
This is a repository copy of Fast perturbative algorithm configurators.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/162212/

Version: Accepted Version

Proceedings Paper:
Hall, G.T., Oliveto, P.S. and Sudholt, D. orcid.org/0000-0001-6020-1646 (2020) Fast 
perturbative algorithm configurators. In: Bäck, T., Preuss, M., Deutz, A., Wang, H., Doerr, 
C. and Emm, M., (eds.) Parallel Problem Solving from Nature – PPSN XVI. International 
Conference on Parallel Problem Solving from Nature (PPSN 2020), 05-09 Sep 2020, 
Leiden, Netherlands. Lecture Notes in Computer Science, 12269 . Springer , pp. 19-32. 
ISBN 9783030581114 

https://doi.org/10.1007/978-3-030-58112-1_2

This is a post-peer-review, pre-copyedit version of an article published in Bäck T. et al. 
(eds) Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in 
Computer Science, vol 12269. The final authenticated version is available online at: 
http://dx.doi.org/10.1007/978-3-030-58112-1_2. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Fast Perturbative Algorithm Configurators

George T. Hall, Pietro S. Oliveto, and Dirk Sudholt

The University of Sheffield, Sheffield, United Kingdom
{gthall1,p.oliveto,d.sudholt}@sheffield.ac.uk

Abstract. Recent work has shown that the ParamRLS and ParamILS
algorithm configurators can tune some simple randomised search heuris-
tics for standard benchmark functions in linear expected time in the size
of the parameter space. In this paper we prove a linear lower bound on the
expected time to optimise any parameter tuning problem for ParamRLS,
ParamILS as well as for larger classes of algorithm configurators. We pro-
pose a harmonic mutation operator for perturbative algorithm configura-
tors that provably tunes single-parameter algorithms in polylogarithmic
time for unimodal and approximately unimodal (i.e., non-smooth, rugged
with an underlying gradient towards the optimum) parameter spaces. It
is suitable as a general-purpose operator since even on worst-case (e.g.,
deceptive) landscapes it is only by at most a logarithmic factor slower
than the default ones used by ParamRLS and ParamILS. An experimen-
tal analysis confirms the superiority of the approach in practice for a
number of configuration scenarios, including ones involving more than
one parameter.

Keywords: Parameter tuning · Algorithm configurators · Runtime ana-
lysis.

1 Introduction

Many algorithms are highly dependent on the values of their parameters, all of
which have the potential to affect their performance substantially. It is there-
fore a challenging but important task to identify parameter values that lead to
good performance for a class of problems. This task, called algorithm config-
uration or parameter tuning, was traditionally performed by hand: parameter
values were updated manually and the performance of each configuration as-
sessed, allowing the user to determine which parameter settings performed best.
In recent years there has been an increase in popularity of automated algorithm
configurators [13].

Examples of popular algorithm configurators are ParamILS, which uses it-
erated local search to traverse the parameter space (the space of possible con-
figurations) [14]; irace, which evaluates a set of configurations in parallel and
eliminates those which can be shown statistically to be performing poorly [20];
and SMAC, which uses surrogate models to reduce the number of configuration
evaluations [15]. Despite their popularity, the foundational understanding of al-
gorithm configurators remains limited. Key questions are still unanswered, such
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as whether a configurator is able to identify (near) optimal parameter values,
and, if so, the amount of time it requires to do so. While analyses of worst-case
performance are available, as well as algorithms that provably perform better in
worst-case scenarios [18, 23, 24, 19], the above questions are largely unanswered
regarding the performance of the popular algorithm configurators used in prac-
tice for typical configuration scenarios.

Recently, the performance of ParamRLS and ParamILS was rigorously anal-
ysed for tuning simple single-parameter search heuristics for some standard
benchmark problems from the literature. It was proved that they can efficiently
tune the neighbourhood size k of the randomised local search algorithm (RLSk)
for Ridge and OneMax [10] and the mutation rate of the simple (1+1) EA for
Ridge and LeadingOnes [11]. The analyses, though, also reveal some weak-
nesses of the search operators used by the two algorithm configurators. The
ℓ-step mutation operator used by ParamRLS, which changes a parameter value
to a neighbouring one at a distance of at most ℓ, may either get stuck on local
optima if the neighbourhood size ℓ is too small, or progress too slowly when far
away from the optimal configuration. On the other hand, the mutation operator
employed by ParamILS, that changes one parameter value uniformly at random,
lacks the ability to efficiently fine-tune the current solution by searching locally
around the identified parameter values. Indeed both algorithms require linear
expected time in the number of parameter values to identify the optimal config-
urations for the studied unimodal or approximately unimodal parameter spaces
induced by the target algorithms and benchmark functions [10, 11].

In this paper we propose a more robust mutation operator that samples
a step size according to the harmonic distribution [6, 7]. The idea is to allow
small mutation steps with sufficiently high probability to efficiently fine-tune
good parameter values while, at the same time, enabling larger mutations that
can help follow the general gradient from a macro perspective, e.g., by tunnelling
through local optima. This search operator can be easily used in any perturbative
algorithm configurator that maintains a set of best-found configurations and
mutates them in search for better ones. Both ParamRLS and ParamILS fall into
this large class of configurators.

We first prove that large classes of algorithm configurators, which include
ParamRLS and ParamILS with their default mutation operators, require linear
expected time in the number of possible configurations to optimise any parame-
ter configuration landscape. Then we provide a rigorous proof that the harmonic
search operator can identify the optimal parameter value of single-parameter tar-
get algorithms in polylogarithmic time if the parameter landscape is either uni-
modal or approximately unimodal (i.e., non-smooth, rugged landscapes with an
underlying monotonically decreasing gradient towards the optimum). It is also
robust as even on deceptive worst-case landscapes it is only by at most a loga-
rithmic factor slower than the default operators of ParamRLS and ParamILS.

We complement the theory with an experimental analysis showing that both
ParamRLS and ParamILS have a statistically significant smaller average optimi-
sation time to identify the optimal configuration in single-parameter unimodal
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Algorithm 1 ParamRLS (A, Θ,Π, κ, r). Adapted from [11].

1: θ ←initial parameter value chosen uniformly at random
2: while termination condition not satisfied do

3: θ′ ← mutate(θ)

4: θ ← better(A, θ, θ′, π, κ, r) {called eval in [11]}
5: return θ

and approximately unimodal landscapes and for a well-studied MAX-SAT con-
figuration scenario where two parameters have to be tuned. The latter result is
in line with analyses of Pushak and Hoos that suggests that even in complex con-
figuration scenarios (for instance state-of-the-art SAT, TSP, and MIP solvers),
the parameter landscape is often not as complex as one might expect [22].

2 Preliminaries

The ParamRLS Configurator. ParamRLS is a simple theory-driven algorithm
configurator defined in Algorithm 1 [11]. The algorithm chooses an initial config-
uration uniformly at random (u.a.r.) from the parameter space. In each iteration,
a new configuration is generated by mutating the current solution. The obtained
offspring replaces the parent if it performs better. By default, ParamRLS uses
the ℓ-step operator which selects a parameter and a step size d ∈ {1, . . . , ℓ} both
u.a.r. and then moves to a parameter value at distance1 +d or −d (if feasible).

The ParamILS Configurator. ParamILS (Algorithm 2) is a more sophisticated
iterated local search algorithm configurator [14]. In the initialisation step it se-
lects R configurations uniformly at random and picks the best performing one.
In the iterative loop it performs an iterated local search (Algorithm 3) until a
local optimum is reached, followed by a perturbation step where up to s ran-
dom parameters are perturbed u.a.r. A random restart occurs in each iteration
with some probability prestart. The default local search operator selects from the
neighbourhood uniformly at random without replacement (thus we call this the
random local search operator). The neighbourhood of a configuration contains
all configurations that differ by exactly one parameter value.

The Harmonic-step Operator. The harmonic-step mutation operator selects a
parameter uniformly at random and samples a step size d according to the
harmonic distribution. In particular, the probability of selecting a step size d is
1/(d ·Hφ−1), where Hm is the m-th harmonic number (i.e. Hm =

∑m
k=1

1
k ) and φ

is the range of possible parameter values. It returns the best parameter value

1 Throughout this paper, we consider parameters from an interval of integers for sim-
plicity, where the distance is the absolute difference between two integers. This is
not a limitation: if parameters are given as a vector of real values z1, z2, . . . , zφ, we
may simply tune the index, which is an integer from {1, . . . , φ}. Then changing the
parameter value means that we change the index of this value.
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Algorithm 2 ParamILS pseudocode, recreated from [14].

Require: Initial configuration θ0 ∈ Θ, algorithm parameters r, prestart, and s.
Ensure: Best parameter configuration θ found.
1: for i = 1, . . . , R do

2: θ ← random θ ∈ Θ

3: if better(θ, θ0) then θ0 ← θ

4: θinc ← θils ← IterativeFirstImprovement(θ0) {Algorithm 3}
5: while not TerminationCriterion() do
6: θ ← θils
7: for i = 1, . . . , s do θ ← random θ′ ∈ Nbh(θ)
8: {Nbh contains all neighbours of a configuration}
9: θ ← IterativeFirstImprovement(θ)
10: if better(θ, θils) then θils ← θ

11: if better(θils, θinc) then θinc ← θils
12: with probability prestart do θils ← random θ ∈ Θ

13: return θinc

Algorithm 3 IterativeFirstImprovement(θ) procedure, adapted from [14].

1: repeat

2: θ′ ← θ

3: for all θ′′ ∈ UndiscNbh(θ′) in randomised order do
4: {UndiscNbh contains all undiscovered neighbours of a configuration}
5: if better(θ′′, θ′) then θ ← θ′′; break
6: until θ′ = θ

7: return θ

at distance ±d. This operator was originally designed to perform fast greedy
random walks in one-dimensional domains [6] and was shown to perform better
than the 1-step and the random local search (as in ParamILS) operators for
optimising the multi-valued OneMax problem [7]. We refer to ParamRLS using
the Harmonic-step operator as ParamHS.

3 General Lower Bounds for Default Mutation Operators

To set a baseline for the performance gains obtained by ParamHS, we first
show general lower bounds for algorithm configurators, including ParamRLS
and ParamILS. Our results apply to a class of configurators described in Al-
gorithm 4. We use a general framework to show that the poor performance of
default mutation operators is not limited to particular configurators, and to
identify which algorithm design aspects are the cause of poor performance.

We show that mutation operators that only change one parameter by a small
amount, such as the ℓ-step operator with constant ℓ, lead to linear expected times
in the number of parameter values (sum of all parameter ranges).

Theorem 1. Consider a setting with D parameters and ranges φ1, . . . , φD ≥ 2
such that there is a unique optimal configuration. Let M =

∑D
i=1 φi. Consider an
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Algorithm 4 General scheme for algorithm configurators.

1: Initialise an incumbent configuration uniformly at random
2: while optimal configuration not found do

3: Pick a mutation operator according to the history of past evaluations.
4: Apply the chosen mutation operator.
5: Apply selection to choose new configuration from the incumbent configuration

and the mutated one.

algorithm configurator A implementing the scheme of Algorithm 4 whose muta-
tion operator only changes a single parameter and does so by at most a constant
absolute value (e.g. ParamRLS with local search operator ±{ℓ} for constant ℓ).
Then A takes time Ω(M) in expectation to find the optimal configuration.

Proof. Consider the L1 distance of the current configuration x = (x1, . . . , xD)

from the optimal one opt = (opt1, . . . , optD):
∑D

i=1 |xi−opti|. For every param-
eter i, the expected distance between the uniform random initial configuration
and opti is minimised if opti is at the centre of the parameter range. Then, for
odd φi, there are two configurations at distances 1, 2, . . . , (φi − 1)/2 from opti,
each being chosen with probability 1/φi. The expected distance is thus at least

1/φi ·
∑(φi−1)/2

j=1 2j = (φi− 1)(φi+1)/(4φi) = (φi− 1/φi)/4 ≥ φi/8. For even φi,
the expectation is at least φi/4. By linearity of expectation, the expected initial

distance is at least
∑D

i=1 φi/8 ≥ M/8. Every mutation can only decrease the dis-
tance by O(1), hence the expected time is bounded by (M/8)/O(1) = Ω(M).

The same lower bound also applies if the mutation operator chooses a value
uniformly at random (with or without replacement), as is done in ParamILS.

Theorem 2. Consider a setting with D parameters and ranges φ1, . . . , φD ≥ 2
such that there is a unique optimal configuration. Let M =

∑D
i=1 φi. Consider

an algorithm configurator A implementing the scheme of Algorithm 4 whose
mutation operator only changes a single parameter and does so by choosing a
new value uniformly at random (possibly excluding values previously evaluated).
Then A takes time Ω(M) in expectation to find the optimal configuration.

Proof. Let Ti be the number of times that parameter i is mutated (including
the initial step) before it attains its value in the optimal configuration. After
j − 1 steps in which parameter i is mutated, at most j parameter values have
been evaluated (including the initial value). The best case is that A always
excludes previous values, which corresponds to a complete enumeration of the φi

possible values in random order. Since every step of this enumeration has a
probability of 1/φi of finding the optimal value, the expected time spent on

parameter i is E(Ti) ≥
∑φi−1

j=0 j/φi = (φi − 1)/2. The total expected time is

at least
∑D

i=1 E(Ti) − D + 1 as the initial step contributes to all Ti and each

following step only contributes to one value Ti. Noting
∑D

i=1 E(Ti) − D + 1 =∑D
i=1(φi − 1)/2−D/2 + 1 ≥ M/4 (as φi ≥ 2 for all i) proves the claim.
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ParamILS is not covered directly by Theorem 2 as it uses random sampling
during the initialisation that affects all parameters. However, it is easy to show
that the same lower bound also applies to ParamILS.

Theorem 3. Consider a setting with D parameters and ranges φ1, . . . , φD ≥ 2
such that there is a unique optimal configuration. Let M =

∑D
i=1 φi. Then

ParamILS takes time Ω(M) in expectation to find the optimal configuration.

Proof. Recall that ParamILS first evaluates R random configurations. If R ≥
M/2 then the probability of finding the optimum during the first M/2 random

samples is at most M/2 ·
∏D

i=1 1/φi ≤ 1/2 since M =
∑D

i=1 φi ≤
∏D

i=1 φi. Hence
the expected time is at least 1/2 ·M/2 = M/4. If R < M/2 then with probability
at least 1/2 ParamILS does not find the optimum during the R random steps
and starts the IterativeFirstImprovement procedure with a configuration θ0. This
procedure scans the neighbourhood of θ0, which is all configurations that differ
in one parameter; the number of these is

∑D
i=1(φi − 1) = M −D. If the global

optimum is not among these, it is not found in these M −D steps. Otherwise,
the neighbourhood is scanned in random order and the expected number of steps
is (M −D− 1)/2 as in the proof of Theorem 2. In both cases, the expected time
is at least (M −D − 1)/4 ≥ M/16 (as M ≥ 2D).

4 Performance of the Harmonic Search Operator

In the setting of Theorem 1, mutation lacks the ability to explore the search
space quickly, whereas in the setting of Theorems 2 and 3, mutation lacks the
ability to search locally. The harmonic search operator is able to do both. It is
able to explore the space, but smaller steps are made with a higher probability,
enabling the search to exploit gradients in the parameter landscape.

For simplicity and lack of space we only consider configuring one parameter
with a range of φ (where the bounds from Theorems 1–3 simplify to Ω(φ)),
however the operator improves performance in settings with multiple parameters
in the same way. We show that ParamHS is robust in a sense that it performs well
on all landscapes (with only a small overhead in the worst case, compared to the
lower bounds from Theorem 1–3), and it performs extremely well on functions
that are unimodal or have an underlying gradient that is close to being unimodal.

To capture the existence of underlying gradients and functions that are uni-
modal to some degree, we introduce a notion of approximate unimodality.

Definition 1. Call a function f on {1, . . . ,m} (α, β)-approximately unimodal
for parameters α ≥ 1 and 1 ≤ β ≤ m if for all positions x with distance β ≤ i ≤
m from the optimum and all positions y with distance j > αi to the optimum we
have f(x) < f(y).

Intuitively, this means that only configurations with distance to the optimal
one that is by a factor of α larger than that of the current configuration can be
better. This property only needs to hold for configurations with distance to the
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optimum i with β ≤ i ≤ m, to account for landscapes that do not show a clear
gradient close to the optimum.

Note that a (1, 1)-approximately unimodal function is unimodal and a (1, β)-
approximately unimodal function is unimodal within the states {β, . . . ,m}. Also
note that all functions are (1,m)-approximately unimodal.

The following performance guarantees for ParamHS show that it is efficient
on all functions and very efficient on functions that are close to unimodal.

Theorem 4. Consider ParamHS configuring an algorithm with a single param-
eter having φ values and a unique global optimum. If the parameter landscape
is (α, β)-approximately unimodal then the expected number of calls to better()

before the optimal parameter value is sampled is at most

4αHφ−1 log(φ) + 4αβHφ−1 = O(α log2(φ) + αβ log φ),

where Hφ−1 is the (φ− 1)-th harmonic number (i.e.
∑φ−1

i=1
1
i ).

Corollary 1. In the setting of Theorem 4,

(a) every unimodal parameter landscape yields a bound of O(log2 φ).
(b) for every parameter landscape, a general upper bound of O(φ log φ) applies.

Hence ParamHS is far more efficient than the Ω(φ) lower bound for general
classes of tuners (Theorems 1–3) on approximately unimodal landscapes and is
guaranteed never to be worse than default operators by more than a log φ factor.

Proof of Theorem 4. Let f(i) describe the performance of the configuration with
the i-th largest parameter value. Then f is (α, β)-approximately unimodal and
we are interested in the time required to locate its minimum.

Let dt denote the current distance to the optimum and note that d0 ≤ φ.
Let d∗t denote the smallest distance to the optimum seen so far, that is, d∗t =
mint′≤t dt′ . Note that d∗t is non-increasing over time. Since ParamHS does not
accept any worsenings, f(dt) ≤ f(d∗t ).

If d∗t ≥ β then by the approximate unimodality assumption, for all j > αd∗t ,
f(j) > f(d∗t ) ≥ f(dt), that is, all points at distance larger than αd∗t have a worse
fitness than the current position and will never be visited.

Now assume that d∗t ≥ 2β. We estimate the expected time to reach a position
with distance at most ⌊d∗t /2⌋ to the optimum. This includes all points that have
distance i to the global optimum, for 0 ≤ i ≤ ⌊d∗t /2⌋, and distance dt − i to the
current position. The probability of jumping to one of these positions is at least

⌊d∗

t /2⌋∑

i=0

1

2(dt − i)Hφ−1
≥

⌊d∗

t /2⌋∑

i=0

1

2dtHφ−1
≥

d∗t
4dtHφ−1

≥
d∗t

4αd∗tHφ−1
=

1

4αHφ−1
.

Hence, the expected half time for d∗t is at most 4αHφ−1 and the expected time
to reach d∗t < 2β is at most 4αHφ−1 log φ.

Once d∗t < 2β, the probability of jumping directly to the optimum is at least
1

2dtHφ−1

≥ 1
2αd∗

tHφ−1

≥ 1
4αβHφ−1

and the expected time to reach the optimum is

at most 4αβHφ−1. Adding the above two times and using the well-known fact
that Hφ−1 = O(log φ) yields the claim.
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5 Experimental Analysis

We have proved that, given some assumptions about the parameter landscape,
it is beneficial to use the harmonic-step operator instead of the default operators
used in ParamRLS and ParamILS. In this section, we verify experimentally that
these theoretical results are meaningful beyond parameter landscapes assumed
to be (approximately) unimodal.

We investigated the impact of using the harmonic-step operator on the time
taken for ParamRLS and ParamILS to identify the optimal configuration (or
in one case a set of near-optimal configurations) in different configuration sce-
narios. Note that ParamRLS using this operator is equivalent to ParamHS. We
analysed the number of configuration comparisons (that is, calls to the better()
procedure present in both ParamRLS and ParamILS) required for the configura-
tors to identify the optimal mutation rate (the optimal value χ in the mutation
rate χ/n) for the (1+1) EA optimising Ridge and the (1+1) EA optimising
LeadingOnes as in [11] and identifying the optimal neighbourhood size k (the
number of bits flipped during mutation) for RLSk optimisingOneMax as in [10].
Finally, we considered optimising two parameters of the SAT solver SAPS opti-
mising MAX-SAT [17], searching for one of the five best-performing configura-
tions found during an exhaustive search of the parameter space.

In the first two configuration scenarios, with probability 1 − 2−Ω(nε), the
configurator can identify that a neighbouring parameter value is better, hence
the landscape is unimodal [11] (see Figures 1a and 1b). In such landscapes, we
expect the harmonic-step operator to perform well. In the third scenario, the
parameter landscape is not unimodal (see Figure 1c: k = 2c + 1 outperforms
k = 2c), but it is (2,1)-approximately unimodal with respect to the expected
fitness (as for all k, the parameter value k outperforms all parameter values
k′ > 2k) both empirically (Figure 1c) and theoretically [8]. In the fourth scenario,
the parameter landscape is more complex since we configure two parameters, but
it still appears to be approximately unimodal (see Figure 1d).

5.1 Experimental Setup

In all scenarios we measured the number of calls to the better() procedure
before the optimal configuration (or a set of near-optimal configurations in the
scenario configuring SAPS) is first sampled. We varied the size of the parameter
space to investigate how the performance of the mutation operators (i.e. ℓ-step,
random, and harmonic-step) depends on the size of the parameter space.

For ParamILS, the BasicILS variant was used. That is, each call to better()
resulted in the two competing configurations both being run the same, set num-
ber of times. For each size of the parameter spaces, the experiment was re-
peated 200 times and the mean number of calls to better() was recorded. For
the MAX-SAT scenario 500 repetitions were used to account for the increased
complexity of the configuration scenario. The cutoff time κ (the number of it-
erations for which each configuration is executed for each run in a comparison)
varied with the choice of problem class. A fitness-based performance metric was
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used, as recommended in [10, 11], in which the winner of a comparison is the
configuration which achieves the highest mean fitness in r runs each lasting κ
iterations. In each run, both configurators were initialised uniformly at random.
We set R = 0 in ParamILS since preliminary experiments indicated that initial
random sampling was harmful in the configuration scenarios considered here.

Benchmark functions For Ridge, LeadingOnes and OneMax, we used n = 50
and 1500 runs per configuration comparison (i.e. r = 1500). ForRidge, we used a
cutoff time of κ = 2500. The value of ℓ in the ℓ-step operator was set to ℓ = 1. The
first parameter space that we considered was χ ∈ {0.5, 1.0, . . . , 4.5, 5.0}, where
χ/n is the mutation rate and χ = 1 is optimal for Ridge [11]. We increased
the size of the parameter space by adding the next five largest configurations
(each increasing by 0.5) until the parameter space {0.5, . . . , 25.0} was reached.
Following [11], for Ridge, the (1+1) EA was initialised at the start of the ridge,
in order to focus on the search on the ridge (as opposed to the initial approach
to the ridge, for which the optimal mutation rate may be different from 1/n).

When configuring the mutation rate χ/n of the (1+1) EA for LeadingOnes,
we initialised the individual u.a.r. and used κ = 2500 and ℓ = 1. The size of the
parameter space was increased in the same way as in theRidge experiments, and
the initial parameter space was χ ∈ {0.6, 1.1, . . . , 4.6, 5.1} as the optimal value
for χ is approximately 1.6 [1, 11]. The final parameter space was {0.6, . . . , 25.1}

When configuring the neighbourhood size of RLSk for OneMax, we ini-
tialised the individual u.a.r. and set κ = 200. The initial parameter space was
{1, 2, . . . , 9, 10}, where k = 1 is the optimal parameter [10], and the next five
largest integers were added until {1, 2, . . . , 49, 50} was reached. Since this param-
eter landscape is only approximately unimodal, we set ℓ = 2 (as recommended
in [10]: ℓ = 1 would fail to reach the optimal value k = 1 unless initialised there).

SAPS for MAX-SAT We considered tuning two parameters of SAPS – α and ρ
– for ten instances2 of the circuit-fuzz problem set (available in AClib [16]).
Due to the complexity of the MAX-SAT problem class it was no longer obvious
which configurations can be considered optimal. Therefore we conducted an ex-
haustive search of the parameter space in order to identify configurations that
perform well. We did so by running the validation procedure in ParamILS for
each configuration with α ∈ { 16

15 ,
17
15 , . . . ,

44
15 ,

45
15} and ρ ∈ {0, 1

15 , . . . ,
14
15 , 1}. Each

configuration was evaluated 2000 times on each of the ten considered circuit-fuzz
problem instances. In each evaluation, the cutoff time was 10, 000 iterations and
the quality of a configuration was the number of satisfied clauses. We selected
the set of the five best-performing configurations to be the target.

Since it was not feasible to compute the quality of a configuration each time
it was evaluated in a tuner, we instead took the average fitness values generated
during the initial evaluation of the parameter landscape to be the fitness of each
configuration. As these runs were repeated many times we believe they provide
an accurate approximation of the fitness values of the configurations.

2 Problem instances number 78, 535, 581, 582, 6593, 6965, 8669, 9659, 16905, 16079.
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Fig. 1: (a),(b),(c): Mean fitness of the individual in the algorithms with n = 50,
averaged over 10,000 runs for each parameter value, multiplied by −1 to obtain
a minimisation problem. The dotted line indicates the optimal configuration
for each scenario. (d): The parameter landscape for SAPS in terms of α and ρ
computed for a set of ten SAT instances from the circuit-fuzz dataset. In all
figures lower values are better.

In this experiment, we kept the range of values of ρ as the set {0, 1
15 , . . . ,

14
15 , 1}

and the value of the two other parameters of SAPS as ps = 0.05 and wp = 0.01
(their default values). We then increased the size of the set of possible values
of α. The initial range for α was the set { 16

15 ,
17
15 ,

18
15}, which contains all five best-

performing configurations. We then generated larger parameter spaces by adding
a new value to the set of values for α until the set { 16

15 , . . . ,
45
15} was reached.

5.2 Results

The results from configuring benchmark functions are shown in Figures 2a, 2b,
and 2c. Green lines indicate the random search operator (without replacement),
black lines indicate the random search operator (with replacement), blue lines
indicate the ℓ-step operator, and red lines indicate the harmonic-step operator.
Solid lines correspond to ParamRLS and dotted lines to ParamILS.

In each configuration scenario, and for both configurators, the harmonic-
step operator located the optimal configuration faster than both the ℓ-step and
random operators. For both configurators, the polylogarithmic growth of the
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(a) Configuring the (1+1) EA for Ridge with κ = 2500 and r = 1500.
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(b) Configuring the (1+1) EA for LeadingOnes with κ = 2500 and r = 1500.
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(c) Configuring RLSk for OneMax with κ = 200 and r = 1500.
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(d) Configuring the α and ρ parameters of SAPS.

Fig. 2: Mean number of calls to better() before sampling the optimal configu-
ration. Green lines indicate the random search operator (without replacement),
black lines indicate the random search operator (with replacement), blue lines
indicate the ℓ-step operator, and red lines indicate the harmonic-step operator.
Solid lines correspond to ParamRLS and dotted lines to ParamILS. Crosses show
effect size of difference at points where statistically significant for ParamHS ver-
sus: ℓ-step (blue); random (without replacement) (green); random (with replace-
ment) (black); and harmonic-step ParamILS vs. default ParamILS (orange).
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time taken to locate the optimal configuration of the harmonic-step operator
can be seen, compared to the linear growth of the time taken by the ℓ-step and
random local search operators. The difference between the operators is more
pronounced when there is a plateau of neighbouring configurations all exhibiting
the same performance (as in Ridge). We also verified that these improvements
in performance occur also if few runs per comparison are used.

Similar benefits from using the harmonic-step operator can be seen in the
results for configuring SAPS for MAX-SAT. Figure 2d shows that it is faster
to locate a near-optimal configuration for SAPS when using the harmonic step
operator than when using the other operators.

Figure 2 also shows crosses where the difference between the performance
of the harmonic-step operator and the other operators is statistically signifi-
cant at a significance level of 0.95 (according to a two-tailed Mann-Whitney U
test [21]). Their position reflects the effect size (in terms of Cliff’s delta [2]) of
this comparison (values closer to 1 indicate a larger difference). Orange crosses
show the difference between ParamILS using harmonic-step and that using ran-
dom (without replacement). The differences between ParamHS and ParamRLS
using ℓ-step, random (without replacement) and random (with replacement) are
shown by blue, green, and black crosses, respectively. In every configuration sce-
nario, for the larger parameter space sizes almost all comparisons with all other
operators were statistically significant.

6 Conclusions

Fast mutation operators, that aim to balance the number of large and small
mutations, are gaining momentum in evolutionary computation [9, 3, 5, 4]. Con-
cerning algorithm configuration we demonstrated that ParamRLS and ParamILS
benefit from replacing their default mutation operators with one that uses a
harmonic distribution. We proved considerable asymptotic speed-ups for smooth
unimodal and approximately unimodal (i.e., rugged) parameter landscapes, while
in the worst case (e.g., for deceptive landscapes) the proposed modification may
only slow down the algorithm by at most logarithmic factor. We verified ex-
perimentally that this speed-up occurs in practice for benchmark parameter
landscapes that are known to be unimodal and approximately unimodal, as well
as for tuning a MAX-SAT solver for a well-studied benchmark set. Indeed other
recent experimental work has suggested that the search landscape of algorithm
configurations may be simpler than expected, often being unimodal or even con-
vex [12, 22]. We believe that this is the first work that has rigorously shown how
to provably achieve faster algorithm configurators by exploiting the envisaged
parameter landscape, while being only slightly slower if it was to be consider-
ably different. Future theoretical work should estimate the performance of the
harmonic mutation operator on larger parameter configuration problem classes,
while empirical work should assess the performance of the operator for more
sophisticated configurators operating in real-world configuration scenarios.
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