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A Network Topology for Composable Infrastructures 

Opeyemi O. Ajibola, Taisir E. H. El-Gorashi, and Jaafar M. H. Elmirghani 

School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, United Kingdom 

ABSTRACT 

This paper proposes a passive optical backplane as a new network topology for composable computing 

infrastructures. The topology provides a high capacity, low-latency and flexible fabric that interconnects 

disaggregated resource components. The network topology is dedicated to inter-resource communication between 

composed logical hosts to ensure effective performance. We formulated a mixed integer linear programming 

(MILP) model that dynamically creates logical networks to support intra logical host communication over the 

physical network topology. The MILP performs energy efficient logical network instantiation given each 

application’s resource demand. The topology can achieve 1Tbps capacity per resource node given appropriate 
wavelength transmission data rate and the right number of wavelengths per node.  

Keywords: silicon photonics, rack-scale datacentre, disaggregated datacentre, software defined network, 

composable infrastructure, software defined infrastructure, optical backplane. 

1. INTRODUCTION 

Digital transformation is driving ubiquitous demand for computation by end-users, enterprises and governments. 

Cloud computing which offers on-demand access to computation over the Internet has become the de facto means 

for computing capacity consumption because of its numerous benefits. Between 2010 and 2018, the volume of 

compute instances in datacentres (DCs) increased by over 500% [1]. As a result, the number and size of cloud DCs 

has increased in the last decade. More recently, the concept of edge computing is being adopted to augment the 

perceived shortcomings of cloud computing by bringing computation closer to end users at the edge of the network. 

This trend is particularly driven by the big data produced by new applications and services at the edge of the 

network [2] - [5]. Therefore, edge computing is increasingly needed to support the emergence of new applications 

and technologies such as Internet of Things and vehicle to everything communication while also offering on-

demand consumption of computing capacity at the edge of the network. Further adoption of the edge computing 

concept is expected as more 5G infrastructure is deployed [6] – [8] and as succeeding 6G technologies emerge. 

Amidst this growth in the use of computation capacities and the variety of ways to consume their underlying 

resources, increased attention is being focused on the sustainability of infrastructures that provide computation 

and on communication networks [9]-[14]. Attention has thus been paid to the energy efficiency of data centres 

networks [9] – [11], content distribution networks [12] – [16] and the core networks that support and interconnect 

data centres [17] – [24]. Traditionally, cloud computing services are supported by large clusters of high-end servers 

which are situated in remote hyper-scale DCs. Compared to 1% in 2010, a forecast predicts such DCs will account 

for 3-13% of global electricity consumption in 2030 [25]. Poor utilization efficiency due to resource fragmentation 

and stranding in traditional servers is partly responsible for high power consumption in today’s DCs. Since edge 
processing nodes are relatively less energy efficient compared to hyper-scale DCs, the adoption of similar server 

architecture in distributed edge nodes of the emerging edge computing paradigm will further increase the high 

electricity consumption of the global ICT sector. The use of virtualization and software defined technologies while 

introducing improvements, has failed to completely address this problem in traditional DCs. In recent times, the 

concept of composable infrastructure has been proposed to enable greater efficiencies, flexibility and agility in 

computing infrastructures of all sizes [26]. 

Composable infrastructure leverages on the disaggregation of traditional server’s intrinsic resources into physical 
or logical pools of homogeneous resources. A physical pool is a node which comprises of homogenous resources 

as shown in Rack 2 of Fig. 1a while a logical pool of homogenous resources is created on-demand from multiple 

homogenous or heterogeneous nodes. These pools are orchestrated on-demand over an appropriate network to 

create logical hosts that support end users’ applications. The concept of resource disaggregation addresses the 
problems of resource fragmentation and stranding which is responsible for poor resource utilization in traditional 

servers. Resource disaggregation can be implemented physically or logically at different scales i.e. rack-scale, 

pod-scale or DC-scale [27]. The composition of logical hosts from disaggregated resources adopts virtualization 

technologies and other software-oriented techniques to abstract the control plane of physical resources from their 

data plane and for control, orchestration and monitoring. The availability of a suitable network interconnect 

between disaggregated resource components complements disaggregation and software-oriented techniques in 

composable infrastructures. However, this is slightly challenging as this interconnect must implement functions 

of the low latency and high bandwidth links associated with the intrinsic backplane of traditional servers at higher 

tiers of the DC network fabric. 

Adoption of optical communication provides a practical solution to satisfy communication requirements in 

composable infrastructure, because it mitigates or avoids some known problems of electrical communication. 

However, sole use of optical communication infrastructure is not feasible because computation is performed in the 



electrical domain and optical buffering capabilities are limited. Therefore, hybrid opto-electronic communication 

networks enabled by silicon photonics technologies are widely expected to support the implementation of high-

capacity, low latency and flexible networks to be used in composable infrastructures [27], [28]. Notwithstanding, 

significant maturity of silicon photonic technologies is required to enable practical and cost-effective extension of 

optics to both on-board and on-package levels of next-generation computing infrastructure. 

In recent times, academic and industry research communities have proposed electrical, optical and hybrid 

network topologies for the different scales of composable infrastructures. In [29] and [30] Huawei and Intel 

respectively used electrical switches to interconnect different nodes present in the racks of their proposed 

composable infrastructure. The authors of [31] proposed a hybrid network topology for pod-scale composable 

infrastructure. Different variants of an all-optical network topology were proposed for composable infrastructure 

by authors of [32] – [34]. Authors in [35], [36] adopted two-tiers of optical switches in each rack of the dRedbox 

project. In this paper, we propose a hybrid network topology for rack-scale composable infrastructure. This novel 

topology maintains all-to-all direct connectivity between co-rack nodes while minimizing the number of interfaces 

required per node. This is achieved via the adoption of wavelength division multiplexing (WDM) techniques and 

the use of passive optical components. This paper describes the novel network topology and evaluates its 

performance and scalability by investigating its ability to setup suitable virtual links on-demand to support logical 

host instantiation in composable infrastructures. A mixed integer linear programming (MILP) model is formulated 

to conduct these studies. 

2. A HYBRID NETWORK TOPOLOGY FOR COMPOSABLE INFRASTRUCTURE 

The proposed hybrid network topology for composable infrastructure leverages on silicon photonics, passive 

optical components, WDM, and bidirectional communication over optical fibre to minimize the number of 

interfaces required at each node in a rack. Furthermore, a broadcast and select mechanism is employed to facilitate 

inter-node communication in the proposed optical backplane and to avoid contention during communication. As 

shown in Fig. 1, we focus on the design of a network topology for rack-scale composable infrastructure because it 

is easier to construct [37]. Moreover, our previous work in [38] showed the ability of rack-scale composable 

infrastructure to achieve similar efficiency as pod-scale composable infrastructure if resource-component 

allocation to racks ensures that resources are available in the appropriate amount and type. In addition, rack-scale 

composable infrastructure provides a modular design which can be replicated to implement a large-scale 

deployment in hyper-scale DCs or a small deployment at the edge of the network. The network topology forms an 

optical backplane to interconnect nodes (pool of resources) within a rack-scale composable infrastructure. An 

optical backplane may also be adopted to interconnect resources within each node; however, the scope of the 

proposed network topology gives little attention to such intra-node backplane. 

Each node in the rack-scale composable infrastructure has a node controller hub (NCH) which replaces the 

platform controller hub of traditional servers. As shown in Fig. 1, all resource-components in a node are connected 

to the NCH. These co-node resource components may also maintain direct connectivity to one another via the 

node’s on-board fabric to reduce the workload on the NCH and to ensure path diversity within the node. The NCH 

is a network element which performs network related computation in the proposed network topology. It may be 

implemented on a specialised ASIC in commercial deployment and by a FGPA in experimental scenarios. The 

NCH perform functions such as end to end virtual network setup for inter-node communication via the assignment 

of wavelengths for direct node to node communication; the multiplexing of data onto and the de-multiplexing of 

data from assigned inter-node wavelengths; and it may also serve as an intermediate node on an indirect multi-hop 

path between two nodes. The NCH is integrated with each node’s interfaces to ensure coordination of wavelength 
selection for hop to hop communication over bidirectional optical links. These optical links form the passive optical 

backplane in each rack.  

To promote wavelength reuse in each rack and to minimize the number of unique wavelengths required per 

modular rack, each node has two interfaces. Adoption of two interfaces per node also enables path diversity which 

improves the resilience and capacity of the network topology. Each interface comprises of an array of optical 

transceivers that transmit and receive a set of pre-defined wavelengths. The sets of transmitting and receiving 

wavelengths on each optical fibre link must be mutually exclusive to minimize the impact of crosstalk noise in the 

system. Wavelengths used for transmission by an interface are used for receiving by the other interface and vice 

versa. This enables greater economies of scale in the use of wavelengths as the node can use all the wavelength 

for transmitting and receiving. Bi-directional communication on each fibre optic link is enabled by the use of 

optical circulators between the fibre links and the splitters/combiners. This helps to reduce the size of the rack 

backplane by half relative to the use of unidirectional links or communication paths. The same type of interface is 

used in all nodes in each rack to further leverage on the benefits of economies of scale and to enable easy 

replication. Integration of the NCH element and node interfaces may be implemented as a co-packaged device 

with optical I/O by leveraging on silicon photonics technologies. 

In the transmitting direction, the wavelengths transmitted by both interfaces of each node flow through optical 

circulators to the multiplexer, which combines all transmitted wavelengths of each node. Wavelength collision is 



avoided using parallel paths. The multiplexer is connected to a splitter which broadcasts the transmitted 

wavelengths to all nodes within the same rack and to the top of rack (TOR) switch. The TOR switch supports intra-

rack and inter-rack communications. A low latency electrical switch such as the switch proposed by the Gen-Z 

consortium [39] may be adopted as the TOR switch. A node in a rack is connected to all other co-rack nodes and 

to the TOR switch via bidirectional optical links.  

In the receiving direction, a combiner receives all transmitted wavelengths from other co-rack nodes and the 

TOR switch and forwards the received wavelengths to a de-multiplexer. The de-multiplexer separates and forwards 

each received wavelength to the corresponding circulator that leads to the receiving interface. At the interface, 

each transceiver receives its associated wavelength and forwards the received data to the NCH. The NCH de-

multiplexes the received data and forwards to the appropriate resource-component if it is in the destination node. 

Otherwise, the NCH forwards the received data to the corresponding interface linked to the next hop on the multi-

hop communication path by selecting an appropriate wavelength(s). Each rack transmit-receive wavelength pair 

is limited to that rack. Hence, the same transmit-receive wavelength pairs can be reused in other racks. Splitters 

(combiners) support the broadcast and select mechanism adopted for the network topology by broadcasting 

(receiving) the total egress (ingress) traffic of each node onto (from) the optical backplane. Hence, 

splitters/combiners reduce the number of interfaces required at each node to form a full mesh optical backplane in 

a rack.  

 
Figure 1. Proposed network topology. 

Table 1. Model input parameters. 

Parameters Value 

Node controller hub energy per bit 1.4pJ/b [40] 

Top of rack switch energy per bit 0.028pJ/b  

Top of rack switch idle power 312W 

On-board energy per bit 0.1pJ/b 

CPU resource demand 0.9/1.8/2.7GHz 

Memory resource demand 3.6/7.2/10.8/26/32GB 

Storage resource demand 80/160/240GB 

CPU capacity, peak power and 

dynamic power range 

3.6GHz, 130W and 30% 

Memory capacity, peak power and 

dynamic power range 

32GB, 11.85W and 30% 

Storage capacity, peak power and 

dynamic power range 

320GB, 6.19W and 30% 

CPU-Memory communication data 

rate per application 

300-800Gbps 

CPU-Disk communication data rate 

per application 

5 – 128Gbps 

Single wavelength transmission data 

rate 

50Gbps or 100Gbps 

Table 2. Maximum capacity per node. 

Wavelengths per node 2λ 4λ 6λ 8λ 10λ 

Capacity (Tbps) per node at 

50Gbps single-λ data rate. 

0.1 0.2 0.3 0.4 0.5 

Capacity (Tbps) per node at 

100Gbps single-λ data rate. 

0.2 0.4 0.6 0.8 1 

 

At each node, the NCH performs wavelength selection based on global knowledge of the selection made in other 

nodes. Hence, all NCH in each node must be centrally controlled and orchestrated to ensure optimal wavelength 

utilization and the ability to operate the system at maximum capacity. The broadcast and select mechanism 

deployed in the network topology implies that each node only accepts a predefined list of wavelengths at its 

interface at a given moment while other received wavelengths are discarded. 

3. TOPOLOGY PERFORMANCE EVALUATION 

3.1 Model Description and Evaluation Scenarios 

To evaluate the performance of the proposed physical network topology in supporting on-demand instantiation of 

virtual networks used by applications, we formulate a MILP model. The model performs application resource 

demand placement and routing and wavelength assignment in a rack-scale composable infrastructure of logically 

disaggregated nodes that uses the proposed network topology. The MILP model ensures the satisfaction of both 

network and compute related constraints. The objective of the MILP model is to minimize the total network power 

consumption (TNPC), total compute power consumption (TCPC), the total number of rejected applications (TRA) 

and the total number of active wavelength (TAW) in the proposed topology as illustrated in Eq. (1). We minimize 

the total number of active wavelengths to conserve inactive wavelengths for future use or to improve the system’s 
resilience. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝛼1 ∙  𝑇𝑁𝑃𝐶 + 𝛼2 ∙ 𝑇𝐶𝑃𝐶 + 𝛼3 ∙ 𝑇𝑅𝐴 +  𝛼4 ∙ 𝑇𝐴𝑊     (1) 

where 𝛼1 is the cost associated with TNPC; 𝛼2 is the cost associated with TCPC; 𝛼3 is the cost associated with 

TRA; and 𝛼4 is the cost associated with TAW in the proposed fabric. Under all evaluation scenarios, 𝛼2 = 𝛼4 =1 while 𝛼3 is set to a very large number to emphasize the high cost of application rejection. Two different values 

are adopted for 𝛼1 during evaluation, 𝛼1 = 1 and 𝛼1<< 1in the first (I) and second (II) evaluation scenarios 

respectively. Adoption of a very low value for 𝛼1 significantly reduces the impact of TNPC in the formulated 

model. We consider two data rates i.e. 50Gbps and 100Gbps for single wavelength transmission in the network 

topology. The number of transmit-receive wavelength pair per interface is also varied between 1-3 wavelength 

pairs per node. The power consumption of computing (CPU, memory and storage) resources are estimated by 

considering the idle power consumption and the load proportionate power consumption over each resource’s 
dynamic power range as illustrated in Table 1. Likewise, the power consumption of the adopted electronic TOR 

switch comprises of both idle and load (traffic) proportionate portions. We adopt a load proportional power 

consumption profile for the NCH element in each node. We conservatively assume that each NCH has the same 

energy per bit values as a 10Gbps commodity off-the-shelf offload network interface card that has peak power of 

14W [40]. 

We consider a small rack-scale composable infrastructure with 9 heterogeneous nodes and an electronic TOR 

switch. Each node consists of a CPU, a RAM and an HDD along with the NCH element which is integrated with 

two bespoke interfaces as described earlier. We adopt 15 input applications with a mix of compute resource 

demand intensity to evaluate the performance of the proposed network topology. Each input application has inter-

resource (CPU-memory and CPU-disk) communication requirements which are generated using uniform 

distribution over the ranges given in Table 1. 

3.2 Results and Discussions 

Whilst a single wavelength data rate is 50Gbps, an application is rejected under both scenarios I and II when each 

node in the rack-scale composable infrastructure can only transmit and receive 2 wavelengths as shown in Figure 

2. This rejection is due to network bottlenecks which prevent the use of physically disaggregated resource 

components to support the rejected application. Compared to other scenarios where the data rate of single 

wavelength has increased or the number of the wavelengths per node has increased, this rejection is responsible 

for the relatively lower TCPC under scenarios I and II when 2 wavelengths are used as shown in Figure 3. For 

both scenarios I and II, an increase in the number of wavelengths per node or the data rate of single wavelength 

transmission prevents application rejection in the composable infrastructure as shown in Figure 2. 

We observe that the use of resource disaggregation concept in the composable infrastructure is significantly 

restricted, i.e. an application is served using resources within the same node, under scenario I irrespective of the 

number of wavelength pairs available to each node in the rack or the data rate of single wavelength transmissions. 

Restricting the disaggregation helps to reduce the network power consumption by reducing the volume of traffic 

on the fabric of the composable infrastructure (due to inter-resource traffic). When each node has 2 wavelength 

pairs under scenario I, disaggregation is completely avoided in the rack-scale composable infrastructure. The 

composable infrastructure relies solely on virtualization to enable consolidation of applications which leads to 

optimal TCPC; hence, the NCH makes no contribution to the TNPC as shown in Figure 4. However, as the number 

of wavelength pairs per node increases, minimal implementation of disaggregation is adopted to avoid application 

rejection. Since the presence of inter-resource traffic on the rack backplane can lead to significant increase in 

TNPC, only applications with low inter-resource traffic are provisioned on disaggregated resource components to 

minimize TNPC. As a result, all resource components are active in scenario I as shown in Figure 5. However, the 

TNPC under scenario I is relatively lower compared to scenario II. 

The high load proportional power consumption of the NCH element present in each node is responsible for a 

large portion of the TNPC as shown in Figure 4. Hence, it is a strong factor in the objective function of the 

formulated MILP model. Adoption of a very low value for 𝛼1 (i.e. 𝛼1<< 1) under Scenario II significantly reduces 

the impact of TNPC (and NCH power consumption) in the formulated model. Scenario II represents a situation 

where technological advancements have significantly improved the power consumption of the NCH and its 

integrated interfaces and other network components. A general trend observed under scenario II for different 

number of wavelengths per node is that there is an increase in the number of instances where applications are 

provisioned on disaggregated resource components. As a result, there is an increase in the number of inactive 

resource components in the composable rack-scale infrastructure as shown in Figure 5. Relative to scenario I, the 

TCPC of scenario II falls by almost 1% if all applications are provisioned (otherwise, 9% reduction in the TCPC 

is observed when an application was rejected under 2 wavelength per node scenario). This is achieved at the 

expense of increased TNPC relative to Scenario I as shown in Figure 4. However, as reported under Scenario I, 

attempts are also made to curtail the rise in TNPC under scenario II by ensuring that only applications with low 

inter-resource (CPU-memory and CPU-storage) traffic are provisioned on disaggregated resource components in 

the composable infrastructure. 



 
Figure 2. Number of rejected applications. 

 
Figure 3. Total compute power consumption. 

 
Figure 4. Total network power consumption. 

 
Figure 5. Number of inactive resource components. 

 

As observed in Figures 3 and 5, increasing the data rate of a single wavelength transmission from 50Gbps to 

100Gbps does not lead to reductions in the (minimum) TCPC. However, Table 2 shows that the maximum capacity 

per node in the proposed network topology is directly proportional to both the number of wavelength pairs 

supported by the node and the single wavelength data rate. Although, there are practical limits to the number of 

transceivers that can be integrated with the NCH element in the proposed network topology, present and future 

increase in single wavelength data rates promises to enable higher capacity. For example, Table 2 shows that 1Tbps 

capacity per node can be achieved using the proposed network topology for rack-scale composable infrastructure 

if each node can transmit 10 disjoint wavelengths using 100Gbps single wavelength rate. This can be very 

beneficial in scenarios where the deployment of cloud native applications such as micro-services in composable 

infrastructures leads to significant increase in the volume of ingress and egress traffic per node. Furthermore, 

increase in single wavelength data rates can also promote the implementation of time and wavelength division 

multiplexing (TWDM) in the proposed network topology to enable greater flexibility and granularity. 

4. CONCLUSIONS 

In this paper, a new network topology for a rack-scale composable computing infrastructure was introduced along 

with the description of its operating principles. Results showed that implementation of logical disaggregation is 

restricted when network power consumption is high, and that applications rejection can occur due to network 

bottlenecks as a result of low single wavelength transmission data rate and small number of transmission 

wavelengths. On the other hand, implementation of virtual disaggregation increases in composable infrastructure 

when network capacity suffices to enable reduced compute power consumption. To ensure minimal network power 

consumption due to the exchange of inter-resource traffic over the proposed optical backplane, higher priority is 

given to applications with low inter-resource traffic when selecting the applications to be provisioned on 

disaggregated resource components. Higher single wavelength data rates will increase the capacity of the proposed 

network topology. 
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