor variables on the
dependant variable (in this context, the term predictor variable
would usually be replaced with independent variable).

Here however, our interest with β̂ is solely to predict a value
of AGB, for a given out-of-sample value of X, and to understand
the statistical significance of this prediction. By making this
fundamental distinction, it is possible to relax or discard several
of the above assumptions. For simplicity, for the remainder of this
subsection, X is considered to be a single predictor variable, D.
For the assumption of strict exogeneity, relevant potential sources
of endogeneity include:

1. Omitted variable bias. AGB is not caused by D, but is caused
by the aforementioned causal variables (i.e., gross primary
production, Pg , respiration, r, and losses, d):

AGB = β0 + β2Pg + β3r + β4d + ε (7)

Such that when these causal variables are omitted, and
replaced with a non–causal predictor variable, their influence
is subsumed into the error term:

AGB = β0 + β1D+ u (u = ε + β2Pg + β3r + β4d) (8)

Whereby ifDwere correlated with the combination of omitted
variables, then D and ε are correlated, which violates the
assumption of strict exogeneity.

2. Systematic error in the measurement of AGB. At the most
simple, if a constant bias, c, is present in the measurement of
AGB, then the mean of ε is now non–zero:

E[ε] = c (9)

Meaning the intercept, β0, is biased:

AGB = (β0 + c)+ β1D+ ε (10)

3. Errors-in-variables: OLS assumes predictor variables are
measured without error. In the case of a single predictor
variable, the model is described as:

AGB = β0 + β1D+ ε (11)

Where the OLS estimate of β1 is:

β̂1 =
Cov(D, AGB)

Var(D)
(12)

However, suppose D were measured with some random error,
D′ = D+ η [η ∼ N(0, σ 2

η )], then the estimate becomes:

β̂1 =
Cov(D, AGB)

Var(D)+ Var (η)
(13)

Meaning D and ε are now correlated via η. This manifests
in a downward bias of β1, which is often termed
regression dilution.

The consequences of these various sources of endogeneity differ
depending on the application of the model. If the application
is explanation, then all three sources bias estimates of β , which
we discuss further in the discussion section. If the application is
prediction, then systematic error in themeasurement of AGBwill
also persistently bias out-of-sample predictions of AGB. Errors-
in-variables do not necessarily bias AGB predictions, although a
bias will be present when the measurement error distributions
between in- and out-of-sample measurements are inconsistent
(Jonsson, 1994; Molto et al., 2013).

Omitted variable bias however, which potentially results in
the discovery of so-called spurious relationships, can be ignored
in predictive models. That is, the influence of the omitted
variables on estimates of β will not bias predictions. However,
as also discussed later, omitted variable bias profoundly limits the
application of the model outside of prediction.

If the purpose of the model is prediction, we can also
largely disregard the assumption of multicollinearity (i.e.,
significant correlations between the predictor variables,
provided the correlation is not perfect) (Hyndman and
Athanasopoulos, 2018). Also, because the calibration data
are comprised of single, independent observations (with the
possible exception of ρb, which we discuss further in the
discussion section), the assumption of autocorrelation can also
be disregarded.

Therefore, for OLS estimated β to have unbiased properties
suitable for prediction of AGB, the following assumptions must
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be met: (A1) a linear relationship exists between the predictor
variables and dependant variable, (A2) the unconditional mean
of ε is zero, (A3) measurement error in the predictor variables
is consistent between in- and out-of-sample data. Further,
σ̂ has unbiased properties, and β̂ become efficient, when ε

is homoscedastic.

2.2.4. Log-Log Transformation
To achieve the required linearity, given the calibration data
exhibit a power law relationship in real-space (Figure 2), log-log
transformation is necessary:

ln(AGB) = β0 + β1 ln(D)+ ε (14)

A further beneficial trait of this transformation, in the context
of calibration data where the variance in AGB is non–constant,
is the increased likelihood of homoscedastic behavior from
the residuals.

Once β are estimated, subsequent AGB prediction requires
re-transformation of the model to real-space:

AGB = e(β̂0+ε)(D)β̂1 (15)

That is, in real-space, ε is no longer additive (independent
of the predictor variables; scale invariant), but multiplicative
(dependent on the predictor variables; relative to scale).

A corollary of this re-transformation is that error is described
by the log-normal distribution, which does not share the same
expectation of the mean with that of the normal distribution.
This mismatch introduces a bias, which is usually countered
through application of a correction term (Neyman and Scott,
1960), formed using σ , as:

AGB = e(β̂0+ε)e(
σ̂2

2 )(D)β̂1 (16)

An implication of employing this correction term is that
predictions of AGB are unbiased only when σ̂ itself is
unbiased (E[σ̂ ] = σ ).

2.2.5. Considered Model Forms
Here, we explore the fit of various model forms to the pan-
tropical calibration data. The chosen selection of bivariate and
multivariate models covers a range of complexities, given the
predictor variables available in the calibration data. The five
considered models are:

ln(AGB) = β0 + β1 ln(D)+ ε (17)

ln(AGB) = β0 + β1 ln(H)+ ε (18)

ln(AGB) = β0 + β1 ln(D)+ β2 ln(ρb)+ ε (19)

ln(AGB) = β0 + β1 ln(D)+ β2 ln(H)+ ε (20)

ln(AGB) = β0 + β1 ln(D)+ β2 ln(H)+ β3 ln(ρb)+ ε (21)

Once each model is fitted, we apply several diagnostics and
statistical tests to the resulting residuals, e, in an effort to interpret
whether the error term, ε, is homoscedastic and normally
distributed. Variance of ε is assessed by visually inspecting e
plotted against predicted AGB. The Breusch-Pagan and White
statistical tests are applied to e to further evaluate variance of ε

[null hypotheses: constant variance (homoscedasticity)] (Breusch
and Pagan, 1979; White, 1980). The distribution of ε is assessed
by comparing the studentised residuals, e

σ̂
, with the expected

normal distribution via a Quantile-Quantile plot.
The variance in β̂ is quantified using confidence intervals.

The classical frequentist approach for generating confidence
intervals requires an unbiased estimate of σ . However, as
previously identified, σ̂ has unbiased properties only when ε is
homoscedastic. As this assumption may not necessarily hold,
confidence intervals are instead generated here using a non–
parametric bootstrap.

From the calibration data, a random-with-replacement
sample is drawn, from which the five OLS models are
constructed. AcrossN draws, confidence intervals about β̂ , at the
level α, are estimated for eachmodel using the bias-corrected and
accelerated approach (Efron, 1987).

2.3. Trueness and Accuracy of Predictions
To assess the closeness of agreement between predicted and
observed AGB (accuracy) from these models, given both the
random error (often referred to in a modeling context as
simply variance) which affects precision, and the systematic error
(similarly often referred to as bias) which affects trueness, we use
k-fold cross-validation.

2.3.1. Stratified k-fold Cross-Validation
The calibration data are folded (or split) k-times, where each
fold is a representative subset of the full data. Sequentially
iterating through the folds, each of the five considered models are
constructed from observations in the unselected folds (training
data, k−1). AGB is predicted by each model for each observation
in the selected fold (validation data), and compared with
observed AGB.

Prediction error is assessed here using the log of the
accuracy ratio (Tofallis, 2015). We deliberately avoid the more
widely-used mean absolute percentage error (MAPE) because
of its undesirable properties including asymmetric penalty,
asymmetric bounds and outlier penalty. Instead, the log of the
accuracy ratio exhibits symmetric properties, and is particularly
well–suited to an assortment of predictions that could reasonably
be expected to span five orders of magnitude. The accuracy ratio
of a prediction, Q, is defined as:

Q =
ÂGB

AGB
(22)

Where the log of the accuracy ratio is defined as ln(Q).
To quantify the uncertainty and bias of predictions from each

fold, we use two metrics proposed by Morley et al. (2018). First,
uncertainty is assessed using the median symmetric accuracy
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(MSA):

MSA = 100(e(M(| ln(Q)|)) − 1) (23)

Which can be readily interpreted as a percentage error.
Second, bias is assessed using the symmetric signed percentage
bias (SSPB):

SSPB = 100(sgn(M(ln(Q)))(e|M(ln(Q))| − 1)) (24)

Which produces a similarly interpretable percentage, whereby a
positive or negative sign denotes an over- or under-estimation of
the prediction respectively.

2.4. Simulating Inconsistent Measurement
Error
Inconsistent measurement error in predictor variables between
in- and out-of-sample data can be simulated by adding further
noise to the in-sample calibration data themselves, e.g.,:

H′ = H + η [η ∼ N(0, σ 2
η )] (25)

From which N draws of η are made, and subsequent models
constructed. The mean values of β̂ across these N models are
those necessary to provide unbiased predictions of AGB when
the out-of-sample data are measured with η-more measurement
error than that present in the calibration data.

2.5. Tree Size and Allometry
Finally, the independence of β from tree size is considered. That
is, all else being equal, if pan-tropical allometry is independent of
tree size, β̂ should remain statistically indistinguishable between
models constructed from subsets of data belonging exclusively
to either small or large trees. To explore this, a series of subsets
are generated from the data that contain sequentially fewer
small trees, removing those below (D ≥ 0.1, 0.25, 0.5 m,
and 0.75 and 1 m). The variance in these model parameters
is then estimated using the aforementioned bootstrapped BCa
confidence intervals.

2.6. Methods Availability
The source code for thesemethods, implemented in R, is available
in the treeallom package, which is released under theMIT license,
and hosted at https://github.com/apburt/treeallom.

3. RESULTS

3.1. Review of the Calibration Data
3.1.1. Measurement of D
Across the considered studies, a measuring tape was the most
commonly used measurement device, although calipers were
occasionally used instead (Table 1). The point of measurement
was often not reported, but D was referred to as “diameter-
at-breast height” or “girth-at-breast-height,” which is usually
assumed as 1.3m, although historically this has sometimes
been considered 4.5 ft (∼1.37 m). Finally, for the treatment
of buttresses, two separate approaches were reported: (i)
measurement directly above the buttress, and (ii) measurement
0.2m above.

3.1.2. Measurement of H
Most often, H was measured post-felling using a tape measure
(Table 2), although a number of studies measured H pre-harvest
(i.e., with the tree in situ). On the resolution to which H was
reported, the majority provided to the nearest 0.1m, although
this was occasionally to the nearest 1m.

3.1.3. Measurement of AGB
For the measurement of wet mass, some studies weighed each
tree in its entirety using scales (Martinez-Yrizar et al., 1992;
Nelson et al., 1999; Mackensen et al., 2000; Cairns et al., 2003;
Burger and Delitti, 2008; Kenzo et al., 2009; Djomo et al., 2010;
Niiyama et al., 2010; Ryan et al., 2011; Vieilledent et al., 2012;
Colgan et al., 2013; Mugasha et al., 2013; Ngomanda et al.,
2014). Other studies mixed direct measurements with indirect
measurements from volume estimates derived from diameter and
length measurements. Some studies weighed the crown of each
tree, but stem wet mass was derived from volume estimates for
some or all trees (Edwards and Grubb, 1977; Saldarriaga et al.,
1988; Araújo et al., 1999; Ketterings et al., 2001; Brandeis et al.,
2006; Nogueira et al., 2008; Alvarez et al., 2012; Goodman et al.,
2014). The remaining studies used volume estimates for stem
and large branching for some or all trees (Yamakura et al., 1986;
Brown et al., 1995; Fromard et al., 1998; Ebuy et al., 2011; Henry
et al., 2010).

There was variation in the treatment of stumps, with some
considering everything flush with the ground (Brandeis et al.,
2006), whilst others ignored stump material (Ebuy et al., 2011).
Few reported on losses from chainsaw cuts: sometimes woody
swarf was weighed (Nogueira et al., 2008), and othertimes
ignored (Mugasha et al., 2013). No study reported duration
between felling and measurement, and on any subsequent water
losses. No studies reported applying correction factors to account
for either source of loss.

To estimate dry mass (AGB) from wet mass, most often
subsamples were gathered from each tree, and their dry-to-wet
ratio measured via oven-drying. This was usually undertaken by
partitioning the wet mass into pools (e.g., stem, large branches,
fine branches, twigs, leaves, and fruit), and taking subsamples
from each pool. The type of subsample, the number of pools,
and the number of subsamples acquired per pool varied between
studies, as did the application of the dry-to-wet ratio (i.e., some
derived the mean dry-to-wet ratio across the subsamples that was
subsequently applied to total wet mass, whilst others applied the
dry-to-wet ratio on a per-pool basis). The temperature at which
the subsamples were dried and their final dry mass reported,
varied from 55 ◦C (Cairns et al., 2003) to 105 ◦C (Ketterings
et al., 2001). Some exceptions to this general approach were the
selection of subsamples by height rather than pool (Vieilledent
et al., 2012), taking subsamples from only a subsample of the
harvested trees (Saldarriaga et al., 1988), and sourcing dry-to-wet
ratios from literature (Araújo et al., 1999).

3.1.4. Measurement of ρb

Finally, ρb was often not measured. Instead, values were obtained
from literature (Martinez-Yrizar et al., 1992; Araújo et al., 1999;
Ebuy et al., 2011; Ngomanda et al., 2014; Mugasha et al., 2013),
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TABLE 1 | The protocol employed across the 26destructive harvest experiments for measuring the predictor variable D.

Measurement of D

Measurement device Point of measurement Buttress treatment

Diameter tape Brown et al., 1995; Burger and Delitti,

2008; Vieilledent et al., 2012; Mugasha

et al., 2013

0.10m Colgan et al., 2013 Directly above Yamakura et al., 1986; Brown

et al., 1995; Henry et al., 2010;

Alvarez et al., 2012; Goodman

et al., 2014

Calipers Henry et al., 2010; Mugasha et al., 2013 1.30m Yamakura et al., 1986; Saldarriaga

et al., 1988; Martinez-Yrizar et al.,

1992; Brown et al., 1995; Fromard

et al., 1998; Araújo et al., 1999;

Nelson et al., 1999; Kenzo et al.,

2009

Nogueira et al., 2008; Henry et al.,

2010; Ryan et al., 2011; Alvarez

et al., 2012; Vieilledent et al., 2012;

Goodman et al., 2014

0.2m above Saldarriaga et al., 1988

DNR Edwards and Grubb, 1977; Yamakura

et al., 1986; Saldarriaga et al., 1988;

Martinez-Yrizar et al., 1992; Fromard et al.,

1998; Araújo et al., 1999; Nelson et al.,

1999

Mackensen et al., 2000; Ketterings et al.,

2001; Cairns et al., 2003; Brandeis et al.,

2006; Nogueira et al., 2008; Kenzo et al.,

2009; Djomo et al., 2010

Niiyama et al., 2010; Ebuy et al., 2011;

Ryan et al., 2011; Alvarez et al., 2012;

Colgan et al., 2013; Goodman et al.,

2014; Ngomanda et al., 2014

1.36m Nogueira et al., 2008 DNR Edwards and Grubb, 1977;

Martinez-Yrizar et al., 1992;

Fromard et al., 1998; Araújo

et al., 1999; Nelson et al., 1999;

Ketterings et al., 2001

Mackensen et al., 2000; Cairns

et al., 2003; Brandeis et al.,

2006; Burger and Delitti, 2008;

Nogueira et al., 2008; Kenzo

et al., 2009; Djomo et al., 2010

Niiyama et al., 2010; Ebuy et al.,

2011; Ryan et al., 2011;

Vieilledent et al., 2012; Colgan

et al., 2013; Mugasha et al.,

2013; Ngomanda et al., 2014

- - 1.37m Brandeis et al., 2006 - -

- - DNR Edwards and Grubb, 1977;

Mackensen et al., 2000; Ketterings

et al., 2001

Cairns et al., 2003; Burger and Delitti,

2008; Djomo et al., 2010; Niiyama

et al., 2010; Ebuy et al., 2011;

Ngomanda et al., 2014

- -

Reported are the measurement device, point of measurement (the height above-ground at which D is measured on the stem) and the approach for treating buttresses. DNR - did

not report.

or sometimes ρb was not a variable under consideration, but
subsequently added to these data during compilation using global
databases (Edwards and Grubb, 1977; Yamakura et al., 1986;
Fromard et al., 1998; Mackensen et al., 2000; Cairns et al., 2003;
Burger and Delitti, 2008; Kenzo et al., 2009; Niiyama et al.,
2010; Ryan et al., 2011). For those studies that did measure,
the most common approach was to determine the wet volume
from the subsamples (Saldarriaga et al., 1988; Brown et al., 1995;
Brandeis et al., 2006; Henry et al., 2010; Vieilledent et al., 2012;
Alvarez et al., 2012; Nogueira et al., 2008), although there were
variations on this: e.g., only a single subsample from the stem
was considered (Nelson et al., 1999), or only subsamples from
the stem (Goodman et al., 2014). Other approaches involved
taking cores from each tree (Djomo et al., 2010) and combining
measurements with literature values (Ketterings et al., 2001).

For the measurement of wet volume, the subsamples were
usually measured via Archimedes’ principle (Goodman et al.,

2014), but sometimes graduated cylinders (Colgan et al., 2013),
estimates from geometry (Henry et al., 2010), or a combination
(Brown et al., 1995). Similar to the application of the dry-to-
wet ratio, ρb was sometimes derived from the mean across
subsamples, or othertimes weighted by pool.

In summary then, measurement protocol between studies
were inconsistent for each of the 4 measured variables. This is
of course a largely unavoidable inevitability, given the nature
of these data compiled from multiple independent studies and
operators, across both a large spatial extent and time-span.

3.2. The Ordinary Least Squares Models
3.2.1. Bivariate Models
The relative strength of the correlation between the predictor
variables D and H with AGB is demonstrated by the two
bivariate models, with the standard error of the regression
from the AGB = f (D) model considerably smaller than the
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TABLE 2 | The approach and measurement device used across the 26 studies for

measuring the predictor variable H.

Measurement of H

Approach Measurement

device

Pre-felling Saldarriaga et al., 1988

Djomo et al., 2010; Niiyama et al., 2010; Colgan

et al., 2013; Mugasha et al., 2013

Measuring poles

Sine or tangent

method

Post-felling Yamakura et al., 1986; Martinez-Yrizar et al.,

1992; Brown et al., 1995; Fromard et al., 1998;

Nelson et al., 1999

Mackensen et al., 2000; Ketterings et al., 2001;

Cairns et al., 2003; Brandeis et al., 2006; Burger

and Delitti, 2008; Nogueira et al., 2008

Henry et al., 2010; Ebuy et al., 2011; Alvarez

et al., 2012; Vieilledent et al., 2012; Goodman

et al., 2014; Ngomanda et al., 2014

Tape measure

DNR Edwards and Grubb, 1977; Araújo et al., 1999;

Kenzo et al., 2009; Ryan et al., 2011

-

DNR - did not report.

AGB = f (H) model (Figure 3). Residuals from both models
are heteroscedastic (Figure 3 and Table 3) and non–normally
distributed (Figure 3). It should not be expected then, that σ̂ has
unbiased properties (i.e., E[σ̂ ] 6= σ ).

In the case of the AGB = f (D) model, residual variance
decreases with increasing predicted AGB, and a combination
of light-heavy tails are observed in the distribution of
studentised residuals. Multiple outliers are seen, which likely
exert undesirable leverage on β̂ , suggesting robust regression
techniques might be more appropriate. The AGB = f (H) model
has clear deficiencies: AGB will be underestimated for both short
and tall trees.

3.2.2. Multivariate Models
Including additional predictor variables leads to a significant
reduction in the standard error of the regression relative to the
bivariate models (Figure 4). However, similar to the bivariate
AGB = f (D) model, residuals from the three multivariate
models are heteroscedastic (Figure 4 and Table 4) and non–
normally distributed (Figure 4). Across the multivariate models,
residual variance consistently decreases as predicted AGB
increases. The distributions of studentised residuals exhibit
various combinations of heavy/light tails and bowing.

3.3. Cross-Validation
The calibration data were folded 10 times, resulting in ∼400
observations per fold. This might be similar to the stem count
encountered in a 1 ha tropical forest stand, so the uncertainty
and bias metrics reported here might provide something of an
expectation for those at the out-of-sample stand-scale.

Prediction accuracy increased with increasing predictor
variable count (Figure 5 and Table 5). Uncertainty varied from
a minimum of 24% for the AGB = f (D,H, ρb) model, to a
maximum of 137% for the AGB = f (H) model. When compared
with the bivariate AGB = f (D) model, the AGB = f (D,H)
model provided 10.0% less uncertain predictions, whereas

only a 4.6% reduction in uncertainty was observed for the
AGB = f (D, ρb) model.

Predictions from all 5models were persistently biased upward
(Figure 5 and Table 5). A small reduction in bias was observed
when the multivariate models are compared with the AGB =

f (D) model. Overall, the minimum observed mean bias was 6%.

3.4. Inconsistent Measurement Between
In- and Out-of-Sample Data
Inconsistent measurement error in predictor variables between
in- and out-of-sample data was simulated by adding further
error, drawn from normal distributions, to the calibration data.
Simulated error added to H had standard deviations, ση, of 0.25,
0.5, 1, and 2 m. Simulated error added to ρb had ση of 2, 50, 75,
and 100 kgm−3.

Large fluctuations are observed in the parameters of the
models constructed from these various combinations of added
noise (Table 6), which regularly fall outside the 95% confidence
intervals of the base model presented in Figure 4. Additional
measurement error in a predictor variable manifests in a
downward force on its corresponding parameter (regression
dilution), and a variable upward force exerted on the remaining
parameters, with a particularly pronounced effect on the
intercept, β0. That is, as measurement error inconsistency
increases, the less influence that particular predictor variable has
on predicted AGB.

3.5. The Effect of Tree Size on Model
Parameters
The AGB = f (D,H, ρb) model was constructed from the
various considered subsets of the calibration data (these subsets
contained sequentially fewer trees, removing those below
diameter thresholds of D ≥ 0.1, 0.25, 0.5 m, and 0.75 and
1m). There is a tendency for the parameters associated with
the predictor variables to increase as fewer smaller trees are
considered, whilst the intercept parameter decreases (Figure 6).
Whilst the changes in these parameters are substantial, it is noted
that rarely do confidence intervals not overlap. The confidence
intervals themselves rapidly inflate because of the relatively few
observations in the larger size-classes.

4. DISCUSSION

The residuals of each bivariate and multivariate model were
heteroscedastic and non–normally distributed. The cross-
validation results found the minimum relative uncertainty in
fold-scale AGB predictions achieved by these various models
was ∼24%, and that predictions were also persistently upward
biased by a minimum of 6% (∼400 observations per fold).
Our analysis suggests that these results are likely symptoms of
model misspecification. That is, the models do not account for
everything they should.

4.1. Inconsistent Measurement Error
It was noted in the methods section that error in the
measurement of predictor variables will not necessarily affect
the trueness of AGB predictions. For example, if in-sample
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FIGURE 3 | The two bivariate pan-tropical models. Left: AGB = f (D), right: AGB = f (H). The upper subfigures present both models overlain on the calibration data

(which are uniquely colored by each underlying study contributing to the full dataset). Provided in the upper subfigures are the OLS estimates of the population

parameters, the bootstrapped BCa 95% confidence intervals (N = 10000 ), and the standard error of the regression. The middle subfigures illustrate the variance of

residuals across predicted B for both models, and the lower subfigures present a quantile-quantile plot comparing the distribution of studentised residuals with the

expected normal distribution. It is noted that residuals from both models have non–constant variance and are non–normally distributed.

tree height, H, were measured with error, η, H′ = H +

η [η ∼ N(0, σ 2
η )], then the subsequently constructed model

characterizes the relationship AGB = f (H′). That is, the
imprecise expectation of H is baked-in to the OLS estimate
of the population parameters. Provided the out-of-sample
measurement ofH shares this expectation, predicting AGB using
these parameters is unproblematic (Jonsson, 1994). However, if
the out-of-sample measurement has a different expectation of
error, then a systematic error will be introduced.

The key point then, is not the presence of measurement
error itself, but the difference in its distribution between in-
and out-of-sample measurements. As discussed below, we think
that assuming these distributions are approximately consistent
for the predictor variables H and ρb is unjustifiable. Crucially,
if it is assumed this difference is negligible (which is the current
position of all widely-used pan-tropical allometric models), when
it is not, a bias of unknown direction and magnitude will be
present in AGB predictions.
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TABLE 3 | Results from the statistical tests applied to the residuals of both

bivariate methods to assess variance.

Test Null hypothesis
AGB = f(D) AGB = f(H)

Statistic P-Value Statistic P-Value

Breusch-Pagan Var(e) = constant 13.3 < 0.001 9.2 < 0.001

White Var(e) = constant 18.0 < 0.001 9.2 0.01

The null hypothesis of residuals having constant variance (homoscedasticity) is rejected

in both models, and the alternative hypothesis of heteroscedasticity is accepted.

4.1.1. Differences Between In- and Out-of-Sample

Measurement Error
In the metadata review it was noted that for the majority of in-
sample data, measurement ofH was made via tape measure post-
felling. It would seem plausible to assume this method provides
true and precisemeasurements, e.g., it would not be unreasonable
to speculate η could take a form similar to η ∼ N(0.0m, 0.5m).

However, out-of-sample measurements of H are made with
the tree in situ using clinometers and range finders via either the
tangent or sine method. Two prominent studies have explored
the accuracy of thesemeasurements in tropical forests. Larjavaara
andMuller-Landau (2013) found η to take the average forms η ∼

N(−0.8m, 6.8m) and η ∼ N(−4.5m, 2.3m) for the tangent and
sine methods respectively. Hunter et al. (2013) found η to take
the average form η ∼ N(−1.1m, 4.7m) for the tangent method.

This would suggest measurement error distributions between
in- and out-of-sample measurement of H are significantly
different. More problematic, out-of-sample H is often
not measured, but replaced with predictions from models
(Feldpausch et al., 2011; Sullivan et al., 2018). It is likely that
these models share issues similar to those encountered here (e.g.,
a heteroscedastic error term means E[σ̂ ] 6= σ ), such that the
out-of-sample error structure becomes misleading.

Unlike the measurement of H, few studies have explored
measurement error in ρb, but it would seem reasonable to
suggest that obtaining a robust description of the in-sample
measurement error distribution is impossible. The metadata
review showed the in-sample methods include a variety of
direct measurements on subsamples and cores, and acquiring
values from global databases. Therefore, the mean in-sample
definition of the measurement of ρb itself is an unknown.
That is, the aggregate in-sample measurement of ρb, which
is the expectation of the out-of-sample measurement, is some
unmeasurable and unknown composite of these variousmethods.
If the definition of the in-sample measurement is unknown, then
the difference in measurement error between in- and out-of-
sample measurements is unknown.

With respect to the measurement of D, it was assumed
in the simulations that measurement errors were consistent.
This is possibly justified as widely-used field guides for tropical
forest inventorying are consistent and unambiguous in the
definition of the measurement (Marthews et al., 2014). We do
acknowledge however, there are reasons why in- and out-of-
sample measurement error distributions might be inconsistent.
For example, the metadata review identified the use of different
measurement devices (e.g., diameter tape and calipers), point of

measurement and buttress treatment. Similar to the in-sample
measurement of ρb, this would lead to the mean in-sample
definition of the measurement of D being some fusion of these
approaches, which cannot be mirrored by a single out-of-sample
measurement. There are also possibly human factors at play:
the skill and diligence of operators may vary between separate
data acquisitions.

4.1.2. Implications of Inconsistent Measurement Error
The question remains then: what are the likely consequences to
predictions of tree- and stand-scale AGB from inconsistent error
in the measurement of in- and out-of-sample predictor variables?
Given the above discussion, we think our worst-case simulations
presented in Table 6 provide a particularly conservative insight.

We assumed out-of-sample measurements of H and ρb
were only more imprecise than in-sample measurements (i.e.,
measurement trueness remained consistent). We assumed these
differences were characterized by normally distributed error with
2m and 100 kgm−3 standard deviation respectively. Under these
assumptions, our simulations of the AGB = f (D,H, ρb) model
found the parameter β0 to change from 0.821 to 4.009, β1 from
2.019 to 2.206, β2 from 0.888 to 0.566, and β3 from 0.821 to
0.508. Both absolutely and relatively, these changes in population
parameters have implications to predictions of AGB.

Absolutely, these differences can be demonstrated by
predicting AGB for two hypothetical trees: first a tree with D =

0.1m, H = 20m and ρb = 600 kgm−3 has predicted AGB of
63.2 kg in the original model, and 52.7 kg in the simulated model,
a −16.6% change. Second, a larger tree with D = 1.5m, H =

40m and ρb = 500 kgm−3 has predicted AGB of 23,857.6 kg and
27,976.5 kg respectively, a 17.3% change. There might therefore
be some degree of cancellation when up-scaling to the stand,
but this would be both a function of structural composition, and
dangerous to assume.

Relatively, there are two scenarios where not accounting
for inconsistent measurement error would lead to potentially
spurious predictions of AGB change: inter-plot comparison
and change detection. To illustrate this, we downloaded some
field data from https://forestplots.net/ for 2 plots included
in the Global Ecosystem Monitoring network (GEM, http://
gem.tropicalforests.ox.ac.uk). These two 1 ha plots (designation:
MNG-03 and MNG-04) are in close proximity to one another
in l’Arboretum Raponda Walker, Estuaire, Gabon (location:
0.576◦, 9.323◦ and 0.576◦, 9.328◦). Both plots are moist,
lowland, Terra Firme, secondary forests; MNG-03 has a
monodominant composition whilst MNG-04 is mixed. MNG-
03 has a stem count, basal area, Lorey’s height and basal-
area-weighted basic density of 436 , 47.6mha−2, 39.1m and
489 kgm−3 respectively; MNG-04 has 437 , 34.8mha−2, 30.8m
and 605 kgm−3 respectively.

First, with respect to inter-plot comparison then, the original
model predicts stand-scale AGB of 579,591 kg and 421,141 kg
for MNG-03 and MNG-04 respectively, whilst the simulated
model predicts 588,370 kg and 407,950 kg respectively. That is,
the original model predicts a 31.7% difference in AGB between
plots, whereas the simulated models predicts 36.2% difference.
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FIGURE 4 | The three considered multivariate pan-tropical model forms. Format is consistent with Figure 3. Similar to the bivariate models, residuals exhibit

heteroscedasticity and are non–normally distributed.

TABLE 4 | Results from the statistical tests applied to the three multivariate models.

Test Null hypothesis AGB = f(D,ρb) AGB = f(D,H) AGB = f(D,H,ρb)

Statistic P-Value Statistic P-Value Statistic P-Value

Breusch-Pagan Var(e) = constant 61.6 < 0.001 51.3 < 0.001 74.6 < 0.001

White Var(e) = constant 359.6 < 0.001 53.8 < 0.001 81.9 < 0.001

Format is consistent with Table 3. These results corroborate with those from Figure 4 in indicating the residuals of each model are heteroscedastic.

Second, to explore the implications to change detection,
we hypothetically assume some changes in the composition
of MNG-04 since these data were collected. We assume a

uniform increase in D, H, and ρb of 0.01m, 2.5m and 25 kgm−3

respectively per tree. The original and simulated models
now predict stand-scale AGB as 489,633 kg and 458,380 kg
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FIGURE 5 | Stratified 10-fold cross-validation results for three of the

pan-tropical models. For each considered model, per validation fold, the

distribution of the log of the accuracy ratio is shown (ln( ˆAGB/AGB)). Each fold

contains ∼400 observations. Distributions are represented via standard format

box-and-whisker. It is observed that the variance of these distributions tends

to reduce as additional predictor variables are added. The median value of

these distributions is consistently greater than zero, signifying predictions of

AGB are generally larger than observed AGB.

TABLE 5 | Stratified 10-fold cross-validation prediction metrics for the five models.

Model MSA (uncertainty, %) SSPB (bias, %)

Mean Min Max Mean Min Max

AGB = f (D) 40.8 36.4 46.3 9.7 0.6 15.4

AGB = f (H) 137.1 121.5 157.8 77.1 66.6 92.7

AGB = f (D,H) 30.8 27.2 35.9 7.1 3.5 10.8

AGB = f (D, ρb ) 36.2 32.5 41.5 5.8 1.4 12.0

AGB = f (D,H, ρb) 24.4 22.8 27.6 6.3 0.7 11.7

Uncertainty and bias of AGB predictions from these models is quantified using the median

symmetric accuracy (MSA) and the signed symmetric percent bias (SSPB) respectively.

These metrics were generated per fold (∼400 observations per fold), and here the mean,

minimum and maximum of the 10 values are reported for each model. It is noted minimum

observed mean uncertainty is ∼24%, and that accuracy generally improves as predictor

variables are added to themodel. The sign of SSPB is persistently positive, again signifying

predictions of AGB are generally larger than observed AGB.

respectively. That is, the original model predicts a 16.3%
increase in AGB, whilst the simulated models predicts a
12.4% increase.

4.1.3. Including Tree Height and Wood Density in

Pan-Tropical Allometry
Considering these implications, and given our assertion that
these simulations of inconsistent measurement error were
conservative, we think careful thought is required on how best
to include H and ρb as predictor variables in pan-tropical
allometric models. Across the literature there is a consensus
that their inclusion is worthwhile: multivariate models including
these variables generally exhibit a smaller standard error of the
regression than bivariate D-only counterparts; H and ρb are
therefore correlated with AGB, whilst not perfectly correlated

TABLE 6 | Simulating inconsistent measurement error in predictor variables

between in- and out-of-sample data.

ln(AGB) = β0 + β1 ln(D)+ β2 ln(H
′)+ β3 ln(ρ

′
b)+ ε

ση (H′ = H+ ε, ε ∼N(0, σ 2
η )) (m)

0.00 0.25 0.50 1.00 2.00

σ
η
(ρ

′ b
=

ρ
b
+

ε
,

ε
∼
N
(0
,σ

2 η
))

(k
g
m

−
3
)

0

β̂0 = 0.821

β̂1 = 2.019

β̂2 = 0.888

β̂3 = 0.821

s = 0.353

0.850

2.023

0.881

0.820

0.354

0.941

2.035

0.861

0.818

0.358

1.314

2.085

0.780

0.806

0.372

2.261

2.210

0.582

0.774

0.409

25

β̂0 = 0.979

β̂1 = 2.019

β̂2 = 0.885

β̂3 = 0.798

s = 0.355

1.008

2.023

0.879

0.797

0.356

1.098

2.035

0.859

0.794

0.360

1.469

2.085

0.778

0.783

0.374

2.405

2.209

0.581

0.752

0.410

50

β̂0 = 1.427

β̂1 = 2.019

β̂2 = 0.879

β̂3 = 0.731

s = 0.361

1.454

2.023

0.873

0.730

0.362

1.543

2.035

0.853

0.727

0.365

1.905

2.085

0.772

0.718

0.379

2.816

2.209

0.577

0.689

0.414

75

β̂0 = 2.044

β̂1 = 2.020

β̂2 = 0.871

β̂3 = 0.638

s = 0.368

2.070

2.023

0.865

0.638

0.369

2.155

2.035

0.845

0.636

0.372

2.505

2.084

0.765

0.627

0.386

3.385

2.207

0.572

0.603

0.420

100

β̂0 = 2.708

β̂1 = 2.020

β̂2 = 0.862

β̂3 = 0.539

s = 0.376

2.731

2.024

0.856

0.539

0.377

2.817

2.035

0.837

0.536

0.380

3.157

2.084

0.758

0.529

0.393

4.009

2.206

0.566

0.508

0.426

Here, the multivariate model, AGB = f (D,H, ρb ), is considered, whereby additional

random error has been added to the in-sample calibration data. The additional noise is

included in predictor variables H and ρb, which is drawn from normal distributions with

increasing variance. Per distribution, 10,000 draws were made, and the mean estimate

of the parameters is reported in the table. These parameters represent those required

for unbiased prediction of AGB when out-of-sample data are measured with ση-more

measurement error than the in-sample data.

with D. Given that in tropical forests, H and ρb are often
observed to vary for a fixed value of D, it is therefore the
expectation that their inclusion as predictors will improve tree-
and stand-scale prediction accuracy. Furthermore, it has been
demonstrated that at the landscape- and regional-scales, ρb
varies systematically as a response to multiple environmental
factors (Baker et al., 2004; Phillips et al., 2019). If ρb
were excluded from pan-tropical allometry, these systematic
variations would go undetected in up-scaled predictions of
AGB (Mitchard et al., 2014).

These benefits of including H and ρb were reflected in the
cross-validation results, whereby the AGB = f (D,H) model
yielded 10.0% less uncertain predictions than the bivariate
AGB = f (D) model, and the AGB = f (D,H, ρb) improved on
this by a further 6.4%. However, these results do not account for
systematic error introduced by inconsistent errors-in-variables
(e.g., in the majority of these calibration data, H was measured
post-felling with a tape measure). Therefore, the decision
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FIGURE 6 | Are pan-tropical model parameters independent of tree size? The parameters of the multivariate model, AGB = f (D,H, ρb), when observations below

several D-thresholds are sequentially removed. Bootstrapped BCa 95% confidence intervals (N = 10000 ) are shown for each parameter. It is seen that as smaller

trees are removed, the parameters associated with the predictor variables tend to increase, whilst the intercept tends to decrease. However, it is also seen that

confidence intervals generally overlap one another.

to include these variables as predictors is balanced between
reducing random error by known amount, and introducing an
unknown amount of systematic error whilst inconsistent errors-
in-variables remain unaccounted for.

Given the above discussion makes the case that it would
be unjustifiable to assume in- and out-of-sample measurement
error distributions in H and ρb are consistent, this would imply
unknown bias is always present in AGB predictions from these
conventional multivariate models. We therefore think formal
steps are necessary to account for, and minimize, this bias.
This action can take two forms: first, the in- and out-of-sample
measurementmethods become consistent, such that it is assumed
the respective measurement error distributions are consistent, or
second, inconsistencies are corrected for during modeling.

In the particular case of measuring H, in the above referenced
studies of in situ error distributions, it was noted both the tangent
and sine method were relatively inaccurate. Significantly, it was
also seen that between the two independent studies, the resulting
error distributions for the tangent method were different. This
might suggest these distributions are not consistent across forest
type and/or operator. It would follow then, that the in-sample
measurement of H should be made from the more true and

precise measurements obtained from a tape measure post-
felling. This implies that the in- and out-of-sample measurement
methods will be different, and some form of modeling correction
is required.

To minimize systematic error introduced by the inclusion of
H in pan-tropical models then, we think the following three
steps are necessary: (1) The in-sample data are measured post-
felling via tape measure, where measurement error is quantified
through repeated measurements, ideally by multiple operators. If
calibration data are compiled from multiple individual studies,
then those data whereH has been measured using other methods
must be excluded (e.g., in situ pre-harvest). (2) Out-of-sample H
is measured in situ using the tangent or sine method, whereby
measurement error is concurrently quantified, or estimated via
known distributions. (3) The OLS estimators account for the
inconsistencies between these two error distributions using either
errors-in-variables modeling (Jonsson, 1994), or simulation
approaches similar to those used here.

It would seem that the appropriate approach for including ρb
in pan-tropical models whilst minimizing systematic error is a
more open question. Firstly, the definition of the measurement
of ρb requires standardization. Because these measurements
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are currently not standardized, both across and between in-
and out-of-sample data, robust quantitative descriptions of
measurement errors are unavailable, meaning reliably correcting
for inconsistencies and resulting bias is impossible. One approach
might be to replace all measurements with values from
global databases (Chave et al., 2009), but this requires careful
consideration: (i) the measurement methods used to collect the
underlying data are themselves likely inconsistent and (ii) errors
become autocorrelated.

4.2. Is Pan-Tropical Allometry Independent
of Tree Size?
An interesting question when considering systematic error
in allometric-derived AGB predictions is whether model
parameters are independent of tree size. That is, are the
population parameters necessary for predicting the AGB of a
small tree, the same as those necessary for a large tree? This
question has previously been posed by others including Picard
et al. (2015b), who found, using calibration data from central
Africa, that bivariate power law models did not hold across all
size-classes, and that some size dependency existed.

Within these specific calibration data considered here, Ploton
et al. (2016) noted a break point, whereby models constructed
from calibration data below and above ∼20,000 kg did not share
the same population parameters. This was similarly observed
in Figure 6: when trees belonging to specific D-classes were
sequentially removed, the parameters of the AGB = f (D,H, ρb)
model changed substantially. But are these changes significant,
and if so, is this a detection of size dependency?

As to the first question, it would appear these changes were not
statistically significant because the bootstrapped 95% confidence
intervals for each parameter generally overlapped. Whilst the
confidence intervals are compact for parameters describing the
complete dataset (n = 4004 ), they quickly expand as the smaller
trees are removed. This is inevitable given the non–uniform
distribution of these data, where n = 215 and 90 for observations
with D ≥ 0.75m and 1.0m respectively. So the observed changes
in the population parameters were not significant within these
particular data, but this does not rule out the existence of a size
dependency in the population.

4.2.1. Potentially Biased Measurement of Calibration

Data
Even if confidence intervals were not to overlap, attributing
changes (or indeed the lack of change) to a size dependency
is challenging when the models are potentially misspecified.
A further potential misspecification, aside from inconsistent
measurement error, is that the unconditional mean error in
observation of AGB is possibly non–zero (E(ε) 6= 0).

The metadata review identified that for the measurement of
wet mass (i.e., via weighing), the destructive methods introduce
several sources of loss. For example, most studies did not account
or correct for losses from chainsaw cuts, or water losses accrued
between felling and measurement. Several studies also excluded
stump material from measurement.

As shown in the methods sections, if a bias, c, were consistent
across observations, then only the intercept parameter is biased,
E(β̂0) = β0 + c. However, if bias in the observation of

AGB is correlated with tree size, the effects are more complex,
and contaminate all parameters. It would again not seem
unreasonable to speculate that if bias is present, that this second
form is the more likely.

For example, we recently harvested 4 tropical trees in Brazil;
we measured the wet mass of the stem by cutting it into
manageable sections that were possible to weigh. We also
estimated the losses from these cuts by estimating cut volume.
Across these 4 trees, the wet masses of these four stems were
3,229, 3,636, 5,097, and 16,780 kg. The cumulative volume-
derived wet mass of losses from chainsaw cuts were 28, 41, 58,
and 330 kg, respectively. These losses represent∼0.9, 1.1, 1.1, and
2.0%, respectively. For these particular trees and measurements
methods then, these losses are correlated with tree size.

Returning then to the original question, we are not trying
here to suggest that observations of AGB are necessarily biased;
rather that the possibility exists that AGB are biased, and it is
also possible bias is correlated with tree size. In order to attribute
statistically significant changes in population parameters to a
dependency on tree size, it would need to be demonstrated that
bias in observations of AGB is negligible.

It is also noted that the wet mass for a large section of the
calibration data was not measured, but instead estimated from
volume measurements (indeed the measurement method itself
would appear correlated with tree size: volume-derived estimates
were often used when it was logistically impracticable to weigh).
Expectations of systematic error in these two measurement
methods may therefore be inconsistent. Random error would
likely also share a disparate expectation, which may offer a partial
explanation as to why model residuals were heteroscedastic.

4.2.2. Additional Calibration Data Are Required
Answering the question of whether pan-tropical allometric
models are independent of tree size would be of general scientific
interest, but more specifically, it is critical to understanding
the trueness of AGB predictions. Currently, the above-ground
biomass of large trees is predicted from empirical relationships
discovered from imbalanced calibration data (e.g., in these
considered data the median value of AGB is 98 kg).

In OLS, each observation similarly influences the population
parameter estimates when any leverage effects from outliers
and influential points are ignored. That is, because of this
imbalance, large trees currently have little influence on model
parameters. If the allometric relationship is independent of tree
size (implicitly, this is the assumption of current widely-used
pan-tropical allometric models), then this is of little concern, but
likewise, if the relationship is size dependant, predictions of AGB
for the larger size-classes are biased.

To answer these questions requires the collection of more
calibration data. Specifically, these new data need to be gathered
from larger trees. If these data are to supplement existing data, it
is more beneficial to acquire a small number of observations from
larger trees, than a large number of observations from smaller
trees. Indeed, adding further small trees to these calibration data
will only further reduce the influence of larger trees on the OLS
estimators. Additional data from larger trees will also reduce
the size of confidence intervals in model parameters constructed
solely from the larger trees.
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Of course, in the wider context of considering whether out-of-
sample data are adequately represented by in-sample data, size
is only one contributing factor. Another key consideration is the
geographical representation of the sample, given that allometries
are geographically variable (Henry et al., 2013). These additional
large trees then, would ideally be uniformly collected from across
the tropics (Banin et al., 2012; Gorgens et al., 2019; Shenkin et al.,
2019).

As an aside to the comment that each observation will
similarly influence the OLS estimate of the population
parameters, it would therefore not be sufficient to argue
that a particular allometric model is suitable for predicting the
AGB of a particular type of tree (e.g., a large tree or from specific
geography/species), just because observations from that type are
present in the calibration data, if those data are overwhelmed by
observations from other types.

The form of the OLS model informs where to focus efforts
in quantifying measurement error in these new data. That is,
a random error term is included for observations of AGB, so
the vital characteristic in the measurement of AGB is trueness,
with precision a secondary concern. Whereas for observation of
the predictor variables, no error term is present, meaning both
characteristics of the measurement are of equal importance.

A caveat to this comment on precision in AGB, given the
previous discussion on heteroscedasticity, is that we have not
considered in this paper the implication of a heteroscedastic error
term to predictions of AGB. It was noted in the methods section
that most widely-used pan-tropical models employ a correction
factor that includes σ̂ when re-transforming predictions from
log- to real-space. However, a heteroscedastic error term means
E(σ̂ ) 6= σ , which presumably biases AGB predictions.

4.3. A Note on Causality
Finally, we conclude with a comment on causality. Throughout
the paper we have been careful to distinguish between prediction
and explanation. In the methods sections we acknowledged that
the models constructed here are endogenous: the assumption of
strict exogeneity was violated by omitted variable bias.

In the introduction section it was noted the causes of
above-ground biomass are lifetime cumulative gross primary
production, respiration and loss. Omitting these causal variables
has a fundamental implication: it would be spurious to infer from
these models that D, H and ρb cause AGB. That is, if the D of a
particular tree has changed over time, the AGB = f (D) model
predicts a change in AGB proportional to D2.580, but it does not
explain it.

This distinction means care must be taken with causal

interpretations of allometric-derived AGB predictions. Examples

of spurious causal claims might be inter-plot comparisons, where
the differences in structural composition between two stands [i.e.,∑

(D,H, ρb)A −
∑

(D,H, ρb)B] is proposed as the explanation
for their difference in predicted stand-scale AGB; or intra-plot
change detection studies, where growth/death/recruitment
between surveys [i.e., 1

∑
(D,H, ρb)A] is proposed as the

explanation for change in predicted stand-scale AGB.
Themodels used in this paper then, are only for the purpose of

prediction. For that reason, we are comfortable with the various

multivariate forms considered here that might stand accused of
being a form of data dredging (Sileshi, 2014). Given that these
models have no theoretical grounding, and provided they will
only be used for prediction, we see no obvious reason such
forms, or even more exotic forms, should not be considered,
provided that the precision, trueness and accuracy of their AGB
predictions are well–understood.

In conclusion, we constructed various conventional bivariate
and multivariate models for predicting above-ground biomass
from open access pan-tropical calibration data. We found the
residuals of each model were heteroscedastic and non–normally
distributed. Stratified k-fold cross-validation found theminimum
uncertainty in fold-scale predictions from these models to be
24%, and that predictions were persistently biased upward by 6%
(∼400 observations per fold). These results are likely symptoms
of model misspecification: in particular, that the models do
not account for inconsistent measurement error in predictor
variables between in- and out-of-samplemeasurements. Through
simulation, we showed how even a conservative degree of
inconsistent measurement error can potentially lead to both
absolute and relative bias in tree- and stand-scale AGB
predictions. We presented the case that whilst including H
and ρb as predictor variables in pan-tropical models alongside
D increased prediction precision, their inclusion introduces
a bias of unknown size and direction when inconsistent
measurement error remain unaccounted for. We suggested
several measurement and modeling approaches to formally
compensate for this bias whilst retaining the predictive benefits
of these variables. Finally, we asked the question of whether pan-
tropical allometricmodel parameters are independent of tree size.
Our analysis indicates that potential model misspecifications and
imbalanced calibration data currently prevent finding a definitive
answer. This can only be addressed with additional calibration
data, specifically from larger trees.
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