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Breast cancer susceptibility variants frequently show heterogeneity in associations by 

tumor subtype. To identify novel loci, we performed a genome-wide association study 

(GWAS) including 133,384 breast cancer cases and 113,789 controls, plus 18,908 

BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both 

standard and novel methodologies that account for underlying tumor heterogeneity by 

estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth 

factor receptor 2 (HER2) status and tumor grade. We identified 32 novel susceptibility 

loci (P<5.0x10-8), 15 of which showed evidence for associations with at least one tumor 

feature (false discovery rate <0.05). Five loci showed associations (P<0.05) in opposite 

directions between luminal- and non-luminal subtypes. In-silico analyses showed these 

five loci contained cell-specific enhancers that differed between normal luminal and 

basal mammary cells. The genetic correlations between five intrinsic-like subtypes 

ranged from 0.49 to 0.87. The proportion of heritability explained by all known 

susceptibility loci was 31.9% for triple-negative and 45.2% for luminal A-like disease. 

These findings provide improved understanding of genetic predisposition to breast 

cancer subtypes and will inform the development of subtype-specific polygenic risk 

scores.  

  



GWAS have identified over 170 independent breast cancer susceptibility loci, 

many of which show differential associations by tumor subtypes, particularly ER-positive 

versus ER-negative or triple negative (TN) disease1-3. However, prior GWAS have not 

simultaneously investigated multiple, correlated tumor markers to identify additional 

source(s) of etiologic heterogeneity. We performed a breast cancer GWAS using both 

standard analyses and a novel two-stage polytomous regression method that efficiently 

characterizes etiologic heterogeneity while accounting for tumor marker correlations and 

missing data4.  

The study populations and genotyping are described elsewhere1,2,5,6 and in the 

Online Methods. Briefly, we analyzed data from 118,474 cases and 96,201 controls of 

European ancestry participating in 82 studies from the Breast Cancer Association 

Consortium (BCAC) and 9,414 affected and 9,494 unaffected BRCA1 mutation carriers 

from 60 studies from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) 

with genotyping data from one of two Illumina genome-wide custom arrays. In analyses 

of overall breast cancer, we also included summary level data from 11 other breast 

cancer GWAS (14,910 cases and 17,588 controls) without subtype information. Our 

study expands upon previous BCAC GWAS1, with additional data on 10,407 cases and 

7,815 controls, an approximate increase of 10% and 9%, respecitvely. (Supplementary 

Tables 1-4). 

The statistical methods are further described in the Online Methods and in 

Supplementary Figure 1. To identify single nucleotide polymorphisms (SNPs) for 

overall breast cancer (invasive, in situ or unknown invasiveness) in BCAC, we used 

standard logistic regression to estimate odds ratios (OR) and 95% confidence-intervals 



(CI) adjusting for country and principal components (PCs). iCOGS and OncoArray data 

were evaluated separately and results combined with those from the 11 other GWAS 

using fixed-effects meta-analysis.  

To identify invasive breast cancer susceptibility SNPs displaying evidence of 

heterogeneity, we used a novel score-tests based on a two-stage polytomous model4 

that allows flexible, yet parsimonious, modelling of associations in the presence of 

underlying heterogeneity by ER, PR, HER2 and/or grade (Online Methods, 

Supplementary Note)7. The model handles missing tumor characteristic data by 

implementing an efficient Expectation-Maximization algorithm4,8. These analyses were 

restricted to BCAC controls and invasive cases (Online Methods). We fit an additional 

two-stage model to estimate case-control ORs and 95% CI between the SNPs and 

intrinsic-like subtypes defined by combinations of ER, PR, HER2 and grade (Online 

Methods): (1) luminal A-like, (2) luminal B/HER2-negative-like, (3) luminal B-like, (4) 

HER2-enriched-like and (5) TN or basal-like. We analyzed iCOGS and OncoArray data 

separately, adjusting for PCs and age, and meta-analyzed the results using a fixed-

effects model. We evaluated the effect of country using a leave-one-out sensitivity 

analysis (Online Methods). 

We used data from the BRCA1 mutation carriers who are prone to develop TN 

disease9, to estimate per-allele hazard ratios (HRs) within a retrospective cohort 

analysis framework. We assumed the estimated ORs for BCAC TN cases and the HRs 

estimated from CIMBA BRCA1 carriers approximated the same underlying relative risk9, 

and used a fixed-effect meta-analysis to combine these risk estimates (Online 

Methods). We used the two-stage polytomous model to test for heterogeneity in 



associations for all newly identified SNPs across subtypes, globally and by tumor-

specific markers (Online Methods). 

Overall, we identified 32 novel independent susceptibility loci marked by SNPs 

with P<5.0x10-8 (Figure 1, Supplementary Table 5-7, Supplementary Figure 2-6): 22 

SNPs using standard logistic regression, eight SNPs using the two-stage polytomous 

model and three SNPs in the CIMBA/BCAC-TN meta-analysis (rs78378222 was also 

detected by the two-stage polytomous model in BCAC). Fourteen additional significant 

(P<5.0x10-8) SNPs were excluded, 13 because they lacked evidence of association 

independent of previously reported susceptibility SNPs in conditional analyses (P 

≥1.0x10-6; Supplementary Table 8-10), and one (chr22:40042814) for showing a high-

degree of sensitivity to leave-one-out country analysis (Supplementary Figure 7). 

Supplemental figures 8-9 show the associations between all 32 SNPs and the 

intrinsic-like subtypes.  

Fifteen of the 32 SNPs showed evidence of heterogeneity (FDR<0.05) according 

to the global heterogeneity test (Figure 2, Supplementary Table 11). Nine of these 

were identified in analyses accounting for tumor marker heterogeneity. ER (7 SNPs) 

and grade (7 SNPs) most often contributed to observed heterogeneity (marker-specific 

P<0.05), followed by HER2 (4 SNPs) and PR (2 SNPs). rs17215231, identified in the 

CIMBA/BCAC-TN meta-analysis, was the only SNP found exclusively associated with 

TN disease (OR=0.85, 95%CI=0.81-0.89; P=8.6x10-13). rs2464195, also identified in the 

CIMBA/BCAC-TN meta-analysis, was associated with both TN (OR=0.93, 95%CI=0.91-

0.96; P=2.5x10-8) and luminal B-like subtypes (OR=0.96, 95%CI=0.92-0.99; P=0.02; 

Supplementary Table 7, Supplementary Figure 9). This SNP is in LD (r2=0.62) with 



rs7953249, which is differentially associated with risk of subtypes of ovarian cancer10. 

Five of these heterogeneous SNPs showed associations with luminal and non-luminal 

subtypes in opposite directions (Figure 3). For example, four SNPs were associated in 

opposite directions with luminal A-like and TN subtypes (respectively, for rs78378222 

OR=1.13, 95%CI=1.05-1.20 vs OR=0.67, 95%CI=0.57-0.80; for rs206435 OR=1.03, 

95%CI=1.01-1.05 vs OR=0.95, 95%CI=0.92-0.98; for rs141526427 OR=0.96, 

95%CI=0.94-0.98 vs OR=1.04, 95%CI=1.01-1.08; and for rs6065254 OR=0.96, 

95%CI=0.94-0.97 vs OR=1.04, 95%CI=1.01-1.07). The specific tumor-marker 

heterogeneity test showed rs78378222 associated with ER (PER=7.0x10-6) and HER2 

(PHER2=2.07x10-4), rs206435 associated with ER (PER=2.8x10-3) and grade 

(Pgrade=2.8x10-4) and rs141526427 (PER=1.3x10-3) and rs6065254 (PER=4.3x10-3) 

associated with ER. rs7924772 showed opposite associations between HER2-negative 

and HER2-positive subtypes (e.g., OR=1.04, 95%CI=1.03-1.06 for luminal A-like 

disease and OR=0.95, 95%CI=0.92-0.99 for luminal B-like disease) and, consistent with 

these findings, was exclusively associated with HER2 (PHER2=1.4x10-6; Figure 3). Notably, 

rs78378222 located in the 3’ UTR of TP53 also showed opposite associations with high-

grade serous cancers (OR=0.75, P=3.7x10-4) and low-grade serous cancers (OR=1.58, 

P=1.5x10-4; http://ocac.ccge.medschl.cam.ac.uk). Moreover, prior analyses did not find 

rs78378222 associated with risk of breast cancer, likely due to its opposite effects 

between subtypes11. 

 We defined a set of candidate causal variants (CCVs; Online Methods) for each 

novel locus and investigated the CCVs in relation to previously-annotated enhancers in 

primary breast cells12. Based on combinations of H3K4me1 and H3K27ac histone 



modification ChIP-seq signals, putative enhancers in basal cells (BC), luminal 

progenitor (LP) and mature luminal cells (LM) were characterized as “OFF,” “PRIMED”, 

and “ACTIVE” (Online Methods). We defined “ANYSWITCH” enhancers as those 

exhibiting different states between cell types. Among the five loci showing evidence of 

having associations in opposite directions between some subtypes, at least one CCV 

per locus overlapped an “ANYSWITCH” enhancer (Figure 4). For example, rs78378222 

overlapped an ACTIVE enhancer in BC, PRIMED in LP and OFF in LM. In comparison, 

63% of the loci with consistent direction of associations across subtypes overlapped 

with an “ANYSWITCH” enhancer (Supplementary Table 12-13). These results support 

the hypothesis that some variants may modulate enhancer activity in a cell-type specific 

manner and thus differentially influence the risk of developing different tumor subtypes. 

  We used INQUIST to intersect each of the CCVs with functional annotation data 

from public databases to identify potential target genes1 (Online Methods, 

Supplementary Table 14). We predicted 179 unique target genes for 26 of the 32 

independent signals. Twenty-three target genes in 14 regions were predicted with high 

confidence (designated “Level 1”), of which 22 target genes in 13 regions were 

predicted to be distally regulated. These targets include four genes predicted as 

INQUISIT targets in previous studies13,14 POLR3C, RNF115, SOX4 and TBX3, a known 

somatic breast cancer driver gene15, and genes implicated by transcriptome-wide 

association studies (LINC0088616 and YBEY17).  

 We used stratified LD-regression to investigate the genetic architecture of 

molecular subtypes by evaluating the genetic correlations18,19 between subtypes and 

comparing enrichment of genomic features20 between luminal A-like and TN subtypes 



(Online Methods). All intrinsic-like subtypes were moderately- to highly-correlated, with 

luminal B/HER2-negative-like and TN subtypes (r=0.49, SE=0.06), and luminal A-like 

and TN (r=0.50, SE=0.04; Figure 4; Supplementary Table 15) having the lowest 

genetic correlations. Breast cancer in BRCA1 mutation carriers and TN disease were 

highly genetically correlated (r=0.83, SE=0.08). To compare genomic enrichment, we 

first evaluated 53 annotations and found TN tumors were most enriched for “super-

enhancers, extend500bp” (3.04-fold, P= 3.3x10-6), and “digital genomic footprint, 

extend500bp” (from DNase hypersensitive sites) (2.2-fold, P=4.0x10-4) (Supplementary 

Table 16, Supplementary Figure 10). However, none of the 53 annotations 

significantly differed between luminal A-like and TN tumors. We also investigated cell-

specific enrichment of four histone markers - H3K4me1, H3K3me3, H3K9ac and 

H3K27ac (Online Methods) - and found enrichment in both luminal-A and TN subtypes 

for gastrointestinal cell types and suppression of central nervous system cell types 

(Supplementary Figure 11). 

The 32 identified SNPs explain approximately 1.2% of the two-fold familial 

relative risk for overall breast cancer. Collectively, the known and newly-identified 

common susceptibility SNPs explain approximately 18.3% of the familial relative risk. 

Moreover, we estimate that all common (MAF>0.01), reliably imputed variants on 

OncoArray can explain approximately 40.2% of the familial risk (Online Methods). The 

heritability explained by all identified susceptibility SNPs for the intrinsic-like subtypes 

ranged from 30.47% for HER2-enriched-like to 45.19% for luminal A-like, and for 

BRCA1 carriers the explained heritability was 23.43% (Table 1). These analyses 

demonstrate the benefit of combining standard GWAS methods with methods 



accounting for underlying tumor heterogeneity. Moreover, they may help clarify 

mechanisms predisposing to specific molecular subtypes, and provide precise risk 

estimates for molecular subtypes to inform the development of subtype-specific 

polygenic risk scores21.  

 

 

  



Online Methods 

 

Study populations 

The overall breast cancer analyses included women of European ancestry from 

82 BCAC studies from over 20 countries, with genotyping data derived from two Illumina 

genome-wide custom arrays, the iCOGS and OncoArray (Supplementary Table 1). 

Most of the studies were case-control studies in the general population, or hospital 

setting, or nested within population-based cohorts, but a subset of studies oversampled 

cases with a family history of the disease. We included controls and cases of invasive 

breast cancer, carcinoma in-situ, and cases of unknown invasiveness. Information on 

clinicopathologic characteristics were collected by the individual studies and combined 

in a central database after quality control checks. We used BCAC database version 

‘freeze’ 10 for these analyses. Among a subset of participants (n=16,766) that were 

genotyped on both the iCOGS and OncoArray arrays, we kept only the OncoArray data. 

One study (LMBC) contributing to the iCOGS dataset was excluded due to inflation of 

the test statistics that was not corrected by adjustment for the first ten PCs. We also 

excluded OncoArray data from Norway (the Norwegian Breast Cancer Study) because 

there were no controls available from Norway with OncoArray data. All participating 

studies were approved by their appropriate ethics or institutional review board and all 

participants provided informed consent. The total sample size for this analysis, including 

iCOGS, OncoArray and other GWAS data, comprised 133,384 cases and 113,789 

controls.  



In the GWAS analyses accounting for underlying heterogeneity according to ER, 

PR, HER2 and grade, we included genotyping data from 81 BCAC studies. These 

analyses were restricted to controls and cases of invasive breast cancer; we excluded 

cases of carcinoma in-situ and cases with missing information on invasiveness, as 

these cases would potentially bias the implicit “imputation” of tumor marker in the 

underlying EM algorithm (Supplemental Table 2). We also excluded all studies from a 

specific country if there were no controls for that country, or if the tumor marker data 

were missing on two or more of the tumor marker subtypes (see footnote of 

Supplemental Table 2 for further explanation of excluded studies). We did not include 

the summary results from the 14,910 cases and 17,588 controls from the 11 other 

GWAS in subtype analyses because these studies did not provide data on tumor 

characteristics. We also excluded invasive cases (n=293) and controls (n=4,285) with 

missing data on age at diagnosis or age at enrollment, information required by the EM 

algorithm to impute missing tumor characteristics. In total, the final sample for the two-

stage polytomous logistic regression comprised 106,278 invasive cases and 91,477 

controls. 

Participants included from CIMBA were women of European ancestry, aged 18 

years or older with a pathogenic BRCA1 variant. Most participants were sampled 

through cancer genetics clinics. In some instances, multiple members of the same 

family were enrolled. OncoArray genotype data was available from 58 studies from 24 

countries. Following quality control and removal of participants that overlapped with the 

BCAC OncoArray study, data were available on 15,566 BRCA1 mutation carriers, of 

whom 7,784 were affected with breast cancer (Supplementary Table 3). We also 

https://www.nature.com/articles/ng.3785#s3


obtained iCOGS genotype data on 3,342 BRCA1 mutation carriers (1,630 with breast 

cancer) from 54 studies through CIMBA. All BRCA1 mutation carriers provided written 

informed consent and participated under ethically approved protocols. 

 

Genotyping, quality control, and imputation 

Details on genotype calling, quality control and imputation for the OncoArray, 

iCOGS, and GWAS are described elsewhere1,2,5,6. Genotyped or imputed SNPs 

marking each of the loci were determined using the iCOGS and the OncoArray 

genotyping arrays and imputation to the 1000 Genomes Project (Phase 3) reference 

panel. We included SNPs, from each component GWAS with an imputation quality 

score of >0.3. We restricted analysis to SNPs with a minor allele frequency >0.005 in 

the overall breast cancer analysis and >0.01 in the subtype analysis. 

 

Known breast cancer susceptibility variants  

Prior studies identified susceptibility SNPs from genome-wide analyses at a 

significance level P< 5.0×10−8 for all breast cancer types, ER-negative or ER-positive 

breast cancer, in BRCA1 or BRCA2 mutation carriers, or in meta-analyses of these1,2. 

We defined known breast cancer susceptibility variants as those variants that were 

identified or replicated in prior BCAC analyses1,2. We also excluded from consideration 

variants within 500kb of a previously published locus, since these regions have been 

subject to separate conditional analyses14. 

 



Standard analysis of BCAC data: Logistic regression analyses were conducted 

separately for the iCOGS and OncoArray datasets, adjusting for country and the array-

specific first 10 PCs for ancestry informative SNPs. The methods for estimating PCs 

have been described elsewhere1,2. For the remaining GWAS, adjustment for inflation 

was done by adjusting for up to three PCs and using genomic control adjustment, as 

previously described1. We evaluated the associations between approximately 10.8 

million SNPs with imputation quality scores (r2) ≥0.3 and MAF >0.005. We excluded 

SNPs located within ±500 KB of, or in LD (r2≥0.1) with known susceptibility SNPs22. 

The association effect size estimates from these, and the previously derived estimates 

from the 11 other GWAS, were then combined using a fixed effects meta-analysis. 

Since individual level genotyping data were not available for some previous GWAS, we 

conservatively approximated the potential overlap between the GWAS and iCOGS and 

OncoArray datasets, based on the populations contributing to each GWAS 

(iCOGS/GWAS: 626 controls and 923 cases; OncoArray/GWAS: 20 controls and 990 

cases). We then used these adjusted data to estimate the correlation in the effect size 

estimates, and incorporated these into the meta-analysis using the method of Lin and 

Sullivan23. 

 

Subtypes analysis of BCAC data: We described the two-stage polytomous logistic 

regression in more detail elsewhere4,24 (Supplementary Note). In brief, this method 

allows for efficient testing of a SNP-disease association in the presence of tumor 

subtype heterogeneity defined by multiple tumor characteristics, while accounting for 

multiple testing and missing data on tumor characteristics. In the first stage, the model 



uses a polytomous logistic regression to model case-control ORs between the SNPs 

and all possible subtypes that could be of interest, defined by the combination of the 

tumor markers. For example, in a model fit to evaluate heterogeneity according to ER, 

PR and HER2 positive/negative status, and grade of differentiation (low, intermediate 

and high grade), the first stage incorporates case-control ORs for 24 subtypes defined 

by the cross-classification of these factors. The second stage restructures the first-stage 

subtype-specific case-control ORs parameters into second-stage parameters through a 

decomposition procedure resulting in a second-stage baseline parameter that 

represents a case-control OR of a baseline cancer subtype, and case-case ORs 

parameters for each individual tumor characteristic. The second-stage case-case 

parameters can be used to perform heterogeneity tests with respect to each specific 

tumor marker while adjusting for the other tumor markers in the model. The two-stage 

model efficiently handles missing data by implementing an Expectation-Maximization 

algorithm4,8 that essentially performs iterative “imputation” of the missing tumor 

characteristics conditional on available tumor characteristics and baseline covariates 

based on an underlying two-stage polytomous model. 

To identify novel susceptibility loci, we used both a fixed-effect two-stage 

polytomous model and a mixed-effect two-stage polytomous model. The score-test we 

developed based on the mixed-effect model allows coefficients associated with 

individual tumor characteristics to enter as either fixed- or random-effect terms. Our 

previous analyses have shown that incorporation of random effect terms can improve 

power of the score-test by essentially reducing the effective degrees-of-freedom 

associated with fixed effects related to exploratory markers (i.e., markers for which there 



is little prior evidence to suggest that they are a source of heterogeneity)25. On the other 

hand, incorporation of fixed-effect terms can preserve distinct associations of known 

important tumor characteristics, such as ER. In the mixed-effect two-stage polytomous 

model, we therefore kept ER as a fixed effect, but modeled PR, HER2 and grade as 

random effects. We evaluated SNPs with MAF >0.01 (~9.7 million) and r2≥0.3, and 

excluded SNPs within ±500 kb of, or in LD (r2≥0.1) with known susceptibility SNPs, 

including those identified in the standard analysis for overall breast cancer. We reported 

SNPs that passed the p-value threshold of P < 5.0x10-8 in either the fixed- or mixed-

effects models. 

We assessed the influence of country on signals identified by the two-stage 

models by performing a ‘leave one out’ sensitivity analyses in which we reevaluated 

novel signals after excluding data from each individual country. Data from the 

OncoArray and iCOGS arrays were analyzed separately and then meta-analyzed using 

fixed-effects meta-analysis.  

Statistical analysis of CIMBA data: We tested for associations between SNPs 

and breast cancer risk for BRCA1 mutation carriers using a score test statistic based on 

the retrospective likelihood of observing the SNP genotypes conditional on breast 

cancer phenotypes (breast cancer status and censoring time)26. Analyses were 

performed separately for iCOGS and OncoArray data. To allow for non-independence 

among related individuals, a kinship-adjusted test was used that accounted for familial 

correlations27. We stratified analyses by country of residence and, for countries where 

the strata were sufficiently large (United States and Canada), by Ashkenazi Jewish 



ancestry. The results from the iCOGS and OncoArray data were then pooled using 

fixed-effects meta-analysis.  

Meta-analysis of BCAC and CIMBA: We performed a fixed-effects meta-

analysis of the results from BCAC TN cases and CIMBA BRCA1 mutation carriers, 

using an inverse-variance fixed-effects approach implemented in METAL28. The 

estimates of association used were the logarithm of the per-allele hazard ratio estimate 

for association with breast cancer risk for BRCA1 mutation carriers from CIMBA and the 

logarithm of the per-allele odds ratio estimate for association with risk of TN breast 

cancer based on BCAC data.  

Conditional analyses: We performed two sets of conditional analyses. First, we 

investigated for evidence of multiple independent signals in identified loci by performing 

forward selection logistic regression, in which we adjusted the lead SNP and analyzed 

association for all remaining SNPs within ±500 kb of the lead SNPs, irrespective of LD. 

Second, we confirmed the independence of 20 SNPs that were located within ±2 MB of 

a known susceptibility region by conditioning the identified signals on the nearby known 

signal. Since these 20 SNPs are already genome-wide significant in the original GWAS 

scan and the conditional analyses restricted to local regions, we therefore used a 

significance threshold of P<1x10-6 to control for type-one error29.  

Heterogeneity analysis of new association signals: We evaluated all novel 

signals for evidence of heterogeneity using two-stage polytomous model. We first 

performed a global test for heterogeneity under the mixed-effect model test to identify 

SNPs showing evidence of heterogeneity with respect to any of the underlying tumor 

markers, ER, PR, HER2 and/or grade. We accounted for multiple testing of the global 



heterogeneity test using a FDR <0.05 under the Benjamini-Hochberg procedure30. 

Among the SNPs with observed heterogeneity, we then further used a fixed-effect two-

stage model to evaluate influence of specific tumor characteristic(s) driving observed 

heterogeneity, adjusted for the other markers in the model. We also fit a separate fixed-

effect two-stage models to estimate case-control ORs and 95% confidence intervals 

(CI) for five surrogate intrinsic-like subtypes defined by combinations of ER, PR, HER2 

and grade31: (1) luminal A-like (ER+ and/or PR+, HER2-, grade 1 & 2); (2) luminal 

B,HER2-negative-like (ER+ and/or PR+, HER2-, grade 3); (3) luminal B-like (ER+ 

and/or PR+, HER2+); (4) HER2-enriched-like (ER- and PR-, HER2+), and (5) TN (ER-, 

PR-, HER2-). 

 

Effective sample size of cases of two-stage polytomous model 

The two-stage polytomous model implements the EM algorithm to impute 

missing tumor characteristics; therefore, the effective sample size of cases is not 

equivalent to the actual number of cases with available tumor characteristic data. We 

estimated the effective sample sizes to help demonstrate the benefit of using the EM 

algorithm to impute missing tumor characteristics and to aid comparability with previous 

studies (Supplementary Table 4). To estimate the effective sample size, suppose we 

have a complete dataset with no missing tumor characteristics, the sample size is nk for 

the kth subtype and n0 for the control. If we fit a two-stage polytomous model for the jth 

SNP, the corresponding log odds ratio for kth subtype is 𝛽̂𝑗𝑘  and the standard error is sjk. Then, approximately: 

𝑣𝑎𝑟(𝛽̂𝑗𝑘 |𝑝𝑗) = 𝑛0 + 𝑛𝑘2 ∗ 𝑝𝑗(1 − 𝑝𝑗)(𝑛0𝑛𝑘), 



where pj is the MAF of the jth SNP. Now we consider fitting a two-stage polytomous 

model with missing tumor characteristics. Given the standard error sjk of the log odds 

ratio and the control sample size, we have the estimate of effective number of cases as, 

𝑛̂𝑘 = ( 1𝑛0 − 2𝑠𝑗𝑘2 𝑝𝑗(1 − 𝑝𝑗))−1. 

We used the median estimates of effective sample size of cases for all SNPs as the 

final estimate.  

 

Candidate causal variants 

We defined credible sets of candidate causal variants (CCVs) as variants located 

within ±500kb of the lead SNPs in each novel region and with P values within 100-fold 

of magnitude of the lead SNPs. This is approximately equivalent to selecting variants 

whose posterior probability of causality is within two orders of magnitude of the most 

significant SNP32,33. This approach was applied for detecting a set of potentially causal 

variants for all 32 identified SNPs. For the novel SNPs located within ±2Mb of the 

known signals, we used the conditional P values to adjust for the known signals’ 

associations.  

 

eQTL Analysis 

Data from breast cancer tumors and adjacent normal breast tissue were 

accessed from The Cancer Genome Atlas (TCGA)34. Germline SNP genotypes 

(Affymetrix 6.0 arrays) were processed and imputed to the 1000 Genomes reference 

panel (October 2014) and European ancestry ascertained as previously described1. 

Tumor tissue copy number was estimated from the Affymetrix 6.0 and called using the 



GISTIC2 algorithm35. Complete genotype, RNA-seq and copy number data were 

available for 679 genetically European patients (78 with adjacent normal tissue). 

Further, RNA-seq for normal breast tissue and imputed germline genotype data were 

available from 80 females from the GTEx Consortium36. Genes with a median 

expression level of 0 RPKM across samples were removed, and RPKM values of each 

gene were log2 transformed. Expression values of samples were quantile normalized. 

Genetic variants were evaluated for association with the expression of genes located 

within ±2Mb of the lead variant at each risk region using linear regression models, 

adjusting for ESR1 expression. Tumor tissue was also adjusted for copy number 

variation, as previously described37. eQTL analyses were performed using the 

MatrixEQTL program in R38. 

 

INQUISIT target gene analysis 

 Logic underlying INQUISIT predictions: Details of the INQUISIT pipeline have 

been previously described1. Briefly, genes were evaluated as potential targets of 

candidate causal variants through effects on: (1) distal gene regulation, (2) proximal 

regulation, or (3) a gene's coding sequence. We intersected CCV positions with multiple 

sources of genomic information, chromatin interaction analysis by paired-end tag 

sequencing (ChIA-PET)39 in MCF7 cells, and genome-wide chromosome conformation 

capture (Hi-C) in HMECs40. We used breast cell line computational enhancer–promoter 

correlations (PreSTIGE41, IM-PET42, FANTOM543) breast cell super-enhancer44, breast 

tissue-specific expression variants (eQTL) from multiple independent studies (TCGA 

(normal breast and breast tumor) and GTEx breast, See eQTL Methods), transcription 



factor and histone modification chromatin immunoprecipitation followed by sequencing 

(ChIP-seq) from the ENCODE and Roadmap Epigenomics Projects together with the 

genomic features found to be significantly enriched for all known breast cancer CCVs14, 

gene expression RNA-seq from several breast cancer lines and normal samples 

(ENCODE) and topologically associated domain (TAD) boundaries from T47D cells 

(ENCODE45). To assess the impact of intragenic variants, we evaluated their potential 

to alter primary protein coding sequence and splicing using Ensembl Variant Effect 

Predictor46 using MaxEntScan and dbscSNV modules for splicing alterations based on 

“ada” and “rf” scores. Nonsense and missense changes were assessed with the REVEL 

ensemble algorithm, with CCVs displaying REVEL scores > 0.5 deemed deleterious.  

Scoring hierarchy: Each target gene prediction category (distal, promoter or 

coding) was scored according to different criteria. Genes predicted to be distally-

regulated targets of CCVs were awarded two points based on physical links (for 

example ChIA-PET), and one point for computational prediction methods, or eQTL 

associations. All CCVs were considered as potentially involved in distal regulation and 

all CCVs (including coding SNPs) were scored in this category. Intersection of a 

putative distal enhancer with genomic features found to be significantly enriched20 were 

further upweighted with an additional point. In the case of multiple, independent 

interactions, an additional point was awarded. CCVs in gene proximal regulatory 

regions were intersected with histone ChIP-Seq peaks characteristic of promoters and 

assigned to the overlapping transcription start sites (defined as -1.0 kb - +0.1 kb). 

Further points were awarded to such genes if there was evidence for an eQTL 

association, while a lack of expression resulted in down-weighting as potential targets. 



Potential coding changes including missense, nonsense and predicted splicing 

alterations resulted in addition of one point to the encoded gene for each type of 

change, while lack of expression reduced the score. We added an additional point for 

predicted target genes that were also breast cancer drivers (278 genes1,20). For each 

category, scores potentially ranged from 0-8 (distal); 0-4 (promoter) or 0-3 (coding). We 

converted these scores into 'confidence levels': Level 1 (highest confidence) when distal 

score >4, promoter score  ≥3 or coding score >1; Level 2 when distal score  ≤4 and ≥1, 

promoter score=1 or=2, coding score=1; and Level 3 when distal score <1 and >0, 

promoter score <1 and >0, and coding <1 and >0. For genes with multiple scores (for 

example, predicted as targets from multiple independent risk signals or predicted to be 

impacted in several categories), we recorded the highest score.   

Enhancer states analysis in breast sub-populations 

We obtained enhancer maps for three enriched primary breast sub-populations 

(basal, luminal progenitor, and mature luminal) from Pellacani et al.12. Enhancer 

annotations were defined as ACTIVE, PRIMED, or OFF based on a combination of 

H3K27ac and H3K4me1 histone modification ChIP-seq signals using FPKM thresholds 

as previously described12. Briefly, genomic regions containing high H3K4me1 signal 

observed in any cell type were used to define the superset of breast regulatory 

elements. Sub-population cell type-specific H3K27ac signal (which is characteristic of 

active elements) within these elements was used as a measure of overall regulatory 

activity, where "ACTIVE" sites were characterized by H3K4me1-high, H3K27ac-high; 

"PRIMED" by H3K4me1-high, H3K27ac-low; and "OFF" by H3K4me1-low, H3K27ac-

low. This enabled annotation of each enhancer element as either “OFF”, “PRIMED” or 



“ACTIVE” in all cell types. We then defined enhancers which exhibit differing states 

between at least one cell type as "ANYSWITCH" enhancers.  

 

Genetic correlation analyses 

We used LD score regression18-20 to assess the heritability due to susceptibility 

SNPs and estimated the genetic correlation between five intrinsic-like breast cancer 

subtypes. The analysis used the summary statistics based on the meta-analysis of the 

OncoArray, and iCOGS, and CIMBA meta-analysis. The genetic correlation18 analysis 

was restricted to the ~1 million SNPs included in HapMap 3. Since two-stage 

polytomous models integrated an imputation algorithm for missing tumor characteristic 

data, we modified the LD score regression to generate the effective sample size for 

each SNP (Supplementary Note). 

 

Global genomic enrichment analyses 

We performed stratified LD score regression analyses20 as previously described1 

for two major intrinsic-like subtypes, luminal A-like and TN, using the summary statistics 

from the meta-analyses of OncoArray, iCOGs, and CIMBA. The analysis included all 

SNPs in the 1000 Genome Project Phase 1v3 release with MAF>1% and imputation 

quality score R2>0.3 in the OncoArray data. We first fit a model that included 24 non-

cell-type-specific, publicly available annotations as well as 24 additional annotations that 

included a 500-bp window around each of the 24 main annotations. We also included 

100-bp windows around ChIP–seq peaks and one annotation containing all SNPs, 

leading to a total of 53 overlapping annotations. In addition to the baseline model using 



24 main annotations, we also performed cell-type-specific analyses using annotations of 

the four histone marks (H3K4me1, H3K4me3, H3K9ac and H3K27ac). Each cell-type-

specific annotation corresponds to a histone mark in a single cell type (for example, 

H3K27ac in adipose nuclei tissues)20. There was a total of 220 such annotations. We 

further subdivided these 220 cell-type-specific annotations into 10 categories by 

aggregating the cell-type-specific annotations within each group (for example, SNPs 

related with any of the four histone modifications in any hematopoietic and immune cells 

were considered as one category). To estimate the enrichment of each marker, we ran 

220 LD score regressions after adding each different histone mark to the baseline 

model. We used a Wald test to evaluate the differences in the functional enrichment 

between the luminal A-like and TN subtypes, using the regression coefficients and 

standard error based on the models above. After Bonferroni correction none of the 

differences were significant. Notably, the Wald test assumes that the enrichment 

estimates of luminal A-like and TN subtypes were independent, but this assumption was 

violated by the sharing of controls between the subtypes. Under this scenario, our Wald 

test statistics were less conservative than had we adjusted for the correlation between 

estimates. However, given the lack of significant differences observed between luminal 

A-like and TN subtypes we had no concern about a type one error. 

 

Contribution of identified variants to the familial relative risk of breast cancer 

We define the familial relative risk as λ. Under a log-additive model, we define 

the heritability as σ2, and the relationship between λ and σ2 as σ2 = 2 ∗ log⁡(𝜆) 47. Under 



the log-additive model, the frailty-scale heritability that is explained by the identified 

variants can be estimated by: 

∑2𝑝𝑖(1 − 𝑝𝑖)(𝛽̂i2 − 𝜏𝑖2)𝑛
𝑖=1 , 

where n is the total number of identified SNPs, pi is the MAF for variant I, 𝛽̂i is the log 

odds ratio estimate for the variant I, and τi is the standard error of 𝛽̂i. The corresponding 

frailty-scale heritability for all variants is and σ2 = 2 ∗ log⁡(𝜆), where λ is the familial 

relative risk to first degree relatives of affected individuals, assuming a polygenic log-

additive model that explains all the familial aggregation of the disease47. We assumed λ = 2 as the overall familial relative risk of breast cancer, so the proportion of the familial 

relative risk explained by the identified SNPs is ∑ 𝑝𝑖(1 − 𝑝𝑖)(𝛽̂𝑖2 − 𝜏𝑖2)𝑛𝑖=1 log⁡(2)⁄ .⁡To 

obtain the heritability explained by all of the GWAS variants, we estimated the 

heritability (σ𝐺𝑊𝐴𝑆2 ) using the full set of summary statistics using LD score regression as 

previously described1. σ𝐺𝑊𝐴𝑆2  is characterized by population variance of the underlying 

true polygenetic risk scores as ℎ2 = 𝑉𝑎𝑟(∑ 𝛽𝑚𝐺𝑚𝑀𝑚=1 ), where 𝛽𝑚 is the true log odds 

ratio for the 𝑚th SNP. The proportion of the familial relative risk explained by GWAS 

variants is σ𝐺𝑊𝐴𝑆2 ⁡ [2 ∗ log(2)]⁄ . Thus, the proportion of heritability explained by identified 

variants relative to all imputable SNPs is: ∑ 2𝑝𝑖(1 − 𝑝𝑖)(𝛽̂i2 − 𝜏𝑖2)𝑛𝑖=1 /σ𝐺𝑊𝐴𝑆2 . 
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