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AbstractAbstractAbstractAbstract    13 

Dissolution of a simulant UK nuclear waste glass containing Mg, Ca and Zn was investigated over 14 

35 d at 50 °C in water and simulant groundwater solutions. The dissolution rates were influenced 15 

subtly by the groundwater composition, following the trend, from least to most durable: clay > 16 

water > granite ≈ saline. Solutions were rapidly silica saturated but boron dissolution rates continued 17 

to increase. This is hypothesised to be due to the formation of secondary Mg-silicate precipitates, 18 

preventing the formation of a passivating silica gel layer and allowing glass dissolution to proceed at 19 

close to the maximum rate. 20 

 21 

Key words: Key words: Key words: Key words: aluminoborosilicate glass, nuclear waste, chemical durability, corrosion, zinc, magnesium, 22 

calcium, groundwater.    23 
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Some reprocessed high-level-waste (HLW) in the United Kingdom will be immobilised in a Ca and Zn 34 

oxide modified Mixed Windscale (MW) base glass with a nominal composition of 35 

4.2Li2O�8.6Na2O�6.0CaO�6.0ZnO�4.2Al2O3�23.4B2O3�47.6SiO2 wt.%, referred to as CaZn MW. The 36 

transition from regular MW to the CaZn MW base glass has been made to enhance the incorporation 37 

of high Mo-content Post-Operational-Clean-Out (POCO) waste from the decommissioning of the 38 

highly-active-storage tanks [1, 2]. At present, this glass is being used to immobilise reprocessing 39 

wastes only. Investigation of the short-term durability of the CaZn MW glass [3-5], compared with 40 

regular MW glass (both incorporating reprocessing waste), shows that the addition of CaO and ZnO 41 

improves durability in the short-term [3, 4]. However, there remains uncertainty with regard to the 42 

chemical durability of CaZn-glass, especially under conditions representative of geological disposal, 43 

including in groundwater and at expected temperatures. The presence of Mg, as both a glass 44 

component and a key constituent of groundwater, is known to trigger the formation of secondary 45 

phases, which accelerate glass corrosion [6-11]. Furthermore, similar effects have been observed for 46 

glasses incorporating even small quantities of Zn [5, 12].  47 

 48 

This study aims to evaluate the influence of different simulant groundwater solution compositions, 49 

compared with pure water, on the dissolution rates of the CaZn MW28 glass (28 wt.% waste loading) 50 

in a short-term accelerated leaching experiment, and to identify the role of secondary phases in the 51 

dissolution mechanism.  52 

 53 

CaZn MW28 was fabricated from a selection of oxide precursors and 28 wt.% of an inactive HLW 54 

calcine obtained from the National Nuclear Laboratory (NNL-UK) from the reprocessing of Oxide (o) 55 

and Magnox (m) spent nuclear fuel at a ratio of 75o:25m. The batch was melted at 1060 °C for 5 56 

hours (including 4 hours stirring) and annealed at 500 °C for 1 hour. The measured composition, 57 

ascertained by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analysis after 58 

total digest of the glass in hydrofluoric acid was (in wt.% (± 3 % uncertainty)): 3.2 Al2O3, 20.5 B2O3, 59 

0.8 BaO, 4.9 CaO, 1.2 CeO2, 0.4 Cr2O3, 1.4 Cs2O, 1.8 Fe2O3, 3.3 Gd2O3, 0.1 HfO2, 0.6 La2O3, 2.6 Li2O, 1.5 60 

MgO, 1.9 MoO3, 6.9 Na2O, 1.9 Nd2O3, 0.3 NiO, 0.6 Pr2O3, 0.3 RuO2, 37.7 SiO2, 0.4 Sm2O3, 0.3 SrO, 0.3 61 

TeO3, 0.2 Y2O3, 4.7 ZnO and 2.0 ZrO wt.%. The measured density obtained by helium pycnometry 62 

was 2.894 ± 0.003 g cm-3 (uncertainty calculated from the standard deviation of ten measurements).  63 

 64 

Crushed glass particles (75 – 150 µm diameter) were prepared and Product-Consistency-Test-B (PCT-65 

B) experiments, according to ASTM standard C1285-14 [13], were conducted at 50 °C in Ultra-High-66 

Quality (UHQ) water (18.2 MΩ cm) (initial pH(RT) 7.2) and in three simulant groundwater solutions 67 
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(Table 1). The surface area to volume ratio was 2,000 m-1, and duplicate experiments were 68 

performed for 1, 3, 7, 14, 28 and 35 days under oxic conditions. Synthetic groundwater solutions 69 

were prepared by addition of chemical reagents added to 1 L of distilled water [14], as shown in 70 

Table 1. A total of 1.08 g of glass and 10 mL of solution was used. The amount of glass dissolved was 71 

measured from the normalised mass of elements (i) (g m-2) (NLi), according to:  72 

 73 

NLi  = (Ci − Ci,b)/(fi × (SA/V))          (1) 74 

 75 

where Ci and Ci,b are the average concentration of element, i, in the leachate and blank tests 76 

(solution only, no glass), respectively (mg L-1), measured using ICP-OES (ThermoScientific 77 

iCAPDuo6300); fi is the mass fraction of i in the glass (unitless) and SA/V is the surface area to 78 

volume ratio of the total particles (m-1), based on the geometric surface area. Uncertainty in NLi was 79 

calculated by the standard deviation of the sum of uncorrelated random errors (see supplementary 80 

data).  81 

 82 

Two different approaches were used to assess the normalised dissolution rate of boron (NRB, g m-2 d-83 

1). In the first case, the 1 – 35 d NLB data were fitted using linear regression, and the uncertainty in 84 

NRB was calculated from a chi-squared fit. In the second the data was fitted using: 85 

 86 

NLB = Atan-1(t/B)           (2) 87 

 88 

where A and B are fitting constants and t is time; an inverse tan fit has previously been found to 89 

provide a good empirical fit to the normalised mass loss data for a number of glasses, including the 90 

International Simple Glass (ISG) [15, 16]. In this case an “initial” dissolution rate, often defined as the 91 

maximum rate of glass dissolution controlled by hydrolysis of the silicate network [17], was 92 

calculated by evaluating the slope at t = 0:  93 

 94 

dNLi/dt(t=0)            (3) 95 

 96 

The experiments performed here do not involve infinitely dilute conditions, therefore, the “forward” 97 

rate, where Q = 0, is not calculated (noting that Q refers to the ion activity product in Transition 98 

State Theory applied to glass corrosion [18 - 20]). Thus the rates calculated in Eqn (3) are the 99 

inferred rates at t = 0 and are termed “initial” rates for these experiments. After dissolution, dried 100 

particles (dried for 14h at 50 °C) were adhered to carbon tabs or mounted in epoxy and ground to 101 
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reveal a cross-section. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy 102 

(EDS) were performed using a Hitachi TM3030 SEM (operating at an accelerating voltage of 15 kV) 103 

and a Bruker Quantax 70, respectively. X-ray diffraction (XRD) was performed on pristine and 35 d 104 

altered particles using a Bruker D2 Phaser X-ray diffractometer. An angular range of 10 < °2Ɵ < 70 105 

with a 0.02° step size of 0.17° min-1 was used, with a total scan time of 110 minutes. The 106 

geochemical modelling package PHREEQ-C version 3 was used to calculate the saturation indices of 107 

various secondary phases in the leachates at all time points. The concentration of elements in the 108 

leachate and the leachate pH(RT) were used as input to calculate a range of possible phases 109 

saturated in solution according to the Lawrence Livermore National Laboratory (LLNL) database. 110 

 111 

Table 1. Composition of three synthetic solutions representative of generic repository groundwaters (GW) [14].   112 

    113 
 Concentration (mmol L−1) 

Element 
Granitic GW 

[21] 
Saline GW 

[21] 
Clay GW  

[22] 

Na 2.8 140 55 

K 0.1 2.1 1.1 

Ca 0.5 19.9 7.5 

Mg 0.2 0.4 5.7 

Cl 2.1 173 52.5 

HCO3 2.0 2.0 - 

SO4
2- 0.1 4.0 15 

SiO2 0.2 - - 

pH(RT) 8.2 7.7 6.5 

   114 

The measured NLB (commonly used as an indicator for glass corrosion since boron does not 115 

participate in alteration layer formation), showed that dissolution of CaZn MW28 glass followed the 116 

trend, from the least to the most durable after 35 d: clay > UHQ > granite ≈ saline (Fig. 1a). The 117 

dissolution rate of boron, NRB, calculated using the two fitting methods described above are given in 118 

Table 2 and Fig. S1a. For all solutions except for the saline groundwater, the dissolution rate of 119 

boron calculated using the linear regression method between 1 and 35 d was approximately the 120 

same (within error) as that calculated at t = 0 using the inverse tan fit (Table 2). The similarity in the 121 

calculated rates suggests that for the granite, clay and UHQ solutions, the NRB for the 35 d duration 122 

of the experiment was similar to the inferred initial rate (at t = 0), i.e. close to the maximum 123 

dissolution rate of the glass [12].  124 

 125 

The NLSi (Fig. 1b and S1b) increased rapidly before slowing; this is typically observed when glass 126 

undergoes the “rate drop” caused by the formation of a passivating silica gel layer before transition 127 
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into the residual rate (Stage II) of dissolution [23]. However, the NLB data indicated that there was no 128 

rate drop. Considering that the glass dissolved at the “initial” rate (as at t = 0), this behaviour can be 129 

attributed to rapid saturation of the solutions with respect to silica, and the almost immediate 130 

precipitation of secondary silicate phases, thus preventing the formation of a passivating silica gel 131 

layer and allowing dissolution to proceed at a rapid rate. In previous studies, the drop in NLSi was 132 

attributed to the formation of Mg-silicate phases [10, 11]. Indeed, there was a decrease in the NLMg 133 

for clay, UHQ and granite solutions. It seems reasonable to suggest that the formation of secondary 134 

Mg-silicate phases may, therefore, drive enhanced glass dissolution, at a relatively rapid rate (similar 135 

in magnitude to the “initial” rate, governed by silicate network hydrolysis), with the source of the 136 

Mg from both the solution and the glass (since this behaviour was also observed in UHQ where the 137 

only source of Mg was the glass). 138 

 139 

In contrast, for the saline groundwater, the NRB calculated using the linear regression method was 140 

considerably lower than the inverse tan fit, suggesting that the dissolution reaction of the glass in 141 

this solution was passivated by the formation of a silica gel layer, as typically observed in borosilicate 142 

glass dissolution. This was confirmed by the NLSi data (Fig. 1b), which reached a residual rate at ~7 d. 143 

It is interesting to note that in this solution, the NLMg increased, rather than decreased. This is 144 

discussed further below. 145 

 146 

 147 

 148 

 149 

 150 

 151 
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 152 

 153 

Fig. 1. (a – e) Normalized mass loss (NL) of elements, i, from CaZn MW28 particles during 35 d PCT-B leaching at 50°C in 154 
various groundwater compositions (errors bars are calculated from the sum of uncorrelated random errors); and f) pH(RT) 155 
measurements of the leachate. (pH(RT)t=0: UHQ 7.2, granite 8.2, saline 7.7, clay 6.5). 156 
 157 

 158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 
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Table 2. Normalised dissolution rate of boron (NRB) calculated between 1 and 35 d for all experiments using a chi-square fit 168 
and between 14 and 35 d for the saline groundwater solution (since this was the linear part of the dissolution reaction) and 169 
the NRB & Si “initial rate” as calculated at t=0 using an inverse tan fit.  170 
 171 

Solution  
B dissolution rate 

1 - 35 d 
 (NRB / g m-2 d-1) 

 
R2 B initial rate 

(NRB / g m-2 d-1) 

 
R2 Si initial rate 

(NRSi / g m-2 d-1) 

 
R2 

Clay (2.82 ± 0.23) x 10−2 0.999 (2.8 ± 0.7) x 10−2 1.000 (1.4 ± 0.3) x 10−2 0.975 

UHQ (2.43 ± 0.32) x 10−2 0.882 (2.0 ± 0.5) x 10−2 0.986 (3.0 ± 0.5) x 10−2 0.975 

Granite (1.54 ± 0.12) x 10−2 0.994 (1.6 ± 0.5) x 10−2 0.988 (1.5 ± 0.2) x 10−2 0.983 

Saline (1.67 ± 0.14) x 10−2 0.421 (4.8 ± 0.5) x 10−2 0.995 (4.0 ± 0.5) x 10−2 0.989 

Saline 14-35 d (0.46 ± 0.42) x 10−2 0.947 n/a n/a n/a n/a 

 172 

 173 

Analysis of the glass surface after dissolution by SEM / EDS (Fig. 2, Supplementary Figure 2) 174 

confirmed the enrichment of Mg (and Al) at the surface of the glass leached in clay groundwater, 175 

and a series of precipitates, approximately 2 – 5 µm in size, with a clay-like morphology, were first 176 

observed after 28 d of dissolution (Fig. 2b). X-ray diffraction (Fig. 3) analysis of glass dissolved for 35 177 

d in each of the solutions did not reveal distinct crystalline phases (except for halite (NaCl), PDF 02-178 

0818, in the saline groundwater), which is unsurprising given the low quantity of surface 179 

precipitates. Crystalline RuO2 (PDF 21-1172) was observed in the pristine glass and in all glasses after 180 

35 d of leaching; this is an expected feature of the waste glass being studied. It was not possible to 181 

observe a silica gel layer on the surface of the glass samples at the resolution employed, with the 182 

possible exception of the glass corroded in the saline solution which, after 35 d, appeared to show a 183 

“peeled” dehydrated gel layer with the glass surface underneath (Fig. S2d). 184 
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 185 

Fig. 2. BSE-SEM image and elemental mapping of CaZn MW28 after 35 d of leaching at 50 °C in clay groundwater. 186 

 187 

 188 
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Fig. 3. XRD traces of CaZn MW28 particles pre- and post-35 d PCT-B leaching at 50 °C in UHQ and groundwater 189 

compositions.    190 

Further indication that there was rapid onset of silica saturation in all solutions, and that Mg-silicate 191 

phases may have precipitated, is given by PHREEQ-C geochemical modelling of the solution 192 

leachates. Figure 4 shows that the solutions of all experiments were predicted to be saturated with 193 

respect to a number of phyllosilicate phases, rich in Mg, including saponite (Mg3.165Al.33Si3.67O10(OH)2) 194 

and sepiolite (Mg4Si6O15(OH)2·6H2O). Additionally, they were saturated with respect to a range of Ca-195 

bearing zeolites including mesolite (Na2Ca2(Al2Si3O10)3·8H2O), scolecite (CaAl2Si3O10·3H2O) and 196 

laumonite (CaAl2Si4O12·4H2O)) at every time point, in accordance with the observed reduction in the 197 

NLCa, which was particularly evident for the granite and saline groundwaters. 198 

 199 

 200 

Fig. 4. PHREEQ-C geochemical modelling of the leachate from CaZn MW28 post 35 d PCT-B tests at 50 °C in (a) UHQ water; 201 
(b) granite; (c) saline and; (d) clay groundwater solutions. The measured input pH(RT) range of each data set is provided. 202 
Chemical formulae for each phase is provided in Table S1.  203 
 204 

It is widely understood that Ca can be readily incorporated into silica gel layers, which has the effect 205 

of strengthening the gel layer and making it more resistant to dissolution in the short-term [11, 24–206 

29]. The only experiment in which a silica gel layer was observed (and inferred from NLi data) was 207 

that performed in the saline solution, which had an initial Ca concentration of 19.9 mmol L−1 (Table 208 
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1). Unlike the other groundwaters, the NLCa was negative in the saline solution; since NLi values are 209 

calculated by subtracting the concentration of Ca in the blank solution (Eqn. 1), this indicates that 210 

there was significant removal of Ca from the solution, either into the silica gel layer (Fig. S2d) or 211 

secondary precipitates. Furthermore, in contrast to all of the other solutions, the NLMg in the saline 212 

solution appeared to increase rather than decrease (Fig. 1d), suggesting that Mg leached from the 213 

glass and remained in solution rather than participating in silica gel charge compensation or 214 

secondary precipitate formation. This is in agreement with Aréna et al. [26] who reported that Ca 215 

incorporation into the gel layer of the ISG dissolved in Mg-rich clay groundwater was favoured over 216 

Mg incorporation.  217 

 218 

Interestingly, the clay groundwater contained significantly more Ca than the UHQ and granite 219 

solutions, yet the NLCa did not decrease, indicating that it was not removed from solution. This 220 

highlights the competition for Ca2+ and Mg2+ to form secondary silicate precipitates [16, 29–30], that 221 

favour Mg over Ca. This can be attributed to the more negative Gibbs Free Energy of hydration for 222 

Mg (ΔGHyd(Mg2+) -1830 kJ mol-1, compared with (ΔGHyd(Ca2+) of -1505 kJ mol-1 for Ca) [31], which 223 

shows that Mg-silicates are thermodynamically more likely to form. Although Ca has a more 224 

favourable adsorption constant than Mg (Kads = 10-5.9 for Ca compared with 10-6.2 for Mg) and a 225 

higher ligand exchange rate (Kex = 108.5 for Ca and 105.2 for Mg), both of which favour the 226 

incorporation of Ca within the silica gel layer of corroding glass [29, 32], if Mg ions react with 227 

dissolving silica from the glass before a gel layer can form, there can be no Ca-silica gel layer.  228 

 229 

The observation that the NLMg was significantly greater in the saline groundwater compared to all 230 

other solutions investigated may also be explained by the lower pH imposed by the saline system 231 

(Fig. 1f), inhibiting the formation of Mg-silicate phases [26]. This is consistent with the study by Thien 232 

et al. [8], who found that the precipitation of saponite (Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2·nH2O), was 233 

more efficient at pH 9, while at pH < 9, Mg was partially incorporated into the gel in a charge 234 

compensating role.  235 

 236 

Previous studies have shown the propensity for the precipitation of Zn-silicate phases, such as 237 

hemimorphite (Zn2(SiO4)·H2O), upon the dissolution of Zn-containing MW glasses [33-34]. 238 

Furthermore, the hydrated zinc silicate phase, zincsilite (Zn3Si4O10(OH)2·4(H2O)), was proposed to 239 

form upon SON68 dissolution [35]. The Gibbs Free Energy of hydration of Zn2+ is more negative than 240 

that of Mg2+ (ΔGHyd(Zn2+) is -1955 kJ mol-1 and ΔGHyd(Mg2+) is -1830 kJ mol-1), indicating that if Mg-241 

silicates are capable of forming, then it is highly likely that Zn-silicates will also form, should Zn be 242 
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dissolved from the glass. In a simple ternary borosilicate glass composition containing Zn, it was 243 

hypothesised that the precipitation of Zn-silicate prevents the re-condensation of silica to form a gel 244 

layer, sustaining glass dissolution [12], which agrees well with the behaviour observed in the present 245 

study. 246 

 247 

In the granite groundwater solution there was no Zn detected, suggesting that Zn was not released 248 

to solution (Fig. 5). In the UHQ, saline and clay groundwater solutions, however, it was possible to 249 

measure Zn in solution but the concentrations were close to the detection limit of the instrument 250 

(approx.  0.01 ppm) and, as such, had large errors associated with their values. Despite the absence 251 

of evidence for Zn-silicates in SEM/EDS and XRD analyses in this short duration study, geochemical 252 

modelling of all solutions showed that Zn2SiO4 was predicted to be stable. While it is highly unlikely 253 

that this phase would form under the hydrothermal conditions of the dissolution experiments 254 

performed here, it shows that Zn-silicate phases could be stable.   255 

 256 

 257 

Fig. 5. Normalised mass loss of Zn (NLZn) from CaZn MW28 particles during 35 d PCT-B leaching at 50°C in various 258 
groundwater compositions calculated from elemental concentration values (ppm) at the limits of instrument detection. 259 

 260 

This study highlights the fact that different groundwaters exert a subtle influence on the short-term 261 

dissolution rate of CaZn MW28 glass. Rapid onset of silica saturation and Mg-silicate precipitation 262 

[9], as predicted by geochemical modelling of the solutions and tentatively identified by SEM/EDS, is 263 

the postulated reason for elevated dissolution rates, where Mg from both the glass and the solution 264 

likely prevents the re-condensation of silica to form a gel layer, sustaining glass dissolution at a rate 265 

similar in magnitude to the “initial” rate. The same solubility limiting phases were predicted to form 266 

in all solutions (Fig. 4), therefore, the differences in dissolution rate may be attributed to the kinetics 267 

of formation and the quantity of the elements in each solution. The exception is saline groundwater, 268 
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which may have promoted the formation of a passivating silica gel layer (Fig. S2d), did not show a 269 

propensity for Mg-silicate formation and had amongst the lowest dissolution rates. 270 

 271 

The dissolution behaviour observed here is not well described by any of the accepted dissolution 272 

rate definitions: the initial rate is widely defined as the congruent, linear release of elements at the 273 

maximum rate controlled by hydrolysis of the silica network [17]; the residual rate occurs once the 274 

solution is saturated with respect to silica and glass dissolution is no longer driven by silicate 275 

hydrolysis but by diffusion processes (of ions through the silica gel layer) [17], while the massive 276 

precipitation of secondary silicates (almost exclusively zeolite phases) and rapid dissolution of the 277 

glass is known as “rate resumption”, which is typically associated with a significant pH increase [36]. 278 

In contrast, in the groundwater solutions of the present study, the CaZn MW28 glass apparently 279 

underwent “initial” rate dissolution while under conditions of silica saturation, promoted by 280 

aggressive precipitation of secondary Mg-phyllosilicate phases, with no change in pH. Seemingly all 281 

of the currently defined stages of dissolution occurred simultaneously, thus an alternative definition 282 

for such behaviour is required. 283 

 284 

As radioactive waste geological disposal programmes mature, and dissolution rates are determined 285 

in increasingly complex groundwater solutions, this study serves to highlight the need for further 286 

investigation of systems containing divalent cations and their influence on glass dissolution 287 

behaviour. This is also important for new glass compositions developed to progress the 288 

decommissioning of nuclear facilities, such as the incorporation of Zn in POCO glass compositions. In 289 

particular, further detailed studies of the role of Mg and Zn-silicate precipitation in glass dissolution, 290 

in conjunction with appropriate thermodynamic databases, are required to understand whether Zn-291 

silicate influences glass dissolution by the same mechanism, and to the same magnitude, as Mg-292 

silicate precipitation, and to determine if there is an additive [37] or competitive effect when both 293 

Mg and Zn are present.   294 

  295 
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    412 

Uncertainty in NLi was calculated by the standard deviation of the sum of uncorrelated random 413 

errors [16] according to: 414 

 415 

σ� = �∑ �����	
��
�� σ��                             [S1] 416 

 417 

where σf is the standard deviation of f(xi), where xi is the parameter pertaining to element i and σi is 418 

the standard deviation of parameter xi. Substituting Equation 1 (main text) into Equation S1, and 419 

using a relative error, σ���� = �������   gives: 420 

 421 

σ���� = ������,���,�
� �����,!��,"
�
#��,�$��,"%� + σ�'�� + σ�()/+�                      [S2] 422 

 423 

from which the experimental uncertainty on ri can be derived. Relative errors of 10%, 10%, 3% and 424 

15% were ascribed to Ci, Ci,o, fi and SA/V respectively. 425 

 426 
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 439 

 440 

 441 

 442 

    443 

a) 444 

    445 
b) 446 

    447 
 448 

Figure S1. (a) Inverse tan empirical fit to the normalised mass loss (B & Si) data; and (b) PCT-B tests for CaZn 449 
MW28 at 50°C, SA/V = 2,000 m−1, in various groundwater solutions and UHQ water. Note the additional data 450 
point at 112 d for the UHQ test only. Uncertainty in NLi was calculated by the standard deviation of the sum of 451 
uncorrelated random errors (Eqns. 1, S1 & S2).    452 
 453 
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 455 
 456 
Figure S2. BSE-SEM images of the CaZn MW28 glass surface after 35 d of dissolution in groundwater at 50°C 457 
showing (a) and (b) the range of crystalline phases precipitated on the surface of glass dissolved in clay 458 
groundwater; (c) the absence of a distinct gel layer at the surface of the glass dissolved in clay groundwater 459 
(cross section image); (d) possible evidence for a dehydrated silica gel layer peeled back from the glass surface, 460 
in addition to halite crystallites for glass dissolved in saline groundwater; (e) glass surface from the UHQ water 461 
and (f) granite tests, which did not show any surface precipitation or gel layers (the bright phases are crystallite 462 
of RuO2). 463 
 464 
 465 
 466 
 467 
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Table S1. Chemical formulae for all predicted phases from PHREEQ-C geochemical modelling 468 
    469 

Mineral phase Chemical formula 
Analcime NaAlSi2O6·H2O 
Beidellite - (Ca,Mg) (Ca,Mg)0.165Al2.33Si3.67O10(OH)2 
Beidellite - Na  Na0.61Al4.7Si7.32O20(OH)4 
Clinochlore - 14 Å Mg5Al2Si3O10(OH)8 
Laumonite CaAl2Si4O12·4H2O 

Lawsonite CaAl2Si2O7(OH)2·H2O 

Mesolite  Na0.676Ca0.657Al1.99Si3.01O10·2.647H2O 

Saponite – Ca Ca0.165Mg3Al0.33Si3.67O10(OH)2 
Saponite – H H0.33Mg3Al0.33Si3.67O10(OH)2 
Saponite – Mg Mg3.165Al0.33Si3.67O10(OH)2 
Saponite – Na Na0.33Mg3Al0.33Si3.67O10(OH)2 
Scolecite CaAl2Si3O10·3H2O 
Sepiolite  Mg4Si6O15(OH)2·6H2O 
Zinc silicate  Zn2SiO4 

    470 
 471 

 472 
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