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Magnetic signatures of domain walls in s + is and s + id superconductors:
Observability and what that can tell us about the superconducting order parameter
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One of the defining features of spontaneously broken time-reversal symmetry (BTRS) is the existence of
domain walls, the detection of which would be strong evidence for such systems. There is keen interest in BTRS
currently, in part, due to recent muon spin rotation experiments, which have pointed towards Ba1−xKxFe2As2

exhibiting a remarkable case of s-wave superconductivity with spontaneously broken time-reversal symmetry.
A key question, however, is how to differentiate between the different theoretical models which describe such
a state. Two particularly popular choices of model are s + is and s + id superconducting states. In this paper,
we obtain solutions for domain walls in s + is and s + id systems, including the effects of lattice anisotropies.
We show that, in general, both models exhibit spontaneous magnetic fields that extend along the entire length of
the domain wall. We demonstrate the qualitative difference between the magnetic signatures of s + is and s + id
domain walls and propose a procedure to extract the superconducting pairing symmetry from the magnetic-field
response of domain walls.

DOI: 10.1103/PhysRevB.101.054507

I. INTRODUCTION

Superconducting states that spontaneously break time-
reversal symmetry (BTRS) have been a subject of exper-
imental pursuit and theoretical investigation over the past
few decades. Although a number of candidate materials was
discovered, the nature of their order parameters remains a
subject of debate. Recent experimental works in iron-based
superconductors reported spontaneous breakdown of time-
reversal symmetry (BTRS) in Ba1−xKxFe2As2 [1,2], based on
muon spin rotation measurements. The leading candidates for
the BTRS state in Fe-based compounds are s + is and s + id
states [3–8]. The experiments [1,2], detected spontaneous
magnetic fields appearing in superconducting states. These are
believed to be a hallmark of the spontaneous breakdown of
time-reversal symmetry.

It was suggested that impurities generate a magnetic field
in s + id superconductors [4]. It has also been pointed out
that, in contrast, isotropic s + is superconductors exhibit no
such effect for a spherically symmetric impurity as well as
no magnetic signatures of straight domain walls. Spontaneous
magnetic fields appear in an isotropic system if one creates
cross-gradients of relative density and relative phase [9]. Such
configurations arise when domain walls interact with pinning
centers or the boundary of the sample [9]. Several proposals
were made to distinguish between s + is and s + id states
from various configurations of impurities [10–14]. In the most
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recent proposal [15], it was suggested that for models relevant
for Ba1−xKxFe2As2 one can distinguish between s + is and
s + id superconductors. It also supported the material being a
s + is state [2].

However, determining the nature of BTRS states is an
extremely difficult task. Proposed experimental signatures
are vortex clustering, flux flow viscosity at the BTRS phase
transition [14,16], soft collective modes close to the transition
[5,6,17,18], formation of Skyrmions [9,19,20], and quasipar-
ticle interference [7,21].

In this paper, we focus on a simple feature to measure and
compare, showing how the states can be diagnosed via the
observation of the magnetic field of domain walls separating
s + is and s − is or s + id and s − id domains. This can be
observed in scanning superconducting quantum interference
device (SQUID), scanning Hall probes [22–25], and muon
spin rotation [2].

Although, in the isotropic s + is models, a straight domain
wall does not produce any magnetic field [9], it was observed
in Refs. [26–28] that in the presence of anisotropies, the phase
difference between the components couples directly to the
magnetic field, which could lead to domain walls exhibiting
spontaneous magnetic fields in s + is states of the anisotropic
materials, such as Ba1−xKxFe2As2.

In this paper, we study the spontaneous magnetic field
generated by pinned domain walls as a function of their ori-
entation with respect to the crystalline axes. We demonstrate
that, if the domain wall exists in one of the crystalline planes
in either s + is or s + id systems, then there is only a localized
effect on the boundary, caused by the pinning sites geometry.
However, if the domain wall is not aligned with the crystalline
planes then a much stronger spontaneous magnetic-field sig-
nature can be observed. Importantly, this magnetic response,
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unlike that caused by the pinning geometry, extends along
the entire length of the domain wall and is dependent on
the direction of the domain-wall normal. However, there is
a very different directional dependence for s + is and s + id
superconductors, which is connected directly to the underly-
ing pairing symmetry of the system. For simplicity, we will
refer to such a spatially extended magnetic response as the
bulk magnetic field. It is proposed that this behavior can be
studied experimentally to determine the pairing symmetry of
the superconducting state.

II. GINZBURG-LANDAU FORMULATION

We are interested in a clean three-band microscopic
model which has been proposed to describe the BTRS su-
perconducting state in iron-based superconductors (such as
Ba1−xKxFe2As2) [3,6,18] with three coupled microscopic or-
der parameters �1, �2, and �3. The associated microscopic
coupling matrix �̂ yields time-reversal symmetry breaking
and is dominated by competing interband repulsive pairing,

�̂ = −
⎛
⎝0 η λ

η 0 λ

λ λ 0

⎞
⎠, (1)

where λ and η are positive definite. This interaction matrix
can describe both s + is and s + id superconductors. To study
these states, we use a microscopically derived multiband
Ginzburg-Landau (GL) free-energy functional [13,29]. The
derivation is summarized in the Appendix. Multiband super-
conductors are described in the Ginzburg-Landau framework
by complex classical fields ψα = |ψα|eiθα , however, the
number of Ginzburg-Landau fields does not always coincide
with the number of microscopic gaps. This generally depends
on the specific choice of the coupling matrix �̂ as described
in Refs. [6,18] and in the Appendix. In our case, since �̂

describes a system dominated by repulsive interband pairing,
the Ginzburg-Landau free energy for s + is and s + id
superconductors is an effective two-component model,

F =
∫

d3x

{
(	iψα )∗Qαβ

i j (	 jψβ ) + Vp + (∇ × A)2

8π

}
, (2)

where we imply summation over repeated indices. The
Latin indices i, j ∈ {x, y, z} label spatial components, and
Greek indices α, β ∈ {1, 2} label the Ginzburg-Landau
order parameters, described by the complex fields
ψα (x, y, z) = |ψα|eiθα . The covariant derivative is given
as 	 j = ∂ j + iqA j where A is the magnetic vector potential.

The spatial symmetry of the system determines how the
anisotropy tensors Qαβ

i j in Eq. (2) couple the covariant deriva-
tives acting on the matter fields. For the free energy to be real,
we have Qαβ

i j = Qαβ
ji and Qαβ

i j = Qβα
i j . An additional constraint

on the sign and magnitudes of the tensor components guar-
antees F being bounded below. Finally, Vp in Eq. (2) is the
potential density. This term determines the possible ground
states and is responsible for BTRS. The potential density reads

Vp =
2∑
α

ai|ψα|2 + bα

2
|ψα|4

+ γ |ψ1|2|ψ2|2 + δ

2

(
ψ∗2

1 ψ2
2 + ψ2

1 ψ∗2
2

)
, (3)

where δ > 0 and aα = aα (T/Tc) is temperature dependent,
where Tc is the critical temperature. The coefficients used
in Eqs. (2) and (3) are systematically obtained from the
microscopic coupling matrix �̂ and from T/Tc as reported in
the Appendix.

We are interested in analyzing s + is and s + id states, a
key feature of which is a Z2 degeneracy in the ground state.
Namely, the phase difference between the two condensates
in the ground state can take one of two values θ12 = θ1 −
θ2 = ±π/2, leading to the ground-states (|ψ1|, |ψ2|, θ12) =
(u1, u2,±π/2) where uα is a positive constant. By choosing
one of these two possible values, the system spontaneously
breaks time-reversal symmetry.

It is this degeneracy in the ground states that leads to the
possibility of domain-wall defects, which are one-dimensional
structures interpolating between two ground-state values. This
splits the system into two domains, each in a different ground
state with the domain wall as an interface between them. As
our theory is formed of continuous fields, the phase difference
must interpolate smoothly from θ12 = π/2 to θ12 = −π/2. In
isotropic superconductors, domain walls are associated with
zero magnetic field, unless the domain wall is attached to
an inhomogeneous pinning center or there is an underlying
density inhomogeneity [9,12,13]. However, in the presence
of anisotropies, it has been shown that the magnetic field is
coupled with phase difference gradients [15,26–28] and with
matter field density gradients [30]. This would suggest that
anisotropies could principally alter the magnetic signatures
of domain walls in s + is and s + id systems. Since the
experiments [1,2] report a s + is state in anisotropic materials
[15], this calls for the investigation of domain-wall solutions
in anisotropic systems.

The anisotropy tensors for both s + is and s + id super-
conductors fulfill particular symmetry requirements, stem-
ming from the symmetries of the underlying microscopic
theory (this dependence is discussed in the Appendix). In
the crystalline axes, both systems consist of all tensors be-
ing spatially diagonal (Qαβ

i j = 0 if i �= j) and have Q11
xx =

Q11
yy , Q22

xx = Q22
yy . To have a s + is state, it is then necessary

that Q12
xx = Q12

yy . If we consider the action of a general rotation

acting on Qαβ
i j , it can be shown that the spatial symmetries

are SO(2) × C2, namely, that it has a SO(2) symmetry on
the xy plane and a C2 symmetry in the orthogonal direction
(z axis). The s + id states, on the other hand, require Q12

xx =
−Q12

yy , which leads to the basal xy plane having C2 symmetry
and, thus, the three-dimensional system having a C2 × C2

symmetry.
Even though the symmetry requirements and the micro-

scopic derivation of the model reduce the number of degrees
of freedom, the parameter choice in our model is large.
However, we are mostly interested in the qualitative features
of the domain walls that would be visible in experiments, as
well as ensuring that these features are not fine-tuned. To this
end, multiple parameter sets have been considered in tandem
with the values shown in this paper. We highlight that the
value of the Qαβ

i j matrices have no impact on the presence
of time-reversal symmetry which only depends on the po-
tential terms of Eq. (2). Finally, for the sake of notation, we
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FIG. 1. A superconducting sample with a pinned domain wall.
The coordinate system labeled by (x, y, z) is the crystalline axes
frame. The nonsuperconducting pinning sites are represented by
green cylinders. The domain wall, displayed by the blue plane, is then
pinned in place by the pinning centers. The direction along which
the phase difference interpolates is identified by the domain-wall
normal vector n, displayed by the blue arrow. In this specific case,
the domain-wall normal is aligned with the x-crystalline axes.

introduce the matrix abbreviation Q̂αβ for the anisotropy
tensors, where

(Q̂αβ )i j = Qαβ
i j . (4)

III. SYSTEM SETUP

Consider a general domain wall described by the free
energy in Eq. (2). In general, the anisotropy yields a configura-
tion which is dependent on the orientation of the domain wall.
This leads to certain orientations being the most energetically
favorable and, hence, critical points of the energy functional.
However, in real materials, due to impurities, spontaneous
pinning occurs, so upon cooling a superconductor through
the BTRS transition, there will, in general, be pinned domain
walls with different orientations.

We propose an experimental setup where pinning centers
are introduced on purpose using well-developed experimental
techniques, such as irradiating a sample at a given angle
relative to crystalline axes [31], or creating dents on its
surface that would provide geometric pinning. The results of
these different procedures are equivalent for our purposes
as the ions used for sample irradiation lead to traces in
the sample where the superconducting state collapses, which
is indistinguishable to a dent within the Ginzburg-Landau
formulation. This allows the domain-wall orientation to be
fixed experimentally (note that, when we refer to domain-
wall orientation, we are always talking about the orientation
relative to the crystal axes). It is important to underline that
pinning centers are not necessary for the bulk magnetic field to
arise, however, they offer a way of controlling the orientation
of the domain wall.

Below, we focus specifically on the case of a sample that
has two columnar pinning sites where the superconductivity
is suppressed as shown in Fig. 1 by the green cylinders. If
a sample is quenched through a phase transition, according
to the Kibble-Zurek mechanism [32,33], domain walls will
form (see also the discussion in Ref. [9]). A quench-induced

domain wall is then captured between these pinning sites
as shown in blue, whose orientation is represented uniquely
by its normal vector n. As the bulk domain wall is a one-
dimensional soliton, the fields only vary in one direction,
namely, along the normal n. This means that, on the blue
plane, the domain-wall configuration is translationally invari-
ant. Due to this symmetry, for any chosen parameter set,
there is a unique domain-wall solution for any given normal
direction n. Consequently, the normal vector parametrizes the
complete family of domain walls for a given system.

If you wish to experimentally consider the domain wall
represented by a given n, you must create two parallel pinning
sites where the pinning direction is a vector taken from the
plane of the domain wall (namely, it is orthogonal to n). This
then determines a unique direction that is orthogonal to both
n and the pinning direction, which gives a vector that will lie
between the pinning sites (namely, point from one pinning site
to the other). For example, in Fig. 1, the normal of the domain
wall is in the x direction, hence, the domain wall exists on the
yz plane. We can select any direction on the yz plane for the
pinning direction, say z, which then picks out that the pinning
sites must be separated along the y axis.

To study the bulk domain wall, far from the pinning sites,
it would be sufficient to dimensionally reduce the system to a
one-dimensional system due to translation invariance orthog-
onal to n. However, it is useful to consider the interaction of
domain walls with the pinning sites. Hence, if we include the
pinning sites, the system has translation invariance only along
the pinning direction. Therefore, it is sufficient to consider a
two-dimensional (2D) domain �, orthogonal to the pinning
direction.

We formulate our theory in terms of a pinning center
aligned coordinate frame (x′, y′, z′). This new coordinate
frame is related to the crystalline frame by a general three-
dimensional rotation matrix R̂. Hence, the system is equivalent
to applying the corresponding rotation to the system in Fig. 1.
The new coordinate system is then aligned such that the
domain-wall normal is always in the x′ direction, the pinning
direction is always in the z′ direction, and the vector between
the two pinning centers is in the y′ direction. This allows for
easier comparison between solutions. In the energy functional,
this coordinate change is achieved by acting with the rotation
matrix R̂ on the anisotropy matrices Q̂αβ → R̂T Q̂αβ R̂.

IV. MAGNETIC SIGNATURES
AND NUMERICAL SOLUTIONS

In an isotropic system with translation invariance along
the pinning direction z′ and rotation invariance on the �

plane, it is sufficient to consider only the Bz′ component of
the magnetic field. This can be obtained by simulating a
2D cross section of the superconductor with only the vector
potential components Ax′ and Ay′ . However, the presence of
anisotropies introduces an energetically preferred direction
for the magnetic field, breaking the rotation symmetry. In
addition, the magnetic field is, in general, no longer per-
pendicular to �. It is, therefore, necessary to include the
third vector potential component Az′ . Note that this general-
ization is still compatible with translation invariance along
the pinning direction. The structure of the vector potential is

054507-3



ANDREA BENFENATI et al. PHYSICAL REVIEW B 101, 054507 (2020)

FIG. 2. A rotation of the trivial setup in Fig. 1 by φ about the
z axis such that the domain-wall normal is not aligned with any of
the crystalline axes (x, y, z) which are drawn in red. The black axes
represent the pinning-centers-aligned frame and are labeled by the
primed coordinate set (x′, y′, z′) of which x′ is always perpendicular
to the domain wall. This configuration can be achieved by irradiation
of the sample in a given direction or by cleaving the crystal or
creating dents on a surface of a small sample.

A = [Ax′ (x′, y′), Ay′ (x′, y′), Az′ (x′, y′)] and, consequently, the
magnetic-field B = (∂y′Az′ ,−∂x′Az′ , ∂x′Ay′ − ∂y′Ax′ ).

A. Rotation about the z axis

The first nontrivial orientation we consider, shown in
Fig. 2, is a rotation of the domain wall about the z axis,
corresponding to the rotation matrix,

R̂ =
⎛
⎝cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎞
⎠. (5)

In the s + is model, this rotation is a symmetry of the system
due to the SO(2) spatial rotation symmetry on the xy plane.
In fact, independent of the value of the rotation angle φ,
all the couplings between the magnetic field and the density
gradients as well as the magnetic field and phase difference
gradients cancel out (unless the domain wall interacts with
a pinning center or inhomogeneity). Therefore, for a s + is
superconductor, we do not have a bulk magnetic signature
for any φ. For s + id domain walls, the couplings no longer
simplify, and we have a φ-dependent bulk magnetic field.

We have simulated the system described by the free-energy
functional in Eq. (2) in the domain � with angle of rota-
tion φ = π/4 using FREEFEM [34] and a conjugate gradient
flow energy-minimization method with the results plotted in
Fig. 3. The specific simulation parameters are reported in the
Appendix.

The results demonstrate a marked difference between s + is
and s + id domain walls. With the parameters we have se-
lected, the matter field magnitudes give similar plots for both
types, although, quantitatively, there are slight deviations due
to couplings with the magnetic field. As predicted by the
symmetries, s + is domain walls exhibit no bulk magnetic
response. The localized magnetic field around the pinning
centers is due to the nonconvex geometry of the boundaries

FIG. 3. Order parameter’s modulus |ψ1|, |ψ2| and correspond-
ing spontaneous magnetic-field Bz′ for s + is and s + id supercon-
ductors. We show a two-dimensional cross section of the sample,
namely, the plane � in the pinning-centers-aligned coordinate frame.
The pinning-centers-aligned axes are related to the crystalline axes
through a rotation of φ = π/4 around the z crystalline axis, described
by Eq. (5). The columnar pinning centers coincide with the gray
areas. The two order parameters in both s + is and s + id super-
conductors are structurally similar, hence, we plot them only once.
The phase difference is reported in the rectangular boxes, displaying
a value θ12 = π/2 for x′ < 0 and θ12 = −π/2 for x′ > 0. In the
magnetic-field plots, one can distinguish the qualitative difference
among s + is response, weak and localized around the pinning sites,
and the s + id response, stronger and extended for the entire length of
the domain wall. Both magnetic fields directed along the z′ direction.
The calculation’s parameters are reported in the Appendix.

and is studied in detail in Ref. [9]. However, s + id domain
walls exhibit a strong spontaneous bulk magnetic field, which
extends along the entire length of the domain wall, instead of
being localized at the pinning sites. This field is characterized
by a relatively strong magnitude, merely an order of magni-
tude smaller than the maximum magnetic field of a vortex
in the same system and of the same order or stronger than
the magnetic field resulting from impurity modulation. This
indicates that pinned domain walls can contribute strongly
to spontaneous magnetic signatures in experiments [1,2].
The origin of this magnetic signature can be identified in
additional couplings among the magnetic field, gradients of
phase difference, and matter field amplitudes, arising from the
domain-wall normal vector not being aligned with any of the
crystalline axes. This is an ideal orientation to consider exper-
imentally as any s + id domain wall will have a measurable
magnetic response, compared with the s + is case which has
only a weaker localized response.

B. Rotation about the y axis

More insight into the pairing symmetry can be obtained
by considering a different orientation, namely, a rotation
about the y crystalline axis. This corresponds to the rotation
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FIG. 4. Simulations for the pinning setup rotated by φ = π/6.

About the y-crystalline axis. The top left panel displays the relative
orientations of the crystalline coordinate frame and the pinning-
centers-aligned coordinate frame. The dashed line indicates where
we take the cross section of the fields, which is aligned with the
normal to the domain wall and the x′ axis. As in Fig. 3, the matter
field moduli |ψ1| and |ψ2| behave in a similar way in both s + is
and s + id , therefore, we report them in a single panel on the top
right. The phase difference is represented by the background color.
Namely, the cyan (where x′ < 0) indicates a phase difference value
of θ12 = π/2 whereas orange (where x′ > 0) indicates θ12 = −π/2.
The two bottom panels show the spontaneous magnetic field for the
s + is sample on the left and the s + id on the right. We can note that,
under this system setup, both samples exhibit a quantitatively similar
magnetic field, characterized by its extension throughout the entire
length of the domain wall. It is substantially different if compared
with Fig. 3 for the s + is case.

matrix,

R̂ =
⎛
⎝ cos φ 0 sin φ

0 1 0
− sin φ 0 cos φ

⎞
⎠. (6)

For this orientation, there is no simplification of the couplings
for either the s + is or the s + id systems, and thus, we
must simulate both numerically to study the structure of the
spontaneous magnetic field. The results of this simulation
for φ = π/6 are plotted in Fig. 4. The top left panel also
displays the system setup we are considering. We note that,
as we are purely interested in the bulk response (the response
far from the pinning sites), we have only plotted a cross
section of the fields, taken along the x′ axis, as highlighted
in the top left panel of Fig. 4. The resulting fields for s + is
and s + id are very similar, demonstrating that both s + is
and s + id domain walls exhibit spontaneous magnetic fields,
which, in this case, is in the y′ direction. In fact, when the
domain-wall normal is not aligned with any of the crystalline
axes or on the xy plane, s + is domain walls will exhibit bulk

magnetic signatures which extend through the entire length of
the domain wall. As in Fig. 3, the order parameter magnitudes
behave similarly in both states, hence, we report them only
once. The phase difference value is plotted as background
color. Cyan (where x′ < 0) corresponds to a phase difference
of θ12 = π/2, whereas orange (where x′ > 0) is associated
with θ12 = −π/2.

We note that the magnitude of the magnetic response
strongly depends on the numerical value of the anisotropy
matrices Q̂αβ . If we compare the magnitude of the maximal
value of the domain wall’s magnetic field with the maximal
value of the magnetic field of a vortex in the same system,
the magnetic field of the domain wall is ten times weaker
compared to the vortex but of the same order of magnitude
as the magnetic field generated by the impurity modulation
considered in Ref. [15].

V. COMPLETE CONFIGURATION SPACE

In Fig. 4, the magnetic-field strengths of s + is and s +
id superconductors are very similar, and the magnetic-field
direction is the same. In general, this is not the case, and the
magnetic-field strength along with the magnetic-field direc-
tion will give information on the pairing symmetry as we have
already seen in Fig. 3.

To consider all possible domain walls for our chosen pa-
rameters (reported in the Appendix), it is sufficient to consider
all possible directions of the domain-wall normal n. Due to
the C2 symmetry in the z direction, we can consider just the
directions of the normal in the upper hemisphere of a unit
sphere. The results of considering all possible orientations of
the domain wall are plotted in Fig. 5. In this plot, each point
indicates the domain-wall normal, oriented from the origin
to the point on a unit sphere in the crystalline coordinate
system. The color of the point gives the maximum local
strength of the magnetic field, whereas the arrow will give
the unique magnetic-field direction for both s + is and s + id
systems. The arrow size scales with the values of |Bmax|. We
see that the magnetic field’s dependence on the orientation of
the domain wall, relative to the crystalline axes, is markedly
different for the s + is and s + id cases. The easiest way to
discriminate between the states can be seen from the color
plot in Fig. 5. It gives a clear demonstration of the symmetry
on the basal (xy) plane, which, for s + is, is SO(2) and, for
s + id , is C2. By computing the average of |Bmax| with re-
spect to all possible domain-wall orientations, for both s + is
and s + id , we find that they are comparable in magnitude
since 〈|Bmax|〉s+is/〈|Bmax|〉s+id ≈ 2/3. Hence, it is necessary
to study the spontaneous magnetic field’s dependence on the
domain-wall orientation in order to determine the symmetry
of the superconducting order parameter.

VI. CONCLUSION

Superconducting states with spontaneously broken time-
reversal symmetry are of great current interest, however,
identifying the type of BTRS order parameter is a notori-
ously difficult problem. Recent experiments have reported the
observation of broken time-reversal symmetry in iron-based
superconductors [1,2]. The evidence is based on spontaneous
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FIG. 5. The maximum value and direction of the spontaneous
magnetic field given a certain orientation of the domain-wall normal
vector with respect to the crystalline coordinate frame, denoted by
the coordinate set (x, y, z). The upper image shows the magnetic
field for the s + is state and the lower image for the s + id state.
We can clearly note how different orientations of the domain-wall
normal vector correspond to different spontaneous magnetic fields.
The spontaneous magnetic field associated with the domain wall can
be used to distinguish between the s + is and the s + id states since
the magnetic field for the two states are only similar for restricted
orientations of the domain wall.

magnetic fields.1 The leading candidates to explain these
states are s + is and s + id pairings.

We have obtained solutions of domain walls in the s + is
and s + id models of superconductors including the effects
of anisotropies. The solutions are obtained for different ori-
entations of the domain walls relative to crystal axes, and it
is found that, in general, domain walls generate a spatially
extended (bulk) magnetic field in anisotropic superconductors.
For microscopically motivated [29] parameters, the magnetic
fields are substantial, only an order of magnitude smaller than
that of a vortex and of the same order of magnitude as the
magnetic signatures obtained from the impurity modulation
studied in Ref. [15]. This demonstrates that the presence of
domain walls should be an important contributing factor for
the spontaneous magnetic field arising in BTRS states. Super-
conducting samples naturally have defects, which means that
domain walls will be spontaneously pinned. By irradiating
the samples our goal is to increase the number of pinned
domain walls with a specific orientation to enhance their

1Thermodynamic evidence was also recently obtained by Grinenko
et al. [2].

contribution to the magnetic fields measured by means of
muon spin rotation experiments. [2]. Scanning SQUID and
scanning Hall probes [22–25] are also promising techniques to
detect spontaneous magnetic fields. Importantly, the magnetic
signatures in the s + is and s + id cases are qualitatively and
quantitatively different for different orientations of the domain
wall. We presented a procedure where, by a sequence of mea-
surements with different orientations of fabricated pinning
centers, one can extract information about the symmetry of
the order parameter from the magnetic field generated by the
domain wall.
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APPENDIX

To obtain the GL expansion in Eq. (2), we must consider
the microscopic model for a clean superconductor with three
overlapping bands at the Fermi level, which has been pro-
posed to describe the BTRS superconducting state in iron-
based superconductors [3,6,18]. The detailed derivation of
the GL model with gradient terms is given in Refs. [13,29],
and we adopt the results from these references. Here, we
briefly recall the key points in that derivation. We start from
the Ginzburg-Landau equations for a three-band superconduc-
tor. They are obtained by solving the Eilenberger equations
and expanding the anomalous quasiclassical propagators in
powers and gradients of the gap functions (�1,�2,�3). The
Ginzburg-Landau equations for a three-band clean supercon-
ductor read

[(G0 + τ − �̂−1)�]α = −ρK (α)
i j 	i	 j�α + |�α|2�α, (A1)

where �= (�1,�2,�3), τ = 1 − T/Tc, ρ = ∑
n πT 3

c ω−3
n �

0.1, and G0 = min(G1, G2). G1, G2 are the positive
eigenvalues of �̂−1, obtained by inverting the coupling
matrix in Eq. (1), i.e.,

�̂−1 = − 1

2λ2η

⎛
⎝ λ2 −λ2 λη

−λ2 λ2 −λη

−λη λη η2

⎞
⎠, (A2)

with

G1 = 1

η
, G2 = 1

4λ2
(η +

√
η2 + 8λ2). (A3)

Since η, λ > 0, one eigenvalue of �̂−1 is negative, which
implies that, in the Ginzburg-Landau expansion, we should
retain two components. It is a rather common situation that, in
a N-band superconductor, one cannot, in general, perform an
expansion in N small gaps and N small gradient terms when
the interband coupling is strong relative to intraband coupling
[35]. The tensor K (α)

i j contains the information about the band
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TABLE I. Conditions on the elements of the anisotropy tensors
to describe either the s + is or the s + id superconductor.

s + is s + id

K (1)
xx = K (1)

yy K (1)
xx = K (2)

yy

K (2)
xx = K (2)

yy K (2)
xx = K (1)

yy

K (3)
xx = K (3)

yy K (3)
xx = K (3)

yy

anisotropy and is defined as

K (α)
i j =

h̄2
〈(

v(α)
F

)
i

(
v(α)

F

)
j

〉
2T 2

c

, (A4)

where the average is taken over the αth Fermi surface and
i, j indicate the spatial directions (x, y, z). Experimentally,
it is challenging to determine these quantities, however,
Refs. [36,37] suggest that, for the majority of 122 iron pnictide
materials, it makes sense to consider K (α)

xx /K (α)
zz ∈ [1, 5] as

well as K (α)
yy /K (α)

zz ∈ [1, 5].
In our paper, we consider a system with repulsive interband

dominated pairing where the matrix �−1 in Eq. (A2) has only
two positive eigenvalues. Hence, we follow the procedure
in Refs. [13,29] to construct the effective two-component
Ginzburg-Landau system of equations by applying the follow-
ing transformation:

(�1,�2,�3) = (ζψ2 − ψ1, ζψ2 + ψ1, ψ2), (A5)

with ζ = (η −
√

η2 + 8λ2)/(4λ) and ψ1, ψ2 are the complex
GL order parameters. By substituting Eq. (A5) into Eq. (A1),
we obtain the following system of equations (in the crystalline
axes reference frame):

a1ψ1 + b1|ψα|2ψ1 + γ |ψ2|2ψ1 + δψ∗
1 ψ2

2

= ρ
(
K (1)

ii + K (2)
ii

)
	2

i ψ1 + ρζ
(
K (2)

ii − K (1)
ii

)
	2

i ψ2, (A6)

a2ψ2 + b2|ψ2|2ψ2 + γ |ψ1|2ψ2 + δψ∗
2 ψ2

1

= ρ
[
ζ 2

(
K (1)

ii + K (2)
ii

) + K (3)
ii

]
	2

i ψ2

+ ρζ
(
K (2)

ii − K (1)
ii

)
	2

i ψ1, (A7)

where we have introduced the parameters,

a1 = −2(G0 − G1 + τ ),

a2 = −(2ζ 2 + 1)(G0 − G2 + τ ),

b1 = 2; b2 = 1 + 2ζ 4,

γ = 4ζ 2, δ = 2ζ 2. (A8)

The system of equations in Eqs. (A6) and (A7) can describe
both s + is and s + id superconducting states, depending on
the structures of the tensors in Eq. (A4). In the crystalline
axes, the anisotropy tensors K (α)

i j are diagonal in their spatial
components, and their symmetry requirements are reported in
Table I.

Since in Eqs. (A6) and (A7) we only have combinations of
K (α)

i j , we introduce the following tensors:

Q11
i j = ρ

(
K (1)

i j + K (2)
i j

)
,

Q22
i j = ρ

[
ζ 2

(
K (1)

i j + K (2)
i j

) + K (3)
i j

]
,

Q12
i j = ρζ

(
K (1)

i j − K (2)
i j

)
. (A9)

TABLE II. Anisotropy matrices K (α)
i j in Eq. (A1) used in this

paper for both s + is and s + id systems. These matrices are written
in the crystalline reference frame, in fact, they are diagonal in the
spatial components. In this case, α ∈ {1–3} since these matrices are
directly related to the three microscopic bands.

s + is s + id

K̂1 =
⎛
⎝1.0 0 0

0 1.0 0
0 0 0.5

⎞
⎠ K̂1 =

⎛
⎝1.0 0 0

0 1.5 0
0 0 0.5

⎞
⎠

K̂2 =
⎛
⎝1.5 0 0

0 1.5 0
0 0 0.3

⎞
⎠ K̂2 =

⎛
⎝1.5 0 0

0 1.0 0
0 0 0.3

⎞
⎠

K̂3 =
⎛
⎝0.5 0 0

0 0.5 0
0 0 0.4

⎞
⎠ K̂3 =

⎛
⎝0.5 0 0

0 0.5 0
0 0 0.4

⎞
⎠

Hence, the difference between s + is and s + id states will
be only in the structure of the tensor Q12

i j . The free-energy
functional yielding the equations of motion Eqs. (A6) and
(A7) is

F =
∫

d3x

{
(	iψα )∗Qαβ

i j (	 jψβ ) + aα|ψα|2 + bα

2
|ψα|4

+ γ |ψ1|2|ψ2|2 + δ

2

(
ψ∗2

1 ψ2
2 + ψ2

1 ψ∗2
2

) + (∇ × A)2

8π

}
,

(A10)

which corresponds to Eq. (2) used in our paper. In our sim-
ulations, we fixed η = 5, λ = 4.5, and τ = 0.2. To be in a
BTRS regime, it is necessary to have η/λ ∼ 1 and τ ∈ [0, 0.3]
as reported in Ref. [29]. The choice of K (α)

i j is reported in
Table II.

This choice of K (α)
i j together with the definitions in Eq. (A9)

yield to the Q̂αβ matrices displayed in Table III. Finally, in the
covariant derivative 	 j = ∂ j + iqA j , we set q = 0.25.

TABLE III. Simulation parameters for anisotropy matrices Q̂αβ

for both s + is and s + id systems in the effective two-band
Ginzburg-Landau model reported in Eq. (A10). These matrices are
written in the crystalline reference frame, in fact, they are diagonal
in the spatial components. In this case, α, β ∈ {1, 2}. The values for
Q̂αβ are obtained from Eq. (A9).

s + is s + id

Q̂11
�

(
0.25 0 0

0 0.25 0
0 0 0.08

)
Q̂11

�

⎛
⎝0.25 0 0

0 0.25 0
0 0 0.08

⎞
⎠

Q̂22
�

(
0.11 0 0

0 0.11 0
0 0 0.06

)
Q̂22

�

(
0.11 0 0

0 0.11 0
0 0 0.06

)

Q̂12
�

(
0.024 0 0

0 0.024 0
0 0 −0.01

)
Q̂12

�

(
0.024 0 0

0 −0.024 0
0 0 −0.01

)
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