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and Clinical Trials
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Abstract

Metagenomics, also known as environmental genomics, is the study of the genomic content of a sample of
organisms (microbes) obtained from a common habitat. Metagenomics and other “omics” disciplines have
captured the attention of researchers for several decades. The effect of microbes in our body is a relevant
concern for health studies. There are plenty of studies using metagenomics which examine microorganisms
that inhabit niches in the human body, sometimes causing disease, and are often correlated with multiple
treatment conditions. No matter from which environment it comes, the analyses are often aimed at
determining either the presence or absence of specific species of interest in a given metagenome or
comparing the biological diversity and the functional activity of a wider range of microorganisms within
their communities. The importance increases for comparison within different environments such as
multiple patients with different conditions, multiple drugs, and multiple time points of same treatment
or same patient. Thus, no matter how many hypotheses we have, we need a good understanding of
genomics, bioinformatics, and statistics to work together to analyze and interpret these datasets in a
meaningful way. This chapter provides an overview of different data analyses and statistical approaches
(with example scenarios) to analyze metagenomics samples from different medical projects or clinical trials.

Key words Metagenomics, Metatranscriptomics, Microbiome, Clinical trials, Comparative
metagenomics

1 Introduction

The diversity of species on earth is high, and most of them are
microorganisms. Their ubiquitous presence makes it extremely
difficult to identify and classify all microbes in a laboratory environ-
ment. Standard genomics tries to enrich pure cultures and study
them: for example, the taxonomy, the genome, the genes, and the
pathways. However, only a miniscule fraction of all microbes can be
cultured because of their complex symbiosis and nutrient require-
ments in other organisms. The scientific community is now
equipped with the development of new sequencing techniques
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and high-throughput analysis. The study of the genomic content of
a sample of microorganisms obtained from a common habitat is
made possible with the field of metagenomics, also known as envi-
ronmental genomics [1]. Instead of taking the DNA for sequencing
from isolated cultures it is obtained directly from the environment.
Therefore, the analysis of microbes that are deemed unculturable
(which means current laboratory culturing techniques are unable to
grow them) with standard laboratory techniques becomes possible.
Two main approaches commonly used in metagenomic studies:
marker gene-based metagenomics (e.g., 16S amplicon sequencing)
and metagenomic shotgun sequencing. In the first approach, DNA is
used as the template for PCR to amplify a segment of the conserved
16S ribosomal RNA (rRNA) gene sequence. Universal primers
complementary to conserved regions are used so that the region
can be amplified from any bacteria. After purification of PCR
products, sequencing of the 16S rRNA gene is performed [2]. In
the second approach, shotgun sequencing, DNA is broken up
randomly into multiple small segments, which are sequenced
using the chain termination method to obtain reads. Multiple over-
lapping reads for the target DNA are obtained by performing
several rounds of this fragmentation and sequencing. Computer
programs then use the overlapping ends of different reads to assem-
ble them into a continuous sequence [3].There are several publica-
tions discussing the differences in microbial biodiversity discovery
between 16S amplicon and shotgun sequencing, for example see
[4]. In a recent study using water samples from Brazil’s major river
floodplain systems, authors showed shotgun sequencing outdone
by amplicon [5]. Here, the authors ascribed the poor performance
of shotgun sequencing mainly to the weakness of the database used
in the study, as compared to databases for the 16S rRNA gene. This
study can be used as a caution for people working with rare envir-
onments (See article by Catherine Offord in The Scientist1). Com-
parisons of the two methods in well-studied systems such as the gut
microbiome have generally found that shotgun sequencing identi-
fies more microbial diversity [6].

Further recent advancement of culturomics approach is shed-
ding light on multiple high-throughput culture conditions
[7, 8]. As the samples used in metagenomics do not contain the
genome of just one but many different microorganisms, the possi-
bility of analyzing their functional and metabolic interplay arises.
Next-generation sequencing technology (NGS) has effectively
transformed infectious disease research throughout the last decade,
fuelling the growth in genetic data and providing huge number of
DNA reads at an affordable cost. Many studies use these

1 https://www.the-scientist.com/?articles.view/articleNo/50044/title/Shotgun-Sequencing-Outdone-by-
Amplicon/.
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techniques, which examine microorganisms that inhabit niches in
the human body, sometimes causing disease, and researchers often
try to correlate these microorganisms and their change with multi-
ple treatment conditions (e.g., see [9]). Gene annotations in these
studies support the association of specific genes or metabolic path-
ways with health and with specific diseases. In a recent article
authors discussed how host gene–microbial interactions are major
determinants for the development of multifactorial chronic disor-
ders and thus for the relationship between genotype and phenotype
[10]. There are many other reports based on the application of
metagenomics in understanding oral health and disease
[11–13]. As recently described by Forbes et al., metagenomics
and other “omics” disciplines could provide the solution to a cul-
tureless future in clinical microbiology, food safety, and public
health [14].

No matter from which environment it comes, the analysis of
datasets from such studies are similar to some extent. Most projects
aim at determining either the presence or absence of specific species
of interest, or to obtain an overview of the taxa represented in a
given metagenome and comparing the biological diversity and the
functional activity of a wider range of microorganisms within their
communities. The importance increases for comparison of different
datasets, as researchers will need to determine and understand the
similarities and dissimilarities within the metagenomes of different
environments. These environments can be multiple patients with
different conditions, multiple drugs, or multiple time points of
same treatment or same patient. Further, sometimes researchers
also may compare different environments for example to study
antibiotic resistance genes (ARG) and understand which environ-
ments are more prone to such ARGs. Thus, no matter how many
hypotheses we have, we need a good understanding of genomics,
bioinformatics, and statistics to work together to analyze and inter-
pret these datasets in a meaningful way.

This chapter provides an overview of different data analyses and
statistical approaches to analyze metagenomics samples from a
number of clinically derived datasets. The methodological descrip-
tion of this chapter will be guided by three main scenarios. The first
one is a published data set from human atherosclerotic plaque
samples (Scenario 1) [15]; the second one is a clinical trial example
comparing the effects of two omega-3 polyunsaturated fatty acids
(PUFAs) supplements on healthy volunteers (Scenario 2) [16]; and
the third one is another clinical trial example comparing the efficacy
of two drugs for an infectious disease (Scenario 3).

The Scenarios 3 came from an ongoing unpublished project;
therefore, the real datasets are not provided. This chapter is mainly
focused on multiple data analyses/annotation and statistical
approaches that can be used in similar situations, but any biological
finding of the example scenarios is not explained here. Although all
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of these scenarios are derived from medical projects, the analyses
approach can be adapted to environmental samples as well. On this
occasion, I must emphasize the importance to have good metadata,
that is, a detailed description of each parameter like health status or
sampling site or age or any similar information relating to specific
samples that may be important for the analyses. Good metadata are
key to good analyses and noise reduction in data analysis processes.

2 Description of Example Studies

2.1 Scenario 1:

Metagenomic

Analyses of Human

Atherosclerotic Plaque

Samples

To investigate microbiome diversity within human atherosclerotic
tissue samples high-throughput metagenomic analysis was
employed on (1) atherosclerotic plaques obtained from a group of
patients who underwent endarterectomy due to recent transient
cerebral ischemia or stroke and (2) presumed stabile atherosclerotic
plaques obtained from autopsy from a control group of patients
who all died from causes not related to cardiovascular disease. Our
data provides evidence that suggest a wide range of microbial
agents in atherosclerotic plaques, and an intriguing new observa-
tion that shows this microbiota displayed differences between
symptomatic and asymptomatic plaques, as judged from the taxo-
nomic profiles in these two groups of patients. Additionally, func-
tional annotations reveal significant differences in basic metabolic
and disease pathway signatures between these groups.

In this project, we demonstrate the feasibility of novel high-
resolution techniques aimed at identification and characterization
of microbial genomes in human atherosclerotic tissue samples. Our
analysis suggests that distinct groups of microbial agents might play
different roles during the development of atherosclerotic plaques.
These findings may serve as a reference point for future studies in
this area of research. The workflow in Fig. 1 provides a brief
description of the sample processing and analyses pipeline for the
study described in Scenario 1. If readers want to know more details
of the methodology, please refer to (15). This scenario is an exam-
ple of analyzing host-associated metagenome samples.

2.1.1 Methodology

Details

For this study, we used atherosclerotic tissue samples from a group
of 15 patients that underwent elective carotid endarterectomy
following repeated transient ischemic attacks or minor strokes
(samples from symptomatic atherosclerotic plaques as cases).2 Fur-
ther, we have asymptomatic atherosclerotic plaques from seven

2All methods and experimental manuals were approved by The National Committee on Health Research Ethics
(Danish) and was granted by the Ethical Committee of the region of Copenhagen (H-3-2011-013).
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persons who died from causes not related to atherosclerotic disease
(samples from stable plaques as controls).3

All 22 arterial plaque samples resulted in 2,610,268,774 shot-
gun sequencing reads. After mapping these reads against Hg19
using bowtie 2 [17] with “very-sensitive” parameters to filter all
human-like sequences from our samples. The average amount of
non-Hg19 reads is 884,727,044 (average 33.89% per sample,
Table 1). These non-Hg19 reads were extracted and aligned against
nonredundant (nr) protein database (version 30.07.2012) [18]
using BLASTX (ncbi-blast-2.2.25+; Max e-value 10e�3)
[19]. After performing the BLASTX alignment, all output files of
paired read sequences were imported and analyzed using the
paired-end protocol of MEGAN5 [20]. For all non-Hg19 anno-
tated reads, 2–16% (mean 4.6%) were assigned as bacteria in differ-
ent samples. The rest of reads were assigned to Eukaryota. Table 1
provides details of sequencing read statistics and assignments of
reads after different stages of data processing. R statistical

Organising samples

Data processing

Patients
15 patients that underwent

elective carotid 
endarterectomy  following 

repeated  transient is chemic 
attacks or minor strokes

samples from
symptomatic 

atherosclerotic 
plaques as cases

we have asymptomatic
atherosclerotic plaques from

7 persons who died from
causes not related to athero-

sclerotic disease

samples from
stable plaques as 

controls

Sample collection and DNA sequencing

Confirmation that 
all sample data has 
been reconciled to 

study groups

Metadata mapping 
(samples with any 
specific phenotypic 

or medical info)

Clean and organise 
the samples

Data quality check 
and Quality Control 
(QC)

As arterial plaque samples 
represent a host-associated 
metagenome, all reads were 

mapped against human 
reference genome (hg19) 

using bowtie 2-2.0.0

All unmapped reads (non-
hg19) were extracted and 

aligned against non-
redundant (nr) protein 
database using BLASTX

Allblast output filesof 
pairedreadsequenceswere 

importedandanalyzed 
usingthepaired-end 
protocolofMEGAN

Taxonomic 
annotation

Next-generation sequencing 
library preparation was 
prepared by following 
Illumina’s TruSeq DNA
Sample Preparation protocol.

Library quantitation was 
performed using Quant-iTTM
PicoGreen ® dsDNA Reagent. 
Sequencing was done with 

Illumina HiSeq2000

DNA was extracted 
using QIAGEN’s DNeasy 

Blood & Tissue kit

quality of the DNA
samples was assessed 
on a Bioanalyzer 2100, 
using a DNA 12000 Chip 

(Agilent)

Fig. 1 Analysis pipeline for the study of human atherosclerotic plaque samples. Interested readers may refer to
the full study here [15]

3 These samples originated from the tissue bank at the Department of Forensic Medicine (Approval
No. 1501230).
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programming language [21] was used for multivariate statistics.
Later in Subheading 3, we will describe few of the analysis
approaches revisiting this study.

In this study our data provided evidence that suggest a wide
range of microbial agents (some pathogens) in atherosclerotic pla-
ques, and these microbes displayed differences between symptom-
atic and asymptomatic plaques as judged from the taxonomic
profiles in these two groups of patients. Further, fluorescence in
situ hybridization (FISH) was performed to validate the presence of
biofilm-like structures of few pathogens (which have been previ-
ously predicted from taxonomic analyses) in the symptomatic ath-
erosclerotic plague samples. FISH staining demonstrates the
presence of live bacteria; thus, this is a very good approach for
cross-validation of any computational finding in the lab.

There are also potentials of using this data for not only taxo-
nomic annotation but also to reveal the functional profiles through
partial assembly of specific members and their functional annota-
tions. Functional annotations reveal significant differences in basic
metabolic and disease pathway signatures between these groups.
Here, we will not provide details of the whole study, but interested
readers may refer to [15].

On this occasion, it is necessary to mention that in any similar
project in future, for alignment purpose, we would have used
DIAMOND [22] which uses improved algorithms and additional
heuristics and works much faster compared to available other
aligners. Scenario 1 is an example of analyzing shotgun sequence
datasets obtained from tissue samples or host-associated metagen-
ome. In case readers have shotgun sequence datasets from environ-
mental samples or from fecal samples, they do not need to perform
alignment step to get rid of the host-associated sequences, unless
there is any doubt of contamination. Normally we suggest to have
control or blank samples in two wells per 96-well plate to address
any issue with contaminations.

2.2 Scenario 2: The

Effect of Omega-3

Polyunsaturated Fatty

Acid Supplements on

the Human Intestinal

Microbiota

2.2.1 Study Design

A randomized, open-label, crossover trial of 8 weeks’ treatment
with 4 g mixed eicosapentaenoic acid (EPA)/docosahexaenoic acid
(DHA) in two formulations (soft-gel capsules and drinks) with a
12-week “washout” period [16] is chosen. Healthy volunteers aged
greater than 50 years of both genders were included in this study.
Participants were randomized to take two types of EPA and DHA
compositions (Fig. 2):

1. Two 200 mL drinks per day (providing approximately as the
triglyceride daily) at any suitable time of day, or

2. Four soft-gel capsules (each containing 250 mg EPA and
250 mg DHA as the ethyl ester) twice daily with meals
(providing 2000 mg EPA and 2000 mg DHA per day), both
for 8 weeks.

Multiple Data Analyses and Statistical Approaches for Analyzing Data from. . . 611



After a 12-week “washout” period, participants took the sec-
ond intervention for 8 weeks. We also included a final study visit
after a second 12-week “washout” period (V5; Fig. 2). Fecal sam-
ples were collected at five time-points for microbiome analysis by
16S rRNA PCR and Illumina MiSeq sequencing. Parallel red blood
cell (RBC) fatty acid analysis was performed by liquid chromato-
graphy–tandem mass spectrometry.

2.2.2 Sample

Preparation and

Sequencing

Microbial DNA extractions were performed based on the method
of Yu and Morrison, [23] with slight modifications. DNA was
extracted from approximately 250 mg feces using the QIAamp
DNA Stool Mini Kit (Qiagen, Germany) with bead beating. DNA
Library Prep Kit for Illumina, NEBNext Singleplex Oligos for
Illumina (New England Biolabs, UK), and unique in-house-
designed index primers (Integrated DNA Technologies, UK)
were used to allow for multiplexing of samples. Twelve cycles of
enrichment PCR were performed, and final libraries were cleaned
with AMPure Beads (Beckman Coulter, UK). Successful libraries
were confirmed by DNA 1000 bioanalyzer chips or DNA Analysis
screen tapes (Agilent, UK). Quantification was performed with the
Quant-iT dsDNA Assay Kit, broad range. A total of 30 ng of
each library was pooled and sequenced on an Illumina MiSeq
(2 � 250 bp) [24]. The variable region (V4) of the 16S rRNA
gene was sequenced for these samples.

2.2.3 Data Analyses Demultiplexed FASTQ files were trimmed of adapter sequences
using cutadapt [25]. Paired reads were merged using fastq-join
[26] under default settings and then converted to FASTA format.
Consensus sequences were removed if they contained any ambigu-
ous base calls, two contiguous bases with a PHRED quality score
lower than 33, or a length more than 2 bp different from the
expected length of 240 bp. Further analysis was performed using
QIIME [27]. Operational taxonomy units (OTUs) were picked
using usearch [28] and aligned to the Greengenes reference data-
base using PyNAST [29]. Taxonomy was assigned using the RDP
2.2 classifier [30]. The resulting OTU BIOM files from the above

Fig. 2 Schedule of visits for the study to understand the effect of omega-3 polyunsaturated fatty acid
supplements on the human intestinal microbiota
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analyses were imported in MEGAN for detailed group-specific
analyses, annotations, and plots [31]. R statistical programming
language [21] was used for multivariate statistics and other plots.

This dataset and method pipeline are purely described as an
example for similar analyses; thus, we will not explain the results
here, but interested, readers may see [16]. Scenario 2 is a typical
example of analyzing 16S sequence data. In Subheading 3, we will
describe few of the analysis approaches using data from this study.

2.3 Scenario 3:

Comparing Effects of

Two Drug Treatments

for an Infectious

Disease

In a given situation suppose we need to compare treatment effect of
two drugs (e.g., X and Y) or more, where we have time series data,
that is, patient samples from multiple time points of the treatment
course for both drugs. This time series data can be either collected
every day of the treatment period or in intervals. Furthermore, for
practical reasons we might not be able to obtain data at a desired
day but �1/2 days. It is important to select an error threshold and
be consistent with that throughout the project. For example, we
need to have a similar depth of sequencing reads or need to follow
subsample comparison as detailed later, and, also, we need to
discard samples with very low number of reads. Further during
alignment to reference database and during mapping to taxonomy
similar scores and thresholds should be used for all samples (please
check best parameter selections in individual websites while using
specific tools). Additionally, there can be multiple fundamental
factors in patient samples such as age, gender, and geography that
may not contribute in a similar manner to resiliency. Figure 3 shows
a schematic of the metadata structure, which may help to under-
stand the complexity of a typical clinical trial.

Drug X or
DrugY

Time points 

Everyday Group

Baseline Mid treatment (Day 2
to Day 8) 

End of treatment
(Day 9/10 to Day

11/12)  

Followup (Day 20
or more) 

Multiple
factors 

Age Gender Geography

Fig. 3 Schematic diagram of multiple factors in a clinical study
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2.3.1 Sample

Preparation and

Sequencing and Data

Analyses

In a clinically relevant setting this type of study wants to know
which drug works better for a similar group of patients. Patients
are randomized between drug arms to control any selection bias.
Usually in this type of projects as we want to compare several
factors, we need many samples to start with. Readers are advised
to seek statistics help to do power calculation to obtain the pre-
ferred sample size. In general, as we end up having hundreds of
samples, we usually go for 16S sequencing as a cost-effective solu-
tion. However, some projects can also use shotgun sequencing.
Similar to previous examples, we assume that we have sequenced
(either 16S or shotgun sequencing) our samples and performed
further analysis process as outlined earlier to obtain taxonomic
profile (following data analyses methods as described in previous
scenarios) for each patient at each time point. Besides analyzing
time series of each individual separately, we have also grouped them
in certain time points such as baseline, mid-treatment, end of
treatment, and follow-up. Besides treatment groups, patients are
also compared based on multiple factors such as age, gender, and
geography.

3 General Methods for Annotation and Statistical Analyses

Broadening our focus beyond these studies, additional analysis
techniques are explained below which are used in these studies
and also can be used in similar projects.

3.1 Taxonomic and

Functional Annotation

Taxonomic annotation addresses the question, ‘Who is out there?’ or
in other words tries to obtain information regarding the species
composition of a given metagenome. On the other hand, func-
tional annotation attempts to answer the question, ‘What are they
doing?’ There are different approaches for metagenome analyses,
among which one type of approach is to use phylogenetic markers
to distinguish between different species in a sample. The most
widely used marker is the small subunit ribosomal ribonucleic acid
(SSU rRNA) gene (16S or 18S) and a second type of method is
based on analyzing the nucleotide composition of reads. In a
supervised approach the nucleotide composition of a collection of
reference genomes is used to train a classifier, which is then used to
place a given set of reads into taxonomic bins. In an unsupervised
approach, reads are clustered by composition similarity and then
the resulting clusters are analyzed in an attempt to place the reads.
Subheading 4 of this chapter provide details of multiple approaches
and available different tools which readers can use according to
their preferences.

In general, for annotating 16S rRNA sequences we use QIIME
[27] and for shotgun sequencing we use MEGAN [31] which can
also be used for 16S. MEGAN is a highly efficient program for
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interactive analysis and comparison of microbiome data, allowing
one to explore hundreds of samples and billions of reads. While
taxonomic profiling is performed based on the NCBI taxonomy,
MEGAN also provides a number of different functional profiling
approaches. MEGAN Community Edition also supports the use of
metadata in the context of principal coordinate analysis and cluster-
ing analysis [31]. In all the three scenarios explained in this chapter,
MEGAN is used as primary tool for annotations. For more details
on MEGAN tool, see Chapter 23.

If we have shotgun sequencing then we have good option for
functional annotation, but with 16S sequences we can only perform
taxonomic analyses with confidence although there are few tools
which might predict metagenome functional content from marker
genes [32, 33]. Most shotgun annotation pipelines (such as
MEGAN [31], MG-RAST [34], IMG/MER [35], EBI Metage-
nomics [36]) support functional annotations and they often use
databases such as KEGG [37], SEED [38], eggNOG [39], and
COG/KOG [40], as well as protein domain databases such as
TIGRFAM [41] and PFAM [42].

3.2 Metagenome

Assembly

Similar in nature to the genomic assembly, which is the reconstruc-
tion of genomes from the sequenced DNA segments (or reads),
metagenome assembly is more complex. The main goal is to stitch
together the fragments of the reads that could be from the same
genome. Here the reads consist of mixture of DNA from different
organisms and also may have widely different levels of abundance.
Few recent reviews discussed new challenges and opportunities as
well as assessed the most common and freely available metagenome
assembly tools with respect to their output statistics, their sensitiv-
ity for low-abundance community members and variability in
resulting community profiles as well as their ease of use. Interested
readers please refer to reviews [43, 44].

3.3 Rarefaction

Curves

Rarefaction curves represent a powerful method for comparing
species richness among habitats on an equal-effort basis based on
the construction of the so-called rarefaction curves [45]. This is a
very useful tool for statistical data analyses that helps us to Correct
for bias in species number due to unequal sample sizes by standar-
dization to the number of species expected in a sample if it had the
same total size as the smallest sample. As an example, we have two
sample groups, first having 50 individuals and second 30 individuals
with multiple number of species obtained from their taxonomic
analyses. Rarefaction helps us to compare the situation, if we would
have same number of individuals in two sample groups. Rarefaction
curves are used differently in case of 16S and shotgun metage-
nomics. Ni and colleagues have described methods for estimating
a reasonable and practical amount for SSU rRNA gene sequencing
and explained how much metagenomic sequencing is enough to
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achieve a given goal [46]. In metagenomic shotgun sequencing,
the fraction of the metagenome represented in the data set is
termed coverage, which can be assessed through rarefaction
curve. Interested readers may refer to a recent publication which
has advocated for the estimation of the average coverage obtained
in metagenomic studies, and briefly presented the advantages of
different approaches [47].

In Scenario 1, for comparing case and control groups from
human atherosclerotic plaque samples, we computed rarefaction
curves from the normalized profile of 22 samples using the bacterial
reads, showing the number of nodes that would be present in the
analysis if based from 10% to 90% of the reads (Fig. 4). From
sequence statistics (Table 1) and the rarefaction curve (Fig. 4), it
is apparent that 2 (sample 233 and 238) of the 22 samples had
much higher sequencing depth than the other samples. Later in the
study we therefore omitted these two samples from merged
case vs. control analyses.
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Fig. 4 Rarefaction. Rarefaction plot using annotated species profile for all 22 (unstable and stable) athero-
sclerotic plaque samples. These curves show the number of nodes that would be present if based on 10%,
20%, and up to 90% of the reads
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Similarly, in Scenario 2 also, rarefaction was performed at vari-
ous levels to compare diversity for different sample groupings. All
groups were rarefied to the lowest read number, and the diversity
calculated using weighted and unweighted UniFrac as well as the
non-phylogenetic Bray–Curtis dissimilarity measure.

3.4 Subsample

Comparison

In situations like Fig. 3, where two samples have much higher
sequencing depth, another option can be subsample comparison.
In this process without excluding high-depth samples from further
study, another approach is to simulate subsample of lowest sample
size (of other samples in the study) for sufficient number of times.
And then take a median of the subsamples to generate a pseudo
profile, which can serve as a good comparable sample for the group.
For example, if in a study for most of the samples sequence reads are
in a range of 200,000–300,000. However, only few samples have
approx. 1 million reads, in those cases we simulate subsample of
200,000 reads from them for large number of times (say 1000) and
we take median of the profiles, which we can then compare with
other samples.

3.5 Comparative

Visualization

Comparative visualization includes different types of plots and
charts (pie charts, histograms, and many other kinds of plots)
which can help us to draw basic conclusions regarding our data.
For example, Fig. 5 depicts basic comparison of patients in two
drug treatment groups for certain time points such as baseline,
mid-treatment, end of treatment and follow up (from Scenario 3).

Baseline Follow up

Baseline Mid treatment End of treatment Follow up

Mid treatment End of treatment

Genus level comparison at multiple treatment time points for Drug Y

Genus level comparison at multiple treatment time points for Drug X

Fig. 5 Genus level taxonomic comparison of patients’ microbiome (median of each time point group) in two
drug treatment groups for certain time points such as baseline, mid-treatment, end of treatment and follow
up. Here different colors indicate different genera and the size of each color in the pie reflects the percentage
of those genus in median microbiome for each time point group and for each drug
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Form this figure we can easily see that the microbiome pattern in
drug X over treatment period is more consistent (or more stable
over the time) than in drug Y. Here with visual comparison we are
not making any conclusion, but with these types of plots we can
start to see if there is any trend in our data, which can later be
investigated with appropriate statistical tests.

Further as metagenomic data are often hierarchical in nature,
besides doing basic plots which can be done only at certain taxo-
nomic levels (e.g., family/genus), often it is helpful to display the
whole data as comparative tree view. For example in Scenario
1, samples from cases and controls have grouped closely (as can
be seen later in Subheading 3.9), we can explore their broad differ-
ences by comparing total biome from cases and controls using
comparative tree view (Fig. 6). This kind of tree view also help us
to assess multiple time point samples from single patient or
grouped data comparison for multiple factors (e.g., in Scenario 3).

3.6 Diversity

Analyses

Diversity analyses is one of the prominent statistical analysis
approaches that address some of the downstream analysis steps
associated with metagenomic studies. Species abundance estimates
in the community are used to make inference about diversity on the
whole community. The terms alpha, beta, and gamma diversity

Low complexity
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Fig. 6 Tree view at “family” level taxonomy comparing merged data from cases and control samples using
data from Scenario 1
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were all introduced by R. H. Whittaker to describe the spatial
component of biodiversity [48]. Alpha diversity is just the diversity
of each site (samples in each group). Beta diversity represents the
differences in species composition among sites. Gamma diversity is
the diversity of the entire landscape of different sites (all species
pool from multiple samples). A diversity index measures how many
different types (such as species) are there in a dataset (a community)
and simultaneously takes into account how evenly the basic entities
(such as individuals) are distributed among these types. Three
commonly used measures of diversity, Simpson’s index, Shannon’s
entropy, and the total number of species, are related to Renyi’s
definition of a generalized entropy, and are well explained and
compared by Hill [49]. Interested readers may also refer to [50]
for consistent terminology for quantifying species diversity. Many
other publications also explain this topic very well.

3.7 Comparison

Using Distance

Matrices

Another common technique to compare metagenomic datasets is
using distance matrices. First, a taxonomic profile is computed for
each data set. Second, a matrix of pairwise distances is determined
using one of several possible ecological indices. Finally, the dis-
tances are represented using an appropriate visualization technique.
Mitra et al. [51] explained multiple distance matrices (such as
Bray–Curtis, Kulczynski, χ2, Hellinger, and Goodall) in the context
of multiple metagenome comparison. In addition to theseUniFrac
is another distance metric used for comparing biological commu-
nities. It differs from dissimilarity measures such as Bray–Curtis by
incorporating information on the relative relatedness of community
members by incorporating phylogenetic distances between
observed organisms in the computation [52–54]. Both weighted
(quantitative) and unweighted (qualitative) variants of UniFrac are
often used in microbial ecology, where the former accounts for
abundance of observed organisms, while the latter only considers
their presence or absence.

3.8 Boxplots In descriptive statistics, “boxplot” or alternatively called “box and
whisker plot,” is an important and one of the most informative
tools that is used for graphically depicting groups of numerical data
through their quartiles [55]. The boxplot is a quick way of examin-
ing multiple groups of data graphically, which easily provides infor-
mation regarding quartiles, range, variation, and even outliers and
enables us to compare within and between group samples. For
example, Fig. 7 shows distribution of samples in multiple time
point for both drugs (example data in Scenario 3). From this plot
we can clearly gather the idea that diversity with drug X is consis-
tently higher than that with drug Y. Further in Fig. 5 we have
already seen that microbiome pattern in drug X showed less disrup-
tion, thus from these two figures we can hypothesize that drug Y
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being more disruptive to the microbiome. Such hypotheses can
help us in further statistical analyses.

3.9 Hierarchical

Clustering

Cluster analysis, especially hierarchical clustering [56, 57], is an
important tool for the exploratory and unsupervised analysis
(where we do not need a training dataset to feed the programme)
of high dimensional datasets and often used in genomics and other
fields for their ability to simultaneously uncover multiple layers of
clustering structure. In our example, Fig. 8 depicts a hierarchical
clustering result of family level taxonomic comparison data for all
22 samples. Interestingly, samples 238 and P0613 were mostly
different, and among the other samples, all unstable plaques clus-
tered together, apart from all stable plaque controls that clustered
separately.

Interestingly, the asymptomatic atherosclerotic plaques have
more abundance of host microbiome-associated microbial families
such as Porphyromonadaceae, Bacteroidaceae, Micrococcaceae, and
Streptococcaceae than the symptomatic atherosclerotic plaques. In
contrast, the symptomatic atherosclerotic plaques have more abun-
dance of pathogenic microbial families such as Helicobacteraceae,
Neisseriaceae, and sulfur-consuming families such as sulfur-
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Fig. 7 Boxplot showing Simpson diversity indices for samples from each time point and for both the drugs X
and Y
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Fig. 8 Taxonomic comparison of all DNA samples. Hierarchical clustering result of “family” level taxonomic
comparisons of data from Scenario 1: unstable atherosclerotic plaques from 15 patients with symptomatic
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oxidizing symbionts and Thiotrichaceae than the asymptomatic
atherosclerotic plaques (Fig. 8). For P0613, the species profile
appeared very different from all other samples. Thus, this sample
also treated as an outlier in further analyses (see [15] if interested in
actual study).

3.10 Principal

Component Analysis

(PCA) and Principal

Coordinates Analysis

(PCoA)

PCA and PCoA are tools for multivariate analysis. PCA uses an
orthogonal transformation to convert a set of observations of
possibly correlated variables into a set of values of linearly uncorre-
lated variables called principal components [58]. This is often used
for quantitative variables, so the axes in graphic have a quantitative
weight, and the positions of the samples are in relation with those
weight. On the other hand, PCoA or multidimensional scaling
(MDS) is a means of visualizing the level of similarity of individual
cases of a dataset [59]. PCoA is similar to Polar ordination (PO;
[60]) arranges samples between endpoints or ‘poles’ according to
the distance matrix maximizing the linear correlation between the
distances in the distance matrix. If further interested in these meth-
ods please see [61].

For multiple sample comparison we often use PCoA and PCA,
these are among the best tools available for multivariate analysis.
These can give us powerful information of similarities and dissim-
ilarities within samples. When coupled with phenotypic data or
metadata (using colors and symbols etc.), these can be very helpful
tools to understand within group variations. As an example, we
have used PCoA on 22 plaque samples from Scenario 1 (Fig. 9).
Here we can see that sample 238 and 238 being very different
possibly due to high sequence depth (as also seen in Fig. 4).

Biplots: In addition to PCA or PCoA, variables can also be
plotted on the same diagram (this is called a biplot). The biplot
provides a useful tool of data analysis and allows the visual appraisal
of the structure of large data matrices [62]. In our examples, where
taxa are variables, biplot can show important taxa which helps in
determining relatedness represented as arrows. For example, in
Scenario 2, β diversity was compared using principal coordinate
analysis (PCoA) on all samples from all visits, where biplots are
displayed with green arrows (Fig. 10). From this PCoA with biplot,
we interpret that samples from volunteers 8, 13, and 16 are differ-
ent than the other volunteers and that they have higher abundance
of Succinivibrionaceae, Gammaproteobacteria, Aeromonadales, etc.

3.11 Canonical-

Correlation Analysis

(CCA) and Canonical-

Correspondence

Analysis (CCA)

CCA (correlation) seeks to find the linear combination of the Xi

and Yj that have the greatest correlation with each other where
X ¼ (X1, . . ., Xn) and Y ¼ (Y1, . . ., Ym) of random variables thus it
is often used as a dimension–reduction method. The method was
first introduced by Harold Hotelling [63]. On the other hand,
CCA (correspondence) is a multivariate method to elucidate the
relationships between biological assemblages of species and their
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environment. This method by Cajo J. F. ter Braak involves a canon-
ical correlation analysis and a direct gradient analysis [64]. By envi-
ronment we mean any kind of metadata, such as some
physicochemical parameters obtained from same group where the
species data is obtained. The idea is to relate the prevalence of a set
of species to a collection of environmental variables. Biplots are
often used in CCA (correspondence) for visualization purpose. For
example, in our Scenario 2, a typical illustration of correlation and
correspondence analyses between the microbiome and RBC fatty
acid data is displayed in Fig. 11.

In this occasion it is important to note that CCA does not
perform variable selection. Further, when the number of variables
exceeds the number of observations (or sample size), CCA cannot
be applied directly due to singularity of the covariance matrix. In a
recent study [65] the authors have discussed this problem and a few
existing solutions. Additionally, they developed a method for
structure-constrained sparse canonical correlation analysis
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(ssCCA) in a high-dimensional setting. ssCCA takes into account
the phylogenetic relationships among bacteria, which provides
important prior knowledge on evolutionary relationships among
bacterial taxa (see [65] if interested).

3.12 Multivariate

Analyses

Multivariate data analysis refers to any statistical approach used to
analyze data with more than one variable. For example, as described
in Scenario 3 we have multiple factors. The key to identifying
important microbial taxa associated with two treatments is that
the large datasets from each patient are compared within groups,
and then the metadata from the patients’ groups are compared
against each other. Analysis of multivariate data in response to
factors, groups, or treatments in an experimental design needs
sophisticated methods.

To achieve this, we can use PERMANOVA (permutational
multivariate analysis of variance) [66] to test the homogeneity of
multivariate dispersions within groups, on the basis of any resem-
blance measure. PERMANOVA is a better approach than ANOVA
(Analysis of variance)/MANOVA (Multivariate analysis of variance)
for our study as PERMANOVA works with any distance measure
that is appropriate to the data, and uses permutations to make it
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distribution free, unlike assuming normal distributions. Finally, in
addition to the above multiple comparisons, we can examine if
there is consistency of microbiota changes and patterns across the
geographical locales of treatment subjects; as our samples are from
different countries. We are not showing the details of multivariate
analyses, but there are multiple available packages for such analyses
with good tutorials. Interested readers may visit these packages and
websites as detailed below.

The Primer-E package [67] is commonly used by microbial
ecologists and allows for multiple multivariate statistical analyses.
We often use R statistical programming language [21] for multi-
variate statistics. Moreover R is used for several types of graphical
representations. Particular packages provide in-built functions and
libraries (within R environment) specially for metagenomic datasets
such as Bioconductor [68], vegan [69], and phyloseq [70].

4 Tools and Packages Commonly Used in Metagenomic Studies

A list of multiple tools is provided below for analyzing metage-
nomic data from raw sequence reads to final comparisons and
statistical analyses. Discussion of all these tools are beyond the
scope of this chapter, but interested readers can see recent review
articles [71–74] and it must be noted that there can be other tools
as well outside this list.
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1. Processing of raw sequence reads and quality control (QC):

(a) FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/).

(b) Fastx_toolkit (http://hannonlab.cshl.edu/fastx_toolkit/).

(c) Cut-adapt (both adapter trimming and quality trim) [25].

(d) BBTools (http://jgi.doe.gov/data-and-tools/bbtools/).

(e) Condetri (Read trimmer for Illumina data) [75].

(f) Trimmomatic (allows multiple threads) [76].

(g) SolexaQA [77].

(h) PRINSEQ [78].

2. Alignment tool:

(a) BLAST [18].

(b) USEARCH [28].

(c) DIAMOND [22].

(d) Rapsearch [79].

(e) PyNAST [29].

3. Analyses for 16S projects: OTU clustering, picking, and taxo-
nomic assignment.

(a) QIIME [27].

(b) USEARCH [28].

(c) RDP classifier [30].

(d) SILVA (for 16S + 18S) [80].

(e) Mothur [81].

(f) SILVAngs (https://www.arb-silva.de/documentation/
silvangs/).

(g) MEGAN [31].

(h) AmpliconNoise [82].

(i) Open reading frame (ORF) prediction, for example, with
MG-DOTUR [83].

4. Assembly of shotgun metagenomics data.

(a) Reference-based assembly.

l MIRA 4 [84].

l MetaAMOS (https://www.cbcb.umd.edu/software/
metamos).

(b) De novo assembly.

l Newbler (Roche).

l iAssembler [85].

l EULER [86].
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l Velvet [87].

l SOAP [88].

l Abyss [89].

(c) The next generation of assembly tools.

l MetaVelvet-SL [90].

l Meta-IDBA [91].

l InteMAP [92].

l SAT-Assembler [93].

l IDBA-UD [94].

5. Removing near-exact matches by maping to specific genomes.

(a) Bowtie 2 [17].

6. Binning tools for metagenomes.

(a) Composition-based binning algorithms.

l S-GSOM [95].

l PhylopythiaS [96].

l TACAO [97].

l PCAHIER [98].

l ESOM [95].

l ClaMS [99].

(b) Similarity-based binning software include tools.

l MEGAN [31].

l IMG/MER 4 [35].

l MG-RAST [34].

l CARMA [100].

l MetaPhyler [101].

(c) Unsupervised binning.

l PhylopythiaS+ [102].

l PhymmBL [103].

l ESOMs [104].

l VizBin [105].

l IFCM (fuzzy c-means method) [106].

7. Binning of metagenome contigs for reconstructing single
genomes.

(a) ICoVeR [107].

(b) MyCC [108].

(c) MetaBAT [109].

(d) GroopM [110].
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(e) MaxBin2 [111].

(f) CONCOCT [112].

8. Identification of genes within the reads/assembled contigs or
“gene calling”.

(a) MetaGeneMark [113].

(b) Prodigal [114].

(c) Orphelia [115].

(d) FragGeneScan [116].

9. Predict for clustered regularly interspaced short palindromic
repeats (CRISPRs).

(a) CRT [117].

(b) PILER-CR [118].

(c) IMG/MER [35].

10. Annotation pipelines.

(a) MEGAN [31].

(b) QIIME for 16S projects [27].

(c) Galaxy platform.

(d) MG-RAST [34].

(e) IMG/MER [35].

(f) Primer-E package [67].

(g) Several packages built within R [21].

l Vegan [69].

l Phyloseq [70].

l Bioconductor [68].

11. Prediction of functional content from metagenomics.

(a) PICRUSt [33].

(b) Tax4Fun [32].

12. Statistical computing.

(a) R [21].

(b) Many other tools can be used for statistical analyses.

13. Web service for the analysis of metagenomic data.

(a) The EBI Metagenomics service [36].

(b) European Nucleotide Archive (ENA).

(c) MG-RAST [34].

(d) METAGENassist [119].

(e) BusyBee Web [120].

(f) Meta4 [121].
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5 Concluding Remarks

This chapter has illustrated multiple data analyses and annotation
techniques in metagenomic studies with three case studies. This is
not a chapter about any newmethod development but a description
of optimized pipelines using various available tools. With these
example scenarios, the use of multiple pipelines has been demon-
strated to analyze and interpret the data starting from very raw
sequence to the final statistical outputs. Example scenarios describe
some of the tools that we have used for analyzing the projects
selected for demonstration, but besides these there are plenty of
other available tools for metagenomics, most of which are listed in
Subheading 4. This chapter does not provide the details of the tools
or describe their pros and cons but this can be a good starting point
for the readers to explore available options to analyze and interpret
their datasets. From this chapter readers shall get an idea of current
research projects in medical studies and multiple approaches used
to analyze the data originating from these projects, although read-
ers should keep in mind that this is not an exclusive list of possible
pipelines for analyzing metagenomic samples. There might be
other approaches as well. While step-by-step instructions of all the
tools is beyond the scope of this chapter, the methods outline here
might be useful to researchers to plan, analyze, and interpret their
research projects successfully.
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