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Abstract. The intracranial aneurysms rupture can cause serious stroke, which
relates to decline of daily life ability in the elderly. Although deep leaning is
now the most successful solution for the organ detection, it requires myriads of
training data, the consistency of image format and the balance of the sample
distribution. This research innovatively presents the intracranial aneurysm
detection problem as a shape analysis problem rather than a computer vi-
sion problem. We detect the intracranial aneurysms in 3D cerebrovascular
mesh models after the segmentation of the brain vessel from the medical im-
ages, which can break the barriers of the data format and data distribution,
serving both in clinical and screening. Also we propose a transferable multi-
model ensemble (MMEN) architecture to detect the intracranial aneurysms
from cerebrovascular mesh models with limited data. To obtain a well-defined
convolution operator, we use the global seamless parameterization converting
a 3D cerebrovascular mesh model to a planar flat-torus. In the architecture, we
transfer the planar flat-torus presentation abilities of three GoogleNet Incep-
tion V3 models, which were pre-trained on the ImageNet database, to charac-
terize the intracranial aneurysms with local and global geometric features such
as Gaussian curvature, shape diameter function and WKS, respectively. We
jointly utilize all these five models to detect aneurysms with adaptive weights
learning based on back propagation. Experimental results on the 121 models
show that our proposed method can achieve detection accuracy of 95.1% with
94.7% F1 score and 94.8% sensitivity, which is as good as the state-of-art work
but applicable to inhomogeneous image modalities and smaller datasets.

1 Introduction

Severe stroke is most often caused by the rupture of intracranial aneurysms (IAs)
[9]. Early detecting and quantifying IAs is essential for the prevention and treatment
of aneurysm rupture and cerebral infarction. But detection, or identification of in-
tracranial aneurysms is challenging due to the complexity and variability of their
shapes. The location, the shape boundary and the size of IAs in population are quite
different. Previous algorithm detected IAs using traditional machine learning method
combined hand-craft features with enhancement filter, as blobness and vesselness fil-
ters, applied on medical images [7]. More recently, deep learning, particularly the deep
convolutional neural network (DCNN), has become the most successful technique in
IAs detection and it provides a unified framework for joint feature extraction and
detection. Jerman [4] first utilized 7 layer 2D CNN to detect IAs with intra-vascular
distance map. Nakao [10] utilized 6 layer 2D CNN on 9 direction MIP images of each
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cube VOI. Ueda [16] applied ResNet-18 on 4 different types of parameters from TOF-
MRA, which extended IAs detection works to multi-parameter images. Sichtermann
[12] utilized “DeepMedic” with 2 pathways 11 layers network to deal both 3T and
1.5T 3D TOF-MRA together. Jin [5] detected IAs with 2D-DSA sequences combining
U-net and BiConvLSTM. In previous works based on hand-craft feature selection,
curvature, Hessian matrix, writhe number, skeleton information, and spherical har-
monics function have been used to describe the boundary shape of the sphere-like
aneurysms shape, while illumination and texture have been scarcely used, which
shows that IAs detection problem is a graph problem rather than a vision problem.
A major difference between traditional and deep learning methods is that traditional
methods rely more on the domain knowledge such as sphere-like shape, whereas deep
learning relies on access to massive datasets. Ideally, the advantages of both methods
should be combined.

There are two limits in all previous works. First, there coexist different selection
criteria for different image modalities. For example, CTA and 3DRA containing IAs
are often used in clinic, while MRI without IAs is often used in targeted screening
in population. This causes an imbalance of the sample distribution in each medical
image modality. Second, due to economics and ethics reasons, the acquisition of
large enough number of images as training data for the direct application of deep
learning is prohibitive. In this paper we construct comparable 3D cerebrovascular
models from any of the 3D image modalities, with which we can deal with different
kinds of medical images and partially solve the data imbalance problem. We propose
a transferable multi-model ensemble network (MMEN) for IAs detection from the
cerebrovascular models. We then apply deep learning to the 3D mesh model with
well-defined convolution operator on a global seamless parameterization to transfer
the 3D cerebrovascular model to a planar flat-torus [6]. Three types of seamless
counter-clockwise covers are designed to fine-tune pre-trained GoogleNet Inception
V3 models (V3 models) [14], palliating the need for large data sets, with which we
aimed to characterize the overall appearance of IAs in 3D mesh models. These V3
models are used jointly to detect IAs with an adaptive weighting scheme learned
during the error back propagation, which enables the cerebrovascular mesh model to
be trained in an end-to-endmanner. The proposed method allows us to bridge the gap
of different data format, break the barrier of the imbalance of the sample distribution
and obtain enough training data. Compared to state-of-the art methods, our results
show that the proposed algorithm provides substantial performance improvement.

2 Methods

The proposed MMEN algorithm is summarized in Fig. 1. The algorithm has four
steps: (1) constructing the conformal mapping from input cerebrovascular mesh
model S to the sphere-like surface S′ and then conformal mapping from S′ to planar
flat-torus τ with seamless counter-clockwise covers of S′ (2) building a MMEN ar-
chitecture for 3D mesh model based classification (3) training the MMEN with the
input dataset {Si} described with d-dimensional features until convergence, and (4)
detecting IAs in each model based on the labels of aneurysms.
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Fig. 1. Framework of our proposed MMEN algorithm.

Problem formulation Each 3D cerebrovascular structure can be modeled as a se-
ries of connected tubular-like 3D branches model. Our aim is to detect whether the
IAs are in the 3D cerebrovascular model or not. The training data consist of a set
of triplets {(Si,xi, ẑi)}i∈I with 2D cerebrovascular watertight manifold models em-
bedded in a three-dimensional space, Si ⊂ R

3, d-dimensional vector valued functions
over the surface, xi ∈ f(Si,R

d), and ground truth labeling functions ẑi ∈ g(Si, L) ,
where L = {0, 1} is the label set. Our goal is to find a non-linear mapping function as
F : f(Si,R

d) → g(Si, L) to produce a vector of confidences F (xi) ∈ L per model Si

that correctly predicts its ground-truth label ẑi. Though the CNN is a powerful tool,
existing architectures cannot directly run over Si. We propose a transfer function
to a planar flat-torus, denoted as τ , and train a CNN over τ with traditional 2D
convolution operator on τ discretized in a grid. The key component is mapping S to
τ , which is a not trivial problem for the different topology between S and τ .

Seamless parameterization and convolution operator We define a sphere-like
surface S′ as an intermediate surface to create a desired seamless map between S

and image τ . For given quarter-points P = {p1, p2, p3, p4}, we can obtain a unique
transfer operation along the path p1 → p2 → p3 → p4 to obtain the torus-like
surface S′. Then we construct the universal covering space through stitching the
surface S′ with the method in [1] duplicating the planar mesh until we cover the
representative square tile of the planar flat-torus with the orbifold as {π, π, π, π}. We
use the cotan weights with negative values clamped to 10−2 to ensure positivity and
hence bijective mapping. The quarter-points P can be computed very efficiently of
the approximated-conformal map by solving a sparse system of linear equation. We
use φP as the transfer function between the sphere-like surface S′ and the flat-torus
τ , its push-forward to the flat image is defined as pushP (x) = x ◦ ϕ ◦ φ−1

P , where
ϕ is the projection map from S′ to S. We evaluate x at that point and assign the
corresponding d-dimensional feature vector to it.

The convolution operator on the surface S requires to be translation invariant.
First, the definition of the map S → S′ guarantees that a translation on S′ is a local
Euclidean translation on S. Second, according to Poincaré-Hopf Theorem [8], for
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closed orientable surfaces, only torus-like surfaces, whose Euler characteristic is zero,
has non-vanishing vector fields. Given two closed surfaces: S′ (sphere-liked) and τ

(planar flat-torus) with a conformal homeomorphism φ : S′ → τ , a convolution
operator ∗(τ) on τ defines a corresponding convolution operator on S′, by f ∗(S′) g =
((f ◦φ−1)∗(τ) (g ◦φ

−1))◦φ. As the convolution on the planar flat-torus τ is invariant
to Euclidean translations σ, the convolution on S′ is invariant to its translation
φ−1 ◦ σ ◦ φ. Since the φ−1, σ and φ are all conformal maps, these translations are
also conformal maps. This means that no previous alignment on the cerebrovascular
model is needed in this work.

Data and materials generation. The used database gathers the 3D model recon-
struction resulting from a series of medical images of different modalities, in which
the location and presence of aneurysms were evaluated by up to four experienced
thoracic radiologists. The positive dataset (with aneurysms) of 56 patients is drawn
from a large multicenter database created within the EU-funded project @neurIST
[17] based on the 3DRA image. The negative dataset (without aneurysms), derived
from the public dataset distributed by the MIDAS Data Server at Kitware Inc. [2],
contains 50 MRAs of the cerebral vascular from healthy volunteers. Since MRA im-
ages includes a larger portion of the cerebral vasculature than 3DRA, we selected
only segments with branches similar to the ones present in the 3DRA mesh mod-
els, such as the anterior cerebral artery (ACA) or the internal carotid artery (ICA)
bifurcation. No other information was considered during the selection process.

To train the network, we first need to push the training data to images defined
over the planar flat-torus τ with seamless counter-clockwise covers. Given the training
data {(Si, xi, ẑi)}i∈I , for each i we sample ρ quarter-points P = {p1, p2, p3, p4} ⊂ Si.
The skeleton of the vascular model is computed by the method in [15], and each
skeleton endpoint is related to the corresponding vertices of the mesh model. The
longest road in the skeleton is identified and its two endpoints are labeled as lp1 and
lp4. The endpoint with largest number of binding vertices (likely representing a big
aneurysm), excluding lp1 and lp4, is labeled as lp2. A fourth point lp3 is identified as
the endpoint with the shortest skeleton length to lp1 or lp4. In case the skeleton only
has three branches, we set lp3 equal to lp2. Then, each point pi is randomly selected
(without repetition) from the binding points of lpi. This choice of quarter-points
follow the rationale of well-covering the surface to allow each point to be represented
with a reasonable scale factor at least in one map. Hence we sampled a small number
(in practice, ρ = 10) of uniformly spread points P on the surface. We cut the square
flat-image τ from the universal covering space with sphere-like surface S

′

. To avoid
the data similarity, we set the random cut in their universal covering space with
sphere-like surface S

′

computed with different points P , for their close positions.
The number of training samples can be increased by data augmentation, which can
play an important role in deep learning with small data sets. We used a 6x data
augmentation in our experiments with mirroring, rotation and flipping operations.

Feature selection. The conformal mapping can only convert the 3D mesh model
S to the flat image τ with smallest twist. Different kind of features must be used
to describe the shape of the models. Our map provides a relatively small space of
possible parameterizations, which make learning easier. For the local features, we
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choose the shape diameter function (SDF) and Guassian curvature (GC) of each
point in the model. For the global features, we use the spectral decomposition of
Laplace-Beltrami operator on manifold to create spectral shape descriptors: wave
kernel signature (WKS). We use the multi-model neural network to aggregate all
these three feature maps.

Multi-model ensemble neural network on the planar flat-torus τ . We present
a multi-model ensemble architecture with cerebral mesh models to three-dimensional
features on τ . The V3 model pre-trained on the ImageNet dataset is adopted with
one fully connected (FC) layer (GV3F) as the fundamental classifier for each feature
image on τ . Three copies of this GoogleNet are fine-tuned using the input of three-
dimensional features on τ in Fig.1. The output neurons in the last fully connected
layer of the classifiers are connected with one fully connected layer (MMEN) to give
the final decision. This architecture is a non-linear function taking three-dimensional
functions over the image τ to L valued functions over the image which can be defined
as F (,w) : Rm×n×3 → R

m×n × L.
A two-step training is used in the architecture. For each classifier, the loss function

is defined as binary cross entropy E(w) = −
∑

k [ẑi log(p(x
b
i ))+(1− ẑi) log(1−p(xb

i )).
We use stochastic gradient decent method with batch size of 128 and learning rate of
0.01. The initial weights are stochastically selected with a truncated normal Gaussian
distribution in [−1, 1]. We stop training when the total loss is less than 0.2 for 500
iterations. When all the features are stably trained on τ , we begin the multi-model
ensemble architecture training. p(xb

i ) denotes the prediction result by b-th GoogleNet
result, the ultimate prediction result of the ensemble model is calculated as Pi =∑b

j=1 wijp(x
b
i ), where Pi is the likelihood of the input model belonging to category

L ∈ {0, 1}. The binary cross entropy loss function is used again in this ensemble
model, and the change of weight is ∆w = −η(

∑
i
ẑi
Pi

− ( 1−ẑi
1−Pi

)), for the learning rate
η = 0.01. Stochastic gradient decent with a bath size 64 is adopted due to our small
number of training data. A 5-fold cross validation is used, where 5% of the traning
models are chosen as validation set in each fold. The training is terminated even
before reaching the maximum iteration number of 1000.

3 Experiments

We conduct our research platform based on TensorFlow using an NVIDIA 960 M
GPU on an Ubuntu 16.10 Linux OS 64-bit operating system. The proposed MMEN
architecture has been applied to the dataset 5 times independently, with 5-fold cross
validation. The mean and standard deviation of the obtained false positive ratio,
specificity, accuracy and sensitivity in the full data set is presented in Table 1 and
compared with the performance of 6 state-of-the-art methods with different data
sets. Our results are superior in some of the metrics, depending on the compared
study, although a more global and direct comparison is hindered by the differences in
data sets and evaluation criteria. Our algorithm obtain similar or superior results to
both hand-crafted feature-based traditional methods and other deep leaning methods
[12, 16, 5, 10, 4], which requires more homogeneous data formats. Our results indicate
that (1) conformal parameterization method provides a valid mesh representation, (2)
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pre-trained and fine-tuned V3 model can effectively transfer the image representation
ability learned on the ImageNet dataset to characterize the parameterization method
model, (3) an adaptive ensemble of these images has superior ability in identifying
aneurysms in cerebrovascular mesh models.

Table 1. Comparison of the performance of out proposed method to 6 state-of-the-art
aneurysms detection methods on different data set. I: input data format; N: number of
cases; F: false positive ratio; S: Specificity; A: Accuracy; SE: Sensitivity;

Algorithms I N F S (%) A (%) SE (%)

Sichtermann,et al. 19 [12]
3D TOF-MRA
(1.5T,3T)

85 8.14 poor - 87

Ueda, et al. 19 [16]
3D TOF-MRA
(1.5T,3T)

748 10 - - 91

Jin, et al.19 [5] 2D-DSA 493 3.77 - - 89.3

Nakao, et al.18 [10]
3D TOF-MRA
(3T)

450 2.9 - - 94.2

Jerman, et al.17 [4] 3D-DSA 15 2.4 - 95 100
MIKI,et al. 16 [7] 3D MRI(3T) 2701 - - - 82
Proposed (Mean ±

standard deviation)
3DRA+3D

TOF MRI(1.5T)
121 0.8±0.6 95.4±6.2 95.1±4.0 94.8±6.7

4 Discussion

Different parameterization method The parameterization of the mesh model S
plays an important role in applying a deep model on the 3D mesh model problem. On
one hand, the conformal mapping from S to τ provides the parameterization involving
the least twist. On the other hand, the computational complexity of our method is
also small. We re-performed the experiments using different kinds of parameterization
methods. The obtained performances are listed in Table 2. AP is the index of the area
changing in the parameterization. If the surface area ratio between the aneurysms
part and the branch part is quite similar as the original, the area twist would be
small, just like our method.

Table 2. Comparison of the performance of our conformal parametrization to such of the
sphere parameterization [11] on 3D mesh models with aneurysms. SP: sphere parameteriza-
tion; M number of missing aneurysms in parameterization images of each cerebrovascular
model; AP: surface area ratio between the aneurysms part and the branch part. R: running
time for the parameterization. Mean ± standard deviation.

Parameterization M AP(%) R(s)

Orginal mesh model S - 2.36 ± 0.48 -

SP [11] 3.90 ± 2.69 0.14 ± 0.14 104.072

Proposed 0 1.77 ± 0.58 12.6

Ensemble learning To demonstrate the performance improvement provided by the
feature combination by the adaptive ensemble with respect to each of the three V3
models with independent features (WKS, GC and SDF), we compared their per-
formance on the same data set of intracranial aneurysms (Table 3). Although each
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V3 model achieves a relatively good performance, the adaptive ensemble of them
achieves a better performance gain.

Table 3. Performance comparison of each component V3 model, considering only one fea-
ture, and the proposed MMEN model combining all of them. T: training time(s);

Models A(%) SE(%) S(%) P(%) T(s)

V3 for WKS 82.6 91.2 75.4 76.9 29.8

V3 for GC 86.8 87.7 86.2 85.8 29.7

V3 for SDF 88.4 91.1 86.2 86.0 30.2

Proposed 95.1 94.8 95.4 95.1 92.4

Other Pre-trained DCNN Models Besides GoogLeNet, VGGNet [13] is also the
most successful DCNN models. Using each of those two models to characterize each
of the three features (WKS, GC and SDF), we have 8 different configurations. To
evaluate the performance of using other DCNN models, we tested all these configu-
rations. Table 3 shows the F1 score with sensitivities for the best five configurations.
It shows that V3 model is very powerful, using three v3 models results in the high-
est F1 score with less training time and using two V3 model can also obtain the
good results. Nevertheless, it also suggests that VGGNet are also good choices as
well and using them to replace GoogLeNet may produce very similar good F1 score
and sensitivities in some configurations. ResNet-50 [3] model results are shown in
supplementary material for the space limits.

Table 4. Performance of top-5 models from 8 ensemble models. F1: F1 score

DNN for WKS DNN for GC DNN for SDF F1(%) SE(%) T(s)

GoogLeNet GoogLeNet GoogLeNet 94.7 94.8 92.4

GoogLeNet GoogLeNet VGGNet 90.4 91.2 262.0

VGGNet GoogLeNet GoogLeNet 90.3 91.1 261.8

GoogLeNet VGGNet GoogLeNet 89.2 87.7 262.1

VGGNet GoogLeNet VGGNet 87.8 89.2 431.8

Other things: computational complexity and failed results In our exper-
iments, it took about 92.4s to train the proposed model and less than 0.5s for
aneurysms detection in each mesh model. It suggests that the proposed algorithm is
very efficient for offline training and online testing. In the positive data set, models of
2, 10 and 50 with failed detection have the average diameter smaller than 4mm with
irregular shape boundary, which is also very difficult for the radiologist to decide.
Some more details on further aspects are described in the supplementary material.

5 Conclusion

We propose the MMEN algorithm to detect intracranial aneurysms in cerebrovas-
cular mesh model from 3DRA data and MRA data. We seamless parameterize the
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input mesh model to the planar flat-torus with universal covering space. We used
three pre-trained and fine-tuned GoogleNet Reception V3 models to characterize the
cerebrovascular mesh model with three geometrical features (WKS, SDF and GC),
and combined these models using an adaptive weighting scheme learned during the
back-propagation process. The results show that our algorithm produces more accu-
rate results, having good potential as a novel IAs detection framework.
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