
This is a repository copy of To Compress, or Not to Compress: Characterizing Deep
Learning Model Compression for Embedded Inference.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/162250/

Version: Accepted Version

Proceedings Paper:
Qin, Q, Ren, J, Yu, J et al. (6 more authors) (2019) To Compress, or Not to Compress:
Characterizing Deep Learning Model Compression for Embedded Inference. In: 2018
IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous
Computing & Communications, Big Data & Cloud Computing, Social Computing &
Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom). 2018 IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Ubiquitous Computing & Communications, Big
Data & Cloud Computing, Social Computing & Networking, Sustainable Computing &
Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), 11-13 Dec 2018,
Melbourne, Australia. IEEE , pp. 729-736. ISBN 978-1-7281-1141-4

https://doi.org/10.1109/bdcloud.2018.00110

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

To Compress, or Not to Compress: Characterizing Deep Learning Model

Compression for Embedded Inference

Qing Qin‡, Jie Ren†, Jialong Yu‡, Ling Gao‡, Hai Wang‡, Jie Zheng‡, Yansong Feng§, Jianbin Fang¶, Zheng Wang∗

‡ Northwest University, China, † Shaanxi Normal University, China, § Peking University, China
¶ National University of Defense Technology, China, ∗ Lancaster University, United Kingdom

Abstract—The recent advances in deep neural networks (DNNs)
make them attractive for embedded systems. However, it can
take a long time for DNNs to make an inference on resource-
constrained computing devices. Model compression techniques
can address the computation issue of deep inference on embedded
devices. This technique is highly attractive, as it does not rely
on specialized hardware, or computation-offloading that is often
infeasible due to privacy concerns or high latency. However,
it remains unclear how model compression techniques perform
across a wide range of DNNs. To design efficient embedded
deep learning solutions, we need to understand their behaviors.
This work develops a quantitative approach to characterize
model compression techniques on a representative embedded
deep learning architecture, the NVIDIA Jetson Tx2. We perform
extensive experiments by considering 11 influential neural net-
work architectures from the image classification and the natural
language processing domains. We experimentally show that
how two mainstream compression techniques, data quantization
and pruning, perform on these network architectures and the
implications of compression techniques to the model storage size,
inference time, energy consumption and performance metrics.
We demonstrate that there are opportunities to achieve fast deep
inference on embedded systems, but one must carefully choose
the compression settings. Our results provide insights on when
and how to apply model compression techniques and guidelines
for designing efficient embedded deep learning systems.

Keywords-Deep learning, embedded systems, parallelism, en-
ergy efficiency, deep inference

I. INTRODUCTION

In recent years, deep learning has emerged as a powerful

tool for solving complex problems that were considered to

be difficult in the past. It has brought a step change in the

machine’s ability to perform tasks like object recognition [8],

[14], facial recognition [20], [25], speech processing [1], and

machine translation [2]. While many of these tasks are also

important on mobiles and the Internet of Things (IoT), existing

solutions are often computation-intensive and require a large

amount of resources for the model to operate. As a result,

performing deep inference1 on embedded devices can lead

to long runtime and the consumption of abundant amounts

of resources, including CPU, memory, and power, even for

simple tasks [3]. Without a solution, the hoped-for advances

on embedded sensing will not arrive.

Numerous approaches have been proposed to accelerate

deep inference on embedded devices. These include designing

purpose-built hardware to reduce the computation or mem-

ory latency [9], compressing a pre-trained model to reduce

its storage and memory footprint as well as computational

requirements [12], and offloading some, or all, computation to

1Inference in this paper refers to apply a pre-trained model on an input to
obtain the corresponding output. This is different from statistical inference.

a cloud server [17], [27]. Compared to specialized hardware,

model compression techniques have the advantage of being

readily deployable on commercial-off-the-self hardware; and

compared to computation offloading, compression enables

local, on-device inference which in turn reduces the response

latency and has fewer privacy concerns. Such advantages

make model compressions attractive on resource-constrained

embedded devices where computation offloading is infeasible.

However, model compression is not a free lunch as it comes

at the cost of loss in prediction accuracy [6]. This means that

one must carefully choose the model compression technique

and its parameters to effectively trade precision for time,

energy, as well as computation and resource requirements.

Furthermore, as we will show in this paper, the reduction in

the model size does not necessarily translate into faster infer-

ence time. Because there is no guarantee for a compression

technique to be profitable, we need to know when and how to

apply a compression technique.

Our work aims to characterize deep learning model com-

pression techniques for embedded inference. Knowing this not

only assists the better deployment of computation-intensive

models, but also informs good design choices for deep learning

models and accelerators.

To that end, we develop a quantitative approach to charac-

terize two mainstream model compression techniques, prun-

ing [6] and data quantization [10]. We apply the techniques to

the image classification and the natural language processing

(NLP) domains, two areas where deep learning has made

great breakthroughs and a rich set of pre-trained models are

available. We evaluate the compression results on the NVIDIA

Jetson TX2 embedded deep learning platform and consider

a wide range of influential deep learning models including

convolutional and recurrent neural networks.

We show that while there is significant gain for choosing

the right compression technique and parameters, mistakes

can seriously hurt the performance. We then quantify how

different model compression techniques and parameters af-

fect the inference time, energy consumption, model storage

requirement and prediction accuracy. As a result, our work

provides insights on when and how to apply deep learning

model compression techniques on embedded devices, as well

as guidelines on designing schemes to adapt deep learning

model optimisations for various application constraints.

The main contributions of this workload characterization

paper are two folds:

• We present the first comprehensive study for deep learn-

ing model compression techniques on embedded systems;

• Our work offers new insights on when and how to apply

compression techniques for embedded deep inference.

ar
X

iv
:1

81
0.

08
89

9v
1

 [
cs

.L
G

]
 2

1
O

ct
 2

01
8

VGG_16 ResNet_50
0

100

200

300

400

500

600
 Before compression
 After pruning
 After quantization

S
to

ra
ge

 s
iz

e
(M

B
)

(a) Model size

VGG_16 ResNet_50
0

30

60

90

120

150
 Before compression
 After pruning
 After quantization

In
fe

re
nc

e
tim

e
(m

s)

(b) Inference time

VGG_16 ResNet_50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
 Before compression
 After pruning
 After quantization

E
ne

rg
y

co
ns

um
pt

io
n(

J)

(c) Energy consunption

VGG_16 ResNet_50
0

10
20
30
40
50
60
70
80
90

100
 Before compression
 After pruning
 After quantization

A
cc

ur
ac

y
(%

)

(d) Accuracy

Figure 1: The achieved model size (a) inference time (b) energy consumption (c) and accuracy (d) before and after the

compression by quantization and pruning. The compression technique to use depends on the optimization target.

II. BACKGROUND AND MOTIVATION

A. Background

In this work, we consider two commonly used model

compression techniques, described as follows.

Pruning. This technique removes less important parameters

and pathways from a trained network. Pruning ranks the

neurons in the network according how much the neuron

contribute, it then removes the low ranking neurons to reduce

the model size. Care must be taken to not remove too many

neurons to significantly damage the accuracy of the network.

Data quantization. This technique reduces the number of bits

used to store the weights of a network, e.g., using 8 bits to

represent a 32-bit floating point number. In this work, we apply

data quantization to convert a pre-trained floating point model

into a fixed point model without re-training. We use 6, 8 and

16 bits to represent a 32-bit number, as these are the most

common fixed-pointed data quantization configurations [11].

B. Motivation

Choosing the right compression technique is non-trivial.

As a motivation example, consider applying pruning and

data quantization, to two representative convolutional neural

networks (CNN), VGG_16 and Resnet_50, for image clas-

sification. Our evaluation platform is a NVIDIA Jetson TX2

embedded platform (see Section III-A).

Setup. We apply each of the compression techniques to the

pre-trained model (which has been trained on the ImageNet

ILSVRC 2012 training dataset [16]). We then test the original

and the compressed models on ILVRSC 2012 validation set

which contains 50k images. We use the GPU for inferencing.

Motivation Results. Figure 1 compares the model size, in-

ference time, energy consumption and accuracy after applying

compression. By removing some of the nerons of the network,

pruning is able to reduces the inference time and energy

consumption by 28% and 22.5%, respectively. However, it

offers little saving in storage size because network weights still

dominate the model size. By contrast, by using a few number

of bits to represent the weights, quantization significantly

reduces the model storage size by 75%. However, the reduction

in the model size does not translate to faster inference time

and fewer energy consumption; on the contrary, the inference

time and energy increase by 1.41x and 1.19x respectively.

This is because the sparsity in network weights brought by

Table I: List of deep learning models considered in this work.

Model Type Top-1

(%)

Top-5

(%)

#param.s Depth

NMT RNN 27.4

(BLEU)

- 211M 4

Inception v1 CNN 69.8 89.6 7M 22

Inception v2 CNN 73.9 91.4 11.3M 32

Inception v3 CNN 78 94 27.1M 42

Inception v4 CNN 80.2 95.2 25.6M 58

ResNet 50 CNN 75.2 90.2 25.5M 50

ResNet 101 CNN 76.4 92.9 51M 101

ResNet 152 CNN 76.8 93.2 76.5M 152

VGG 16 CNN, fully conn. 71.5 89.8 138M 16

VGG 19 CNN, fully conn. 71.1 89.8 138M 19

MobileNet CNN 70.7 89.56 4.2M 28

quantization leads to irregular computation which causes poor

GPU performance [4] and the cost of de-quantization (details

in Section IV-E) . Applying both compression techniques has

modest impact on the prediction accuracy, on average, less

than 5%. This suggests that both techniques can be profitable.

Lessons Learned. This example shows that the compression

technique to use depends on what to be optimized for. If

storage space is a limiting factor, quantization provides more

gains over pruning, but a more powerful processor unit is re-

quired to achieve quick on-device inference. If faster on-device

turnaround time is a priority, pruning can be employed but it

would require sufficient memory resources to store the model

parameters. As a result, the profitability of the compression

technique depends on the optimization constraints. This work

provides an extensive study to characterize the benefits and

cost of the two model compression techniques.

III. EXPERIMENTAL SETUP

A. Platform and Models

Hardware. Our experimental platform is the NVIDIA Jetson

TX2 embedded platform. The system has a 64 bit dual-core

Denver2 and a 64 bit quad-core ARM Cortex-A57 running

at 2.0 Ghz, and a 256-core NVIDIA Pascal GPU running at

1.3 Ghz. The board has 8 GB of LPDDR4 RAM and 96 GB

of storage (32 GB eMMC plus 64 GB SD card).

System Software. We run the Ubuntu 16.04 operating system

with Linux kernel v4.4.15. We use Tensorflow v.1.6, cuDNN

(v6.0) and CUDA (v8.0.64).

Deep Learning Models. We consider 10 pre-trained CNN

models for image recognition from the TensorFlow-Slim li-

brary [23] and a recurrent neural network (RNN) model for

machine translation. Table I lists the models considered in

this work. The chosen models have different parameter sizes

and network depths, and thus cover a wide range of CNN and

RNN model architectures. We apply data quantization to CNN

models because the current Tensorflow implementation does

not support quantization of RNNs. As pruning requires model

updates through retraining, we consider three typical models

for pruning to keep the experiment manageable.

B. Evaluation Methodology

Performance Metrics We consider the following metrics:

• Inference time (lower is better). Wall clock time between

a model taking in an input and producing an output,

excluding the model load time.

• Power/Energy consumption (lower is better). The energy

used by a model for inference. We deduct the static power

used by the hardware when the system is idle.

• Accuracy (higher is better). The ratio of correctly labeled

images to the total number of testing instances.

• Precision (higher is better). The ratio of a correctly

predicted instances to the total number of instances that

are predicted to have a specific label. This metric answers

e.g., “Of all the images that are labeled to have a cat,

how many actually have a cat?”.

• Recall (higher is better). The ratio of correctly predicted

instances to the total number of test instances that belong

to an object class. This metric answers e.g., “Of all

the test images that have a cat, how many are actually

labeled to have a cat?”.

• F1 score (higher is better). The weighted average of

Precision and Recall, calculated as 2×Recall×Precision

Recall+Precision
. It

is useful when the test dataset has an uneven distribution

of classes.

• BLEU (higher is better). The bilingual evaluation under-

study (BLEU) evaluates the quality of machine transla-

tion. The quality is considered to be the correspondence

between a machine’s output and that of a human: “the

closer a machine translation is to a professional human

translation, the better it is”. We report the BLUE value

on NMT, a machine translation model.

Performance Report. For image recognition, the accuracy of

a model is evaluated using the top-1 score by default; and we

also consider the top-5 score. We use the definitions given

by the ImageNet Challenge. Specifically, for the top-1 score,

we check if the top output label matches the ground truth

label of the primary object; and for the top-5 score, we check

if the ground truth label of the primary object is in the top

5 of the output labels for each given model. For NLP, we

use the aforementioned BLEU metric. Furthermore, to collect

inference time and energy consumption, we run each model

on each input repeatedly until the 95% confidence bound per

model per input is smaller than 5%. In the experiments, we

exclude the loading time of the CNN models as they only need

to be loaded once in practice. To measure energy consumption,

we developed a runtime to take readings from the on-board

power sensors at a frequency of 1,000 samples per second.

We matched the power readings against the time stamps of

model execution to calculate the energy consumption, while

the power consumption is the mean of all the power readings.

IV. EXPERIMENTAL RESULTS

A. Roadmap

In this section, we first quantify the computational charac-

teristics of deep learning models. Next, we investigate how

quantization and pruning affect the model storage size and

memory footprint. We then look at whether the reduction in

the model size can translate into faster inference time and

lower power usage and energy consumption, as well as the

implications of compression settings to the precision metrics.

Finally, we evaluate whether it is beneficial for combining both

compress techniques.

B. Model Computational Characteristics

The first task of our experiments is to understand the

computational characteristics for the deep learning models

considered in this work. Figure 2 quantifies how different

type of neural network operations contribute to the inference

time across models. The numbers are averaged across the test

samples for each model – 50K for image classifiers and 10K

for NMT. To aid clarity, we group the operations into seven

classes, listed from A to G in the table on the right-hand side.

Note that we only list operations that contribute to at least 1%

of execution time.

Each cell of the heatmap represents the percentage that a

specific type of operation contributes to the model inference

time. As can be seen from the figure, a handful of operations

are collectively responsible for over 90% of the model execu-

tion time. However, the types of operations that dominate the

inference time vary across networks. Unsurprisingly, CNNs

are indeed dominated by convolution, while fully-connected

networks and RNNs depend heavily on matrix multiplications.

C. Impact on the Model Storage Size

Reducing the model storage size is crucial for storage-

constrained devices. A smaller model size also translates to

smaller runtime memory footprint of less RAM space usage.

Figures 3, 4 and 5 illustrate how the different compression

techniques and parameters affect the resulting model size.

As can be seen from Figure 3a, data quantization can sig-

nificantly reduce the model storage size, leading to an average

reduction of 50.2% when using a 16-bit representation and up

to 80.7% when using a 6-bit representation. The reduction in

the storage size is consistent across neural networks as the size

of a network is dominated by its weights.

From Figure 4a, we see that by removing some of the

neurons of a network, pruning can also reduce the model size,

although the gain is smaller than quantization if we want to

keep the accuracy degradation within 5%. On average, pruning

reduces the model size by 27.2% (49.26 MB). An interesting

C
on

v2
D

D
.C

.2
dN

at
iv

e

Av
gP

oo
l

M
ax

po
l

M
at

M
ul

M
ul

Ad
d

Su
b

Su
m

Ti
le

Tr
an

sp
os

e

Q
.D

.M
an

yV
2

co
nc

at
vV

2

R
el

u

R
sq

rt

Id
en

tit
y

Va
ria

bl
eV

2

Mobilenet_v1
Inception_v1
Inception_v2
Inception_v3
Inception_v4

ResNet_50
ResNet_101
ResNet_152

VGG_16
VGG_19

NMT

33 20 0 0 0 16 12 2 0 0 0 7 0 6 1 0 2
53 0 0 14 0 9 8 3 0 0 0 6 0 5 0 0 1
41 19 18 5 0 5 4 0 0 0 0 3 0 3 0 0 2
60 0 21 2 0 5 4 0 0 0 0 2 1 3 0 0 1
59 0 15 0 0 7 9 0 0 0 0 1 0 4 0 0 0
61 0 0 4 0 12 11 1 0 0 0 3 0 4 1 0 2
65 0 0 3 0 12 10 0 0 0 1 2 0 4 1 0 2
60 0 0 2 0 13 14 1 0 0 0 1 0 6 1 0 1
72 0 0 2 0 0 5 0 0 0 0 18 0 3 0 0 0
79 0 0 2 0 0 4 0 0 0 0 12 0 3 0 0 0
0 0 0 0 32 35 3 0 2 20 3 0 0 2 0 0 0 0

20

40

60

80

100

Pe
rc

en
ta

ge
 %

A B C D E F G

Group OP Class

A Convolution

B
Matrix

Operations

C
Elementwise

Arithmetic

D
Reduction and

Expansion

E
Data

Movement

F
Vector

Operations

G Others

Figure 2: Breakdown of execution time per operation type per deep learning model. Only operations that contribute to a least

1% of the inference time are shown.

MobileNet_V1

Inception_V1

Inception_V2

Inception_V3

Inception_V4

ResNet_50

ResNet_101

ResNet_152

VGG_16

VGG_19

Average
0

20

40

60

80

100 80.7%
74.6%

50.2%

R
ed

uc
tio

n
in

 s
to

ra
ge

 (
%

)

 16-bit 8-bit 6-bit

(a) Model size

MobileNet_V1

Inception_V1

Inception_V2

Inception_V3

Inception_V4

ResNet_50

ResNet_101

ResNet_152

VGG_16

VGG_19

Average
0

20

40

60

80

100

120

In
cr

ea
se

d
in

fe
r.

 ti
m

e
(%

)

 16-bit 8-bit 6-bit

51.3%
55.4%

58.5%

(b) Inference time

MobileNet_V1

Inception_V1

Inception_V2

Inception_V3

Inception_V4

ResNet_50

ResNet_101

ResNet_152

VGG_16

VGG_19

Average
0

3

6

9

12

15

R
ed

uc
tio

n
in

 a
cc

ur
ac

y
(%

)

 16-bit 8-bit 6-bit

10.01%

3.
57

%
1.

36
%

(c) Accuracy

MobileNet_V1

Inception_V1

Inception_V2

Inception_V3

Inception_V4

ResNet_50

ResNet_101

ResNet_152

VGG_16

VGG_19

Average
0
2
4
6
8

10
12
14
16
18

R
ed

uc
tio

n
in

 p
ow

er
 (

%
) 16-bit 8-bit 6-bit

11.6%

10.4%

4.3%

(d) Power

MobileNet_V1

Inception_V1

Inception_V2

Inception_V3

Inception_V4

ResNet_50

ResNet_101

ResNet_152

VGG_16

VGG_19

Average
0

20

40

60

80

100

M
or

e
en

er
gy

 u
se

d
(%

) 16-bit 8-bit 6-bit

34
.1%38

.6%54
.8%

(e) Energy consumption

6-bit 8-bit 16-bit
0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 Before compression: precision After pruning: precision
 Before compression: recall After pruning: recall
 Before compression: F1-Score After pruning: F1-Score

(f) Precision, recall and F1-score

Figure 3: The achieved model size (a) inference time (b) accuracy (c) power consumption (d) energy consumption (e) and

precision, recall and F1-score (e) before and after the compression by quantization.

VGG_16 Resnet50 NMT Average
0

20

40

60

80

R
ed

uc
tio

n
in

 s
to

ra
ge

 (
%

)

27.2%

(a) Model size

VGG_16 Resnet50 NMT Average
0

10

20

30

40

50

R
ed

uc
. i

n
in

fe
r.

 ti
m

e
(%

)

31%

(b) Inference time

Vgg_16 Resnet_50 Average
0
1
2
3
4
5
6
7
8

R
ed

uc
tio

n
in

 B
LE

U
 (

%
)

R
ed

uc
tio

n
in

 a
cc

ur
ac

y
(%

)

 Top-1 Top-5
5.7%

1.7%

NMT
0
1
2
3
4
5
6
7
8

(c) Accuracy

VGG_16 Resnet50 NMT Average
0

4

8

12

16

20

R
ed

uc
tio

n
in

 p
ow

er
 (

%
)

9.16%

(d) Power consumption

VGG_16 Resnet50 NMT Average
0

20

40

60

36.1%

R
ed

uc
tio

n
in

 e
ne

rg
y(

%
)

(e) Energy consumption

Precision Recall F1-score
0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 Before compression
 After pruning

(f) precision, recall and F1 score

Figure 4: The change of the model size (a), inference time (b), accuracy/BLEU (c), power (d), energy consumption (e), and

accuracy (f) before and after applying pruning.

5% 10% 15% 20% 25%
0

20

40

60

80

R
ed

uc
tio

n
fo

r
di

ffe
re

nt

pr
un

in
g

th
re

sh
ol

d
(%

) Time
 Accuracy
 Power
 Energy

(a) VGG 16

5% 10% 15% 20% 25%
0

10

20

30

40

R
ed

uc
tio

n
fo

r
di

ffe
re

nt

pr
un

in
g

th
re

sh
ol

d
(%

) Time
 Accuracy
 Power
 Energy

(b) ResNet 50

15% 30% 45% 60% 75%
0

10

20

30

40

50

60

R
ed

uc
tio

n
fo

r
di

ffe
re

nt

pr
un

in
g

th
re

sh
ol

d
(%

) Time
 BLEU
 Power
 Energy

(c) NMT

Figure 5: The resulting inference time, accuracy, and power and energy consumption for VGG 16 (a), ResNet 50 (b) and NMT

(c) when using different pruning thresholds. The x-axis shows the percentage of pruning in model size.

MobileNet_V1

Inception_V1

Inception_V2

Inception_V3

Inception_V4

ResNet_50

ResNet_101

ResNet_152

VGG_16

VGG_19

Average
0

10

20

30

40

50

22.3%
20.2%
9.3%

 16-bit 8-bit 6-bit

R

ed
uc

tio
n

in

m
em

or
y

fo
ot

fr
in

t (
%

)

(a) quantization

VGG_16 Resnet50 NMT Average
0

5

10

15

20

25

30

16.8%
17.9%

 Before compression
 After pruning

M
em

or
y

fo
ot

pr
in

t (
%

)

(b) pruning

Figure 6: Memory footprint before and after applying quanti-

zation (a) and pruning (b).

observation is that, pruning is particularly effective for obtain-

ing a compact model for NMT, an RNN, with a reduction of

60% on the model storage size. This is because there are many

repetitive neurons (or cells) in an RNN due to the natural of the

network architecture. As we will discuss later, pruning only

causes a minor degradation in the prediction accuracy for NMT.

This suggests that pruning can be an effective compression

technique for RNNs.

In Figure 5, we compare the resulting performance after

using different pruning thresholds from 5% to 75% on two

CNN and a RNN models. Increasing the pruning percentage of

model size provides more opportunities for pruning to remove

more neurons to improve the inference time and other metrics.

The improvement reaches a plateau at 15% of reduction for

CNNs, but for NMT, a RNN, the reduction of inference time

increases as we remove more neurons. This diagram reinforces

our findings that pruning is more effective on RNNs than

CNNs. For the rest discussions of this paper, we use a 5%

pruning threshold.

D. Memory Footprint

Figure 6 compares the runtime memory footprint consumed

by a compressed model. Quantization reduces the model

memory footprint by 17.2% on average. For example, an 8-bit

representation gives a memory footprint saving from 20.02%

to 15.97% across networks, with an averaged reduction of

20.2% (up to 40%). In general, the smaller the model is, the

less memory footprint it will consume. As an example, a 6-bit

representation uses 2.6% and 13.6% less memory compared

to an 8-bit and a 16-bit counterparts, respectively.

Figure 6 suggests that pruning offers little help in reducing

the model memory footprint. On average, it gives a 6.1%

reduction of runtime memory footprint. This is because that

the network weights still domain the memory resource con-

sumption, and pruning is less effective compared to data

quantization for reducing the overhead of network weights.

E. Impact on Inference Time

Figure 3b compares the inference time when using different

bit widths to represent a 32-bit floating number for neural

network weights. Intuitively, a smaller model should run faster.

However, data quantization does not shorten the inference

time but prolongs it. The reasons are described as follows.

Data quantization can speedup the computation (i.e., matrix

multiplications) performed on some of the input data by

avoiding expensive floating point arithmetics and enabling

SIMD vectorization by using a compact data representation.

However, we found that the overhead of the de-quantization

process during inference can outweigh its benefit. Besides

the general inference operation, a data quantization and de-

quantization function has to be added into the compressed

model. Inference performed on a quantized model accounts

for 59.9% of its running time. The de-quantization functions

converts input values back to a 32-bit representation on some

of the layers (primarily the output layer) in order to recover

the loss in precision. As can be seen from Figure 7, this

process could be expensive, contributing to 30% to 50% of

the inference time.

Using fewer bits for representation can reduce the overhead

of de-quantization. For example, using a 6-bit representation

is 1.05x and 1.03x faster than using a 16-bit and a 8-bit

representations, respectively. However, as we will demonstrate

later when discussing Figure 3c, using fewer bits has the

drawback of causing larger degradation in the prediction

accuracy. Hence, one must carefully find a balance between

the storage size, inference time, and prediction accuracy when

applying data quantification.

We also find that the percentage of increased inference

time depends on the neural network structure. Applying data

quantization to Inception, the most complex network in our

CNN tested set, will double the inference time. By contrast,

data quantization only leads to a 20% increase in inference

time for Mobilenet, a compact model. This observation

suggests that data quantization may be beneficial for simple

neural networks on resource-constrained devices.

In contrast to quantization, Figure 4b shows that pruning

leads to faster inference time across evaluated networks,

because there is no extra overhead added to a pruned network.

We see that the inference time of VGG_16 and NMT can benefit

from this technique, with an reduction of 38%. Overall, the

average inference time is reduced by 31%. This suggests that

while pruning is less effective in reducing the model size (see

Section IV-C), it is useful in achieving a faster inference time.

F. Impact on the Power and Energy Consumption

Power and energy consumption are two limiting factors

on battery-powered devices. As we can see from Figure 3d,

quantization decreases the peak power usage for inferencing

with an average value of 4.3%, 10.4% and 11.6%, respectively

when using a 6-bit, an 8-bit and a 16-bit representations. While

quantization reduces the peak power the device draws, the

increased inference time leads to more energy consumption

(which is a product of inference time × instantaneous power)

by at least 34.1% and up to 54.8% (see Figure 3e). This means

that although quantization allows one to reduces supplied

power and voltage, it can lead to a short battery life.

Figure 4e quantifies the reduced energy consumption by

applying pruning. Note that it saves over 40%, 15% and

50% energy consumption for VGG_16, ResNet_50 and NMT

respectively. Despite that achieving only minor decreases in

the peak power usage compared to quantization (9.16% vs

34.1% to 51.1%), the faster inference time of pruning allows it

to reduce the energy consumption. The results indicate pruning

is useful for reducing the overall energy consumption of the

system, but quantization can be employed to support a low

power system.

G. Impact on The Prediction Accuracy

Accuracy is obviously important for any predictive model

because a small and faster model is not useful if it gives wrong

predictions all the time.

Results in Figure 3c compare how the prediction accuracy is

affected by model compression. We see that the sweat spot of

quantization depends on the neural network structure. An 16-

bit representation keeps the most information of the original

model and thus leads to little reduction in the prediction

accuracy, on average 1.36%. Using an 8-bit representation

would lead on average 3.57% decrease in the accuracy, while

using a 6-bit representation will lead to a significantly larger

reduction of 10% in accuracy. We also observe that some

networks are more robust to quantization. For example, while

a 6-bit representation leads to less than 10% decrease in

accuracy for ResNet_101, it cause a 12% drop in accuracy

for ResNet_50. This is because a more complex network

(i.e., ResNet_101 in this case) is more resilient to the weight

errors compared to a network (i.e., ResNet_50 in this case)

with a smaller number of layers and neurons. Our findings

suggest the need for having an adaptive scheme to choose the

optimal data quantization parameter for given constraints.

For pruning, Figure 4c compares the reduction in the top-

1 and the top-5 scores for VGG_16 and ResNet_50. We

also show the BLEU value for NMT. Overall, pruning reduces

Con
v2

D
Relu M

ul

Avg
Poo

l
Add

Req
ua

nt
ize

Qua
nt

ize
V2

Deq
ua

nt
ize

Req
ua

nt
iza

tio
nR

an
ge

M
EM

CPYDto
H

M
EM

CPYHto
D

M
in

M
ax

inf
er

en
ce

 o
pe

ra
tio

n

qu
an

tiz
at

ion
 o

pe
ra

tio
n

0
10
20
30
40
50
60
70

inference operation
quantization operation

40.1%

59.9%

%
of

ex
ec

ut
io

n
tim

e

Figure 7: Breakdown of the averaged execution time per

operation type, averaging across the quantized models.

the accuracy of the two CNN models with by 5.7% and 1.7%

respectively for the top-1 and the top-5 scores. It has little

negative impact on NMT where we only observe an averaged

loss of 2.1% for BLEU. When taking into consideration that

pruning can significantly reduce the model size for NMT

(Section IV-C), our results suggest that pruning is particularly

effective for RNNs.

H. Precision, Recall and F1-Score

Figures 3f and 4f show other three performance metrics of a

classification model after applying quantization and pruning.

We can see that, the decrease in performance after compression

is less than 3% for precision, recall and the F1-score. For

quantization, the 16-bit representation outperforms the other

two bits width representations. Specifically, a 16-bit represen-

tation gives the highest overall precision, which in turns leads

to the best F1-score. High precision can reduce false positive,

which is important for certain domains like video surveillance

because it can reduce the human involvement for inspecting

false positive predictions.

I. Impact of Model Parameter Sizes

The bubble charts in Figures 8 and 9 quantify the impact by

applying quantization and pruning to the deep learning models

of different sizes. Here, each bubble corresponds to a model.

The size of the bubble is proportional to the number of network

parameters (see Table I). As can be seen from the diagrams,

there is a non-trivial correlation between the original model

size, compression techniques, and the optimization constraints.

This diagram suggests that there is a need for adaptive schemes

like parameter search to effectively explore the design space

of multiple optimization objectives.

J. Combining Pruning and Quantization

So far we have evaluated pruning and quantization in

isolation. An natural question to ask is: “Is it worthwhile to

combine both techniques?”. Figure 10 shows the results by

first applying a 8-bit data quantization and then pruning to

VGG_16 and ResNet50.

As can be seen from Figure 10a, combining both compres-

sion techniques can significantly reduce the model storage size

– the resulting models are 76% smaller than the original ones;

and there is little degradation in the top-1 prediction accuracy

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300

Lo
ss

 i
n

 a
cc

u
ra

cy
 (

%
)

Inference time (ms)

MobileNet

Inception_V1

Inception_V2

ResNet_50

ResNet_101

Inception_V3

VGG_16

VGG_19

ResNet_152

Inception_V4

(a) Inference time vs accuracy

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3

Lo
ss

 i
n

 a
cc

u
ra

cy
 (

%
)

Energy (J)

MobileNet

Inception_V1

Inception_V2

ResNet_50

ResNet_101

Inception_V3

VGG_16

ResNet_152

VGG_19

Inception_V4

(b) Energy vs accuracy

2

2.5

3

3.5

4

4.5

5

0 50 100 150

Lo
ss

 i
n

 a
cc

u
ra

cy
 (

%
)

Storage size (ms)

MobileNet

Inception_V1

Inception_V2

ResNet_101

Inception_V3

ResNet_50

VGG_16

ResNet_152

VGG_19

Inception_V4

(c) Compressed model size vs accuracy

Figure 8: The quantization effects on different sized models. The larger a bubble is, the more parameters the corresponding

model has (see Table I).

0

2

4

6

8

0 50 100 150 200 250

Lo
ss

 i
n

 a
cc

u
ra

cy
 (

%
)

Inference time (ms)

VGG_16 ResNet_50 NMT

(a) Inference time vs accuracy

0

2

4

6

8

0 0.5 1 1.5 2 2.5 3Lo
ss

 i
n

 a
cc

u
ra

cy
 (

%
)

Energy (J)

VGG_16 ResNet_50 NMT

(b) Energy vs accuracy

0

2

4

6

8

0 100 200 300 400 500 600

Lo
ss

 i
n

 a
cc

u
ra

cy
 (

%
)

Model size (MB)

VGG_16 ResNet_50 NMT

(c) Compressed model size vs accuracy

Figure 9: The pruning effects on different sized models. The larger a bubble is, the more parameters the corresponding model

has (see Table I).

VGG_16 Resnet50
0

200

400

600
 Before compression
 After pruning+quantization

S
to

ra
ge

 s
iz

e
(M

B
)

(a) Model size

VGG_16 Resnet50
0

20

40

60

80

100 Before compression
 After pruning+quantization

In
fe

re
nc

e
tim

e
(m

s)

(b) Inference time

VGG_16 Resnet50
0.0

0.5

1.0

1.5
 Before compression
 After pruning+quantization

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

(c) Energy consumption

VGG_16 Resnet50
0

20

40

60

80

100
 Before compression
 After pruning+quantization

A
cc

ua
ry

(%
)

(d) Accuracy

Figure 10: The model size (a) inference time (b) energy consumption (c) and accuracy (d) before and after model compression.

(Figure 10d) – less than 7%. From Figure 10b, we see that

the combination has positive impact on the inference time for

VGG_16 as the runtime overhead of data quantization (see

Section IV-E) can be amortized by pruning. The combination,

however, leads to longer inference time for ResNet50 due to

the expensive de-quantization overhead as we have explained.

Because of the difference in inference time, there is less

benefit in energy consumpation for ResNet50 over VGG_16

(Figure 10c). This experiment shows that combining pruning

and quantization can be beneficial, but it depends on the neural

network architecture and what to optimize for.

V. DISCUSSIONS

Our evaluation reveals that data quantization is particularly

effective in reducing the model storage size and runtime

memory footprint. As such, it is attractive for devices with

limited memory resources, particularly for small-formed IoT

devices. However, quantization leads to longer inference time

due to the overhead of the de-quantization process. Therefore,

future research is needed to look at reducing the overhead

of de-quantization. We also observe that an 8-bit integer

quantization seems to be a good trade-off between the model

storage size and the precision. This strategy also enables

SIMD vectorization on CPUs and GPUs as multiple 8-bit

scalar values can be packed into one vector register. Using

less than 8 bits is less beneficial on traditional CPUs and

GPUs, but could be useful on FGPAs or specialized hardware

with purpose-built registers and memory load/store units. We

believe studying when and how to apply data quantization to

a specific domain or a neural network architecture would be

an interesting research direction.

We empirically show that pruning allows us to precisely

control in the prediction precision. This is useful for applica-

tions like security and surveillance where we need a degree

of confidences on the predictive outcome. Compared to data

quantization, pruning is less effective in reducing the model

storage size, and thus may require larger storage and memory

space. We also find that pruning is particularly effective for

RNNs, perhaps due to the recurrent structures of an RNN.

This finding suggests pruning can be an important method

for accelerating RNN on embedded systems.

Combining data quantization and pruning is an interesting

approach, as it can bring together the best part of both tech-

niques (see Section IV-J). However, one must make sure the

overhead of data quantization does not eclipse the reduction in

inference time by applying pruning. One interesting research

question could be: “Can we find other data representations

to better quantize a model?”. For examples, instead of using

just integers, one can use a mixture of floating point numbers

and integers with different bit widths by giving wider widths

for more important weights. Furthermore, given that it is non-

trivial to choose the right compression settings, it will be very

useful to have a tool to automatically search over the Pareto

design space to find a good configuration to meet the conflict

requirements of the model size, inference time and prediction

accuracy. As a final remark of our discussion, we hope our

work can encourage a new line of research on auto-tuning of

deep learning model compression.

VI. RELATED WORK

There has been a significant amount of work on reducing

the storage and computation work by model compression.

These techniques include pruning [19], quantization [10], [13],

knowledge distillation [15], [21], huffman coding [13], low

rank and sparse decomposition [7], decomposition [18], etc.

This paper develops a quantitative approach to understand the

cost and benefits of deep learning compression techniques. We

target pruning and data quantization because these are widely

used and directly applicable to a pre-trained model.

In addition to model compression, other works exploit

computation-offloading [27], [17], specialized hardware de-

sign [5], [12], and dynamic model selection [26]. Our work

aims to understand how to accelerate deep learning inference

by choosing the right model compression technique. Thus,

these approaches are orthogonal to our work.

Off-loading computation to the cloud can accelerate DNN

model inference [27]. Neurosurgeon [17] identifies when it

is beneficial (e.g. in terms of energy consumption and end-

to-end latency) to offload a DNN layer to be computed on the

cloud. The Pervasive CNN [24] generates multiple computation

kernels for each layer of a CNN, which are then dynamically

selected according to the inputs and user constraints. A similar

approach presented in [22] trains a model twice, once on

shared data and again on personal data, in an attempt to prevent

personal data being sent outside the personal domain. Com-

putation off-loading is not always applicable due to privacy,

latency or connectivity issues. Our work is complementary to

previous work on computation off-loading by offering insights

to best optimize local inference.

VII. CONCLUSIONS

This paper has presented a comprehensive study to char-

acterize the effectiveness of model compression techniques

on embedded systems. We consider two mainstream model

compression techniques and apply them to a wide range of

representative deep neural network architectures. We show that

there is no “one-size-fits-all” universal compression setting,

and the right decision depends on the target neural network

architecture and the optimization constraints. We reveal the

cause of the performance disparity and demonstrate that a

carefully chosen parameter setting can lead to efficient em-

bedded deep inference. We provide new insights and concrete

guidelines, and define possible avenues of research to enable

efficient embedded inference.

ACKNOWLEDGMENTS

This work was supported in part by the NSF China under

grant agreements 61872294 and 61602501; the Fundamental

Research Funds for the Central Universities under grant agree-

ment GK201803063; the UK EPSRC through grant agree-

ments EP/M01567X/1 (SANDeRs) and EP/M015793/1 (DIV-

IDEND); and the Royal Society International Collaboration

Grant (IE161012). For any correspondence, please contact Jie

Ren (renjie@snnu.edu.cn), Jianbin Fang (j.fang@nudt.edu.cn)

and Zheng Wang (z.wang@lancaster.ac.uk).

REFERENCES

[1] Dario Amodei et al. Deep speech 2: End-to-end speech recognition in
english and mandarin. In ICML ’16.

[2] Dzmitry Bahdanau et al. Neural machine translation by jointly learning
to align and translate. arXiv, 2014.

[3] Alfredo Canziani et al. An analysis of deep neural network models for
practical applications. CoRR, 2016.

[4] Xuhao Chen. Escort: Efficient sparse convolutional neural networks on
gpus. CoRR, 2018.

[5] Yu-Hsin Chen et al. Eyeriss: An energy-efficient reconfigurable acceler-
ator for deep convolutional neural networks. IEEE Journal of Solid-State

Circuits, 2017.
[6] Yu Cheng et al. A survey of model compression and acceleration for

deep neural networks. arXiv, 2017.
[7] Emily L Denton et al. Exploiting linear structure within convolutional

networks for efficient evaluation. In NIPS ’14.
[8] Jeff Donahue et al. Decaf: A deep convolutional activation feature for

generic visual recognition. In ICML ’14.
[9] Petko Georgiev et al. Low-resource multi-task audio sensing for mobile

and embedded devices via shared deep neural network representations.
ACM IMWUT, 2017.

[10] Yunchao Gong et al. Compressing deep convolutional networks using
vector quantization. Computer Science, 2014.

[11] Young H. Oh et al. A portable, automatic data quantizer for deep neural
networks. In PACT, 2018.

[12] Song Han et al. Eie: Efficient inference engine on compressed deep
neural network. In ISCA ’16.

[13] Song Han et al. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv, 2015.

[14] Kaiming He et al. Deep residual learning for image recognition. In
CVPR ’16.

[15] Geoffrey Hinton et al. Distilling the knowledge in a neural network.
arXiv, 2015.

[16] ImageNet. Large Scale Visual Recognition Challenge 2012. http://www.
image-net.org/challenges/LSVRC/2012/, 2012.

[17] Yiping Kang et al. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. In ASPLOS ’17.

[18] Vadim Lebedev et al. Speeding-up convolutional neural networks using
fine-tuned cp-decomposition. arXiv, 2014.

[19] Hao Li et al. Pruning filters for efficient convnets. In ICLR ’17.
[20] Omkar M Parkhi et al. Deep face recognition. In BMVC ’15.
[21] Bharat Bhusan Sau and Vineeth N. Balasubramanian. Deep model

compression: Distilling knowledge from noisy teachers. arxiv, 2016.
[22] Sandra Servia-Rodriguez et al. Personal model training under privacy

constraints. In ACM IoTDI ’18.
[23] Nathan Silberman and Sergio Guadarrama.

Tensorflow-slim image classification library.
https://github.com/tensorflow/models/tree/master/research/slim, 2013.

[24] Mingcong Song et al. Towards pervasive and user satisfactory cnn across
gpu microarchitectures. In HPCA ’17.

[25] Yi Sun, Yuheng Chen, et al. Deep learning face representation by joint
identification-verification. In NIPS ’14.

[26] Ben Taylor et al. Adaptive deep learning model selection on embedded
systems. In LCTES ’18.

[27] Surat Teerapittayanon et al. Distributed deep neural networks over the
cloud, the edge and end devices. In ICDCS ’17.

http://www.image-net.org/challenges/LSVRC/2012/
http://www.image-net.org/challenges/LSVRC/2012/

	I Introduction
	II Background and Motivation
	II-A Background
	II-B Motivation

	III Experimental Setup
	III-A Platform and Models
	III-B Evaluation Methodology

	IV Experimental Results
	IV-A Roadmap
	IV-B Model Computational Characteristics
	IV-C Impact on the Model Storage Size
	IV-D Memory Footprint
	IV-E Impact on Inference Time
	IV-F Impact on the Power and Energy Consumption
	IV-G Impact on The Prediction Accuracy
	IV-H Precision, Recall and F1-Score
	IV-I Impact of Model Parameter Sizes
	IV-J Combining Pruning and Quantization

	V Discussions
	VI Related Work
	VII Conclusions
	References

