
This is a repository copy of Jointly learning trajectory generation and hitting point
prediction in robot table tennis.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/160112/

Version: Accepted Version

Proceedings Paper:
Huang, Y, Büchler, D, Koç, O et al. (2 more authors) (2017) Jointly learning trajectory
generation and hitting point prediction in robot table tennis. In: 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids). IEEE-RAS 16th International
Conference on Humanoid Robots, 15-17 Nov 2016, Cancun, México. IEEE , pp. 650-655.

https://doi.org/10.1109/HUMANOIDS.2016.7803343

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Abstract— This paper proposes a combined learning frame-
work for a table tennis robot. In a typical robot table tennis
setup, a single striking point is predicted for the robot on the
basis of the ball’s initial state. Subsequently, the desired Carte-
sian racket state and the desired joint states at the striking time
are determined. Finally, robot joint trajectories are generated.
Instead of predicting a single striking point, we propose to
construct a ball trajectory prediction map, which predicts the
ball’s entire rebound trajectory using the ball’s initial state.
We construct as well a robot trajectory generation map, which
predicts the robot joint movement pattern and the movement
duration using the Cartesian racket trajectories without the
need of inverse kinematics, where a correlation function is
used to adapt these joint movement parameters according to
the ball flight trajectory. With joint movement parameters,
we can directly generate joint trajectories. Additionally, we
introduce a reinforcement learning approach to modify robot
joint trajectories such that the robot can return balls well. We
validate this new framework in both the simulated and the real
robotic systems and illustrate that a seven degree-of-freedom
Barrett WAM robot performs well.

I. INTRODUCTION

The main goal of a robot table tennis is to generate proper

robot trajectories, so that a racket attached to the end-effector

of the robot can return balls. A table tennis task can be

decomposed into two sub-tasks: the ball trajectory prediction

and the robot trajectory generation. In the previous publica-

tions for the ball trajectory prediction, a predefined virtual

striking plane is introduced. For the physical model methods

[1], [2], [3], [4], [5], the intersection point between the

predicted ball rebound trajectory and the predefined virtual

plane is considered as the striking point. For the regression

methods [6], [7], the striking point at the predefined virtual

plane is predicted directly. One disadvantage of the virtual

plane method is that the predefined plane is fixed, which

might lead to an inappropriate striking point for the robot.

Instead of using a virtual plane, some works [8], [9] propose

to evaluate perspective striking points, then select an optimal

point from them. Since all these methods focus on the

prediction of a single striking point, the precision of the

single striking point influences the robot performance greatly.

However, it is difficult to predict striking points precisely due

to uncertainties in the visual ball measurement and modelling

errors in the ball trajectory prediction.

1Yanlong Huang, Dieter Büchler, Okan Koç, Bernhard
Schölkopf, and Jan Peters are with the Max-Planck Institute for
Intelligent Systems, Spemannstr. 38, 72076 Tübingen, Germany.
firstname.lastname@tuebingen.mpg.de

2Jan Peters is with Technische Universität Darm-
stadt, Hochschulstr. 10, 64289 Darmstadt, Germany.
peters@informatik.tu-darmstadt.de

Fig. 1: The 7-DoF robot table tennis setup.

Another issue in a traditional robot table tennis is that

inverse kinematics and the robot trajectory generation are

dealt with separately. Given a predicted striking point, the

desired joint states at the striking time are first determined

using inverse kinematics, so that the racket can strike the

ball with the right velocity as well as the right orien-

tation. Subsequently, joint trajectories going through their

corresponding desired points are generated. The separation

of inverse kinematics and the robot trajectory generation

might lead to improper robot trajectories. For example, if

the desired joint states in a redundant system result in an

extremely difficult robot posture, the corresponding joint

trajectories can be undesired or even lead to dangerous

configuration. At this point, a natural question is: can we

combine both inverse kinematics and trajectory generation

into a single procedure rather than the separate treatments?

In this paper, we attempt to formulate the robot table

tennis task from a different perspective. We consider the

robot movement trajectory as a response to the ball flight

trajectory, and try to generate the robot trajectory directly

according to the ball trajectory. On the basis of the ball’s

initial state, we predict the entire ball rebound trajectory

rather than a single striking point. Furthermore, we propose

a function that measures the correlation between a ball

flight trajectory and a racket movement trajectory. With

this correlation function, we directly predict the robot joint

movement pattern and movement duration, and subsequently,

generate the robot joint trajectories with these movement

parameters. Besides, we introduce a reinforcement learning

(RL) method to modify the racket orientation such that the

robot can return balls well. The advantage of our approach is

that we can learn robot table tennis task from a data-driven

perspective without inverse kinematics and physical models.

This paper is organized as follows. In Section II, an

overview of our learning framework is illustrated. In Sec-

Jointly Learning Trajectory Generation and Hitting Point Prediction in

Robot Table Tennis

Yanlong Huang1, Dieter Büchler1, Okan Koç1, Bernhard Schölkopf1, and Jan Peters1,2

Ball�s initial state Striking point Desired racket state

Desired joint state

q q qd d d." ."$ $$

0 0p , v , p , vh h ht p , v ,or r r

q()t

Joint trajectory

Racket trajectory

p (),o ()r rt t q q qt t t." ."$ $$

Joint state

Inverse

kinematics

Inverse

kinematics

Joint space

Task space

Fig. 2: A typical framework for a robot table tennis. A

striking point is first predicted based on the initial ball state.

Then, the desired Cartesian racket state at the striking time

is determined. The robot trajectory is finally generated either

in joint space or in task space.

Striking point

Virtual plane

Rebound trajectory

Initial trajectory

Fig. 3: Ball trajectory prediction with a virtual striking plane.

On the basis of the ball’s initial trajectory, the ball rebound

trajectory can be predicted. Subsequently, the intersection

point of the predicted rebound trajectory and a predefined

virtual plane is determined as the striking point.

tion III and Section IV, the ball rebound trajectory predic-

tion and the robot joint trajectory generation are discussed,

respectively. The adjustment of robot trajectories is explained

in Section V. Evaluation results in both the simulated and

the real robotic systems are given in Section VI. Finally,

concluding remarks are made in Section VII.

II. AN OVERVIEW OF THE COMBINED LEARNING

FRAMWORK

In a traditional framework for a robot table tennis (Fig. 2),

the ball’s initial state (position and velocity) s0 = (p
0
,v0)

is first estimated from its initial flight trajectory. Then, a

striking point (striking time, ball’s position and velocity)

sh = (th,ph,vh) at the virtual striking plane is predicted

so that the robot is provided with enough reaction time

(Fig. 3). Subsequently, the desired racket state (position,

velocity and orientation) (pr,vr,or) is determined. The

robot trajectory can be generated either in joint space or

in task space. In joint space, inverse kinematics is used to

determine the desired joint state (qd, q̇d, q̈d). Finally, the

entire joint trajectory q(t) is generated. In task space, the

racket trajectory pr(t) and the orientation curve or(t) are

generated. Then, the corresponding joint states (qt, q̇t, q̈t)
are obtained with inverse kinematics.

From the perspective of spatio-temporal trajectories, a

robot table tennis task can be formulated as the generation of

proper robot joint trajectories along with ball flight trajecto-

ries. Thus, we attempt to transform the traditional framework

into a combined learning framework (Fig. 4), which consists

of a regression part and a RL part. In the regression part,

the ball map represents the relationship between the ball’s

Ball map

p ()b t p ()r t q()t

Robot map

0 0p , v

q ()a t
RL

q()t

Fig. 4: The combined learning framework for a robot table

tennis. The ball map predicts the ball rebound trajectory

using the ball’s initial state. The robot map predicts the

initial joint trajectories on the basis of the Cartesian racket

trajectories. The RL part determines the joint adjustment

trajectories. The final robot joint trajectories are the sum of

the initial joint trajectories and the adjustment trajectories.

initial state s0 and the ball’s entire rebound trajectory pb(t),
i.e., a map from s0 to pb(t); The robot map represents the

relationship between the Cartesian racket trajectory pr(t)
and the robot joint trajectory q(t), i.e., a map from pr(t)
to q(t).

Given a collection of measured ball positions, the ball’s

initial state s0 can be first estimated and subsequently the

ball rebound trajectory pb(t) can be predicted via the ball

map. On the basis of a correlation measurement between the

ball rebound trajectory pb(t) and the racket trajectory pr(t),
the robot joint trajectory q(t) can be generated via the robot

map, so that with joint trajectory q(t) the racket (attached

to the end-effector of the robot) can strike incoming balls.

In order to return balls well, we need to take the racket

orientation or(t) into account. Since the racket orientation

is also determined by the robot joint trajectories, we can

directly modify joint trajectories (e.g. the last two joints in

our robotic system). Here, the explicit form of the racket

orientation is not involved. In the RL part, we use a RL

method to learn joint adjustment trajectory qa(t) on the basis

of the evaluation of landing points. The final robot joint

trajectory q̄(t) is the sum of the robot trajectory q(t) and

the adjustment trajectory qa(t), so that the appropriate racket

orientation can be achieved. With the final robot trajectory

q̄(t), the racket is not only capable of striking balls but also

capable of returning balls well.

III. BALL TRAJECTORY PREDICTION

Due to physical limitations of the robot, sufficient reaction

time is necessary to strike balls. We discuss the ball trajectory

prediction in this section, where the ball’s entire rebound

trajectory is predicted on the basis of the ball’s initial state.

In Section III-A, we show the experience data in the ball map

followed by the ball trajectory prediction in Section III-B.

A. Experience Data in Ball Trajectory Prediction

As discussed in Section II, the ball trajectory prediction

can be realized by constructing the ball map: from the ball’s

initial state s0 to the ball rebound trajectory pb(t). With

a stereo vision system, we can measure the initial flight

trajectory of the ball. By applying polynomial fitting [2]

to this initial trajectory, we can estimate the ball’s initial

state s0. Since the ball rebound trajectory pb(t) can be

1 1

0s , by

*

0s *

by

B

2 2

0s , by

0s ,b bn n

by

1 1 1, ,r q qTy y
2 2 2, ,r q qTy y

, ,r r rn n n

r q qTy y

* *,q qTy

* 1(,)b rfy y y

*(,)rnb rfy y y0s ,i i

by
B

B

B
, ,i i i

r q qTy y
*(,)i
b r

fy y y

Ball map database Robot map database

Ball rebound

trajectory patternBall�s initial state

Correlation

measurement Joint pattern and

movement duration

Fig. 5: The diagram of the regression learning. The ball

rebound trajectory pattern is predicted via the ball map.

Subsequently, with the correlation measurements, the robot

joint movement pattern and movement duration are predicted

via the robot map.

approximated by a parabolic curve, we fit it with basis

functions Φb(t) = [t2 t 1], i.e.,

pb(t) = Φb(t)ωb, (1)

and then extract its pattern ωb using least squares method

ωb = (ΦT
b Φb)

−1ΦT
b pb. (2)

Thus, given an entire ball flight trajectory that consists of an

initial trajectory and a rebound trajectory, we can extract

both the ball’s initial state s0 and the rebound trajectory

pattern ωb, and subsequently update the ball map with the

experience data point (s0,ωb).

B. Ball Trajectory Prediction

With the experience data (s0,ωb), we can construct the

ball map with a regression method, such as locally weighted

regression (LWR) [10] and Gaussian process regression

(GPR) [11]. An illustration of the ball map is given in

Fig. 5, where we denote the i-th experience data in the prior

database Db as Di
b = (si

0
,ωi

b).
Assuming that the ball trajectory pattern ω

∗

b for a new state

s∗
0

is predicted, we can continue to predict the ball rebound

trajectory pb(t) using (1), i.e.,

p∗

b(t) = Φb(t)ω
∗

b . (3)

Thus, the entire ball rebound trajectory p∗

b(t) for the new

state s∗
0

is predicted. After the ball rebounds on the table,

we can fit the ball rebound trajectory and extract its pattern.

Accordingly, we can update the database Db and its size nb.

As the size of the database Db increases, the ball trajectory

prediction with a regression method will be improved.

IV. ROBOT JOINT TRAJECTORY GENERATION

To strike an incoming ball, we need to generate proper

robot joint trajectories, so that the Cartesian racket trajectory

intersects with the ball rebound trajectory. In this section, we

discuss the robot trajectory generation on the basis of the

Cartesian racket trajectory. First, the experience data in the

robot map is analysed in Section IV-A. Then, in Section IV-

B, a correlation measurement between the ball trajectory

pattern and the racket trajectory pattern is formulated, that

is henceforth used for the robot trajectory generation.

A. Experience Data in Robot Joint Trajectory Generation

The robot joint trajectory generation is essentially the

robot map: from the Cartesian racket trajectory pr(t) to the

robot joint trajectory q(t). Denote the number of joints as N ,

for the k-th joint, k ∈ {1, 2, . . . , N}, we can fit its trajectory

qk(t) using a dynamical movement primitive (DMP) since

the DMP can model human demonstrations well [12]. A

DMP consists of a canonical system

τ ẋ(t) = −αxx(t), (4)

and a transform system

τ żk(t) = αq (βq (gk − qk(t))− zk(t)) + fk(x)

τ q̇k(t) = zk(t)
(5)

with a forcing term

fk(x) =

∑n

i=1
Φqi(x)ωki

∑n

i=1
Φqi(x)

x, (6)

where αx, αq and βq are positive constants; gk is the goal

position of the k-th joint; τ is the joint movement duration;

Φqi(x) = exp(−hi(x−ci)
2) are basis functions with hi > 0

and ci ∈ [0, 1]; ωk = [ωk1, ωk2, · · · , ωkn]
T is a movement

pattern vector that can be estimated using LWR or least

squares method. By sequencing movement patterns of all the

joints, we can obtain an extended movement pattern vector

ωq = [ωT
1
,ωT

2
, · · · ,ωT

N]T .

For the robot joint trajectory q(t), with forward kinemat-

ics we can compute the Cartesian racket trajectory pr(t).
Through fitting the racket trajectory with

pr(t) = Φr(t)ωr, (7)

we can extract a racket trajectory pattern

ωr = (ΦT
r Φr)

−1ΦT
r pr, (8)

where Φr(t) = [t5 t4 t3 t2 t 1] are basis functions. With

the combination of the racket trajectory pattern ωr, the joint

movement pattern ωq and joint movement duration Tq , an

experience data (ωr,ωq, Tq) is obtained for the robot map.

B. Robot Joint Trajectory Generation

Given an initial ball state s∗
0
, we can predict the ball

rebound trajectory pattern ω
∗

b via the ball map. Notice that

the input of the robot map is the racket movement pattern ωr

as shown in Fig. 5. Hence, we need to find a bridge between

ω
∗

b and ωr, so that the joint trajectory pattern ωq and the

movement duration Tq can be predicted, and subsequently

the robot joint trajectories are generated with DMP.

Denote the prior database in the robot map as Dr and its

i-th data point as Di
r = (ωi

r,ω
i
q, T

i
q). Given the predicted

ball trajectory pattern ω
∗

b , we can determine the ball rebound

trajectory p∗

b(t) using (3). Similarly, for each prior data

ω
i
r ∈ Di

r, we can compute the racket trajectory pi
r(t) with

(7). Naturally, a necessary condition of striking an incoming

ball is that the racket trajectory intersects with the ball

flight trajectory. However, it is possible that many racket

trajectories intersect with the predicted ball trajectory.

As suggested in [9], if a racket moves along the ball flight

trajectory but in the opposite direction, the robot performance

will be improved. Hence, we measure the distance between

the ball trajectory and the racket trajectory as well as the

angle between the ball velocity and the racket velocity. The

correlation function between ω
∗

b and ω
i
r is defined as

fω(ω
∗

b ,ω
i
r) =max

t
fp

(

p∗

b(t),p
i
r(t)

)

fv
(

v∗

b(t),v
i
r(t)

)

s.t. p∗

b(t) = Φb(t)ω
∗

b

pi
r(t) = Φr(t)ω

i
r

(9)

with a position function

fp
(

p∗

b ,p
i
r

)

= exp
(

−αp

(

(p∗

b − pi
r)

T (p∗

b − pi
r)
)

1

2

)

,

(10)

and a velocity function

fv
(

v∗

b ,v
i
r

)

= −
< v∗

b ,v
i
r >

√

< v∗

b ,v
∗

b >< vi
r,v

i
r >

, (11)

where fp
(

p∗

b ,p
i
r

)

is a function of the distance between p∗

b

and pi
r; αp is a positive constant; < ·, · > is the inner

product; fv
(

v∗

b ,v
i
r

)

represent the angle between v∗

b and vi
r.

It can be seen from (10) that, if the distance between

p∗

b and pi
r is small, the position function will be large. In

(11), if the direction of the racket velocity is near to the

opposite direction of the ball velocity, the velocity function

will be close to 1. With the function (9), we can determine

correlations between ω
∗

b and ω
i
r, i ∈ {1, 2, . . . , nr}. Here, nr

is the size of the database Dr. Through a linear combination

of the prior data in Dr, the robot movement pattern is

predicted to be

ω
∗

q =

∑

i fω(ω
∗

b ,ω
i
r))ω

i
q

∑

i fω(ω
∗

b ,ω
i
r))

, (12)

and the robot movement duration is

T ∗

q =

∑

i fω(ω
∗

b ,ω
i
r))T

i
q

∑

i fω(ω
∗

b ,ω
i
r))

. (13)

According to the joint movement parameters ω∗

q and T ∗

q , we

can generate the robot joint trajectories separately using the

DMP as given in (4)–(6).

V. REINFORCMENT LEARNING OF THE JOINT

ADJUSTMENT TRAJECTORY

The regression part focuses on striking balls without con-

sidering actual landing points after strikes of the racket. In

order to return balls well, the appropriate racket orientations

are needed. Since the racket orientation is determined by

the joint trajectories, we attempt to directly modify joint

trajectories such that balls can not only be struck but also be

returned well. We enable that by adding the adjustment tra-

jectories to the initial trajectories generated by the regression

part (Section V-A) and subsequently learning the optimal

parameters of the adjustment trajectories with a RL method

(Section V-B).

A. Joint Adjustment Trajectory

Given an initial state s0 of the ball, we can generate robot

joint trajectories q(t) via the regression part, so that the ball

is struck by the racket attached to the end-effector of the

robot. In order to return the incoming ball well, an intuitive

way is to add minor adjustments to q(t).
Many functions can be used to generate the adjustment

trajectories, such as Gaussian function or polynomials. We

write the adjustment function of the k-th joint as qa (γk, t),
where k ∈ {1, 2, . . . , N}, γk represents function parameters

to be learned. For example, the parameters of a Gaussian

function can be amplitude, center and bandwidth. If γk is

known, the adjustment function qa (γk, t) is obtained. With

the integration of an initial joint trajectory qk(t) and a minor

adjustment trajectory qa(γk, t), a mixed trajectory q̄k(t) for

the k-th joint becomes

q̄k(t) = qk(t) + qa(γk, t). (14)

B. Parameter Learning of the Adjustment Trajectory

In order to generate an appropriate adjustment trajectory

for the k-th joint, the parameters γk of an adjustment

function qa (γk, t) should take the initial ball state s0 as well

as the evaluation of actual landing points into account. We

can transform learning of parameters γk into a RL problem,

where the state is the ball’s initial state s0, the action is the

parameter vector γk, the reward is an evaluation r of the

landing point. Assuming that a collection of prior data in

the form of (sm
0
,γm

k , rm) is available, where m represents

the m-th data point.

Policy search has been studied widely recently [13], and

there exists the myriad of approaches to different applica-

tions. Unlike many policy search methods with explicit basis

functions, the cost-regularized kernel regression (CrKR) [14]

uses kernels instead, leading to a non-parametric approach.

Thus, we use the CrKR to learn parameters γk in response

to s0. An optimal parameter γki ∈ γk can be sampled from

a Gaussian distribution

γki ∼ N
(

γki(s0), σ
2(s0)

)

(15)

with mean

γki(s0) = k(s0)
T (K+ λC)−1Tki (16)

and variance

σ2(s0) = k(s0, s0) + λ− k(s0)
T (K+ λC)−1k(s0), (17)

where k(·, ·) is a kernel function; km = k(s0, s
m
0
); Kmn =

k(sm
0
, sn

0
); C is a diagonal matrix with non-zero elements

Cmm = 1

rm
; λ is a positive constant; Tkim = γm

ki . After all

parameters of γk are determined, the adjustment function

qa(γk, t) is known. Accordingly, the mixed joint trajectory

for k-th joint can be generated using (14).

VI. EVALUATION RESULTS

In this section, the combined learning method is evaluated

in a simulated robotic system (Section VI-A) and a real

robotic system (Section VI-B). Both of the simulated and

Fig. 6: Simulation environment in SL.

the real robotic systems consist of a seven degree-of-freedom

(DoF) robot arm, a racket attached to the end-effector of the

robot arm, a table and a ping-pong ball. The racket, the table

and the ball have the standard sizes. The initial state of the

robot is at the middle position of the table.

A. Evaluations on the Simulated Robotic System

The simulated robotic system (Fig. 6) is developed in the

framework of SL [15]. The ball’s start state is generated

randomly towards the forehand side of the robot. The ball’s

subsequent state is obtained using an iterative flight model

[2] and a linear rebound model [1]. Before running the

combined learning method, we initialize the ball map and

the robot map with 500 prior data separately, where the robot

map is built with human demonstrations.

We run the combined learning method 5 times and for

each run we have 10000 trials. Here, both the regression

part (ball map and robot map) and the RL part will update

online. The adjustment function in (14) is modelled by a

fifth-order polynomial with amplitude and via point to be

learned, where boundary conditions (position, velocity and

acceleration) are zeros. The desired landing point is at the

center of the human opponent side of the table. The reward

is r = exp(−αrd
2), where αr > 0 is a scalar; d represents a

landing error between an actual landing point and a desired

landing point.

As a comparison, we also run a traditional method in

Fig. 2, which predicts a strike point on the virtual striking

plane using a flight model [2] and a linear rebound model

[1], then determines the desired racket state with a simpli-

fied ball-racket contact model and the desired joint state

with inverse kinematics, finally generates robot trajectory

in joint space using fifth-order polynomials [3], [8]. We

calculate striking rates every 200 trials; Meanwhile, we

can statistically analyse actual landing points according to

landing errors d. Evaluation results are shown in Fig. 7.

Since the virtual striking plane is fixed in the traditional

method, sometimes the intersection point of the predicted

ball trajectory and the virtual striking plane is inappropriate

for the robot (e.g. exceed the robot’s workspace), which leads

to a lower striking rate (95%). For the combined learning

method, the striking performance is improved as both the

ball map and the robot map are updated online. Besides,

0 2000 4000 6000 8000 10000
0.7

0.75

0.8

0.85

0.9

0.95

1

Trial number

S
tr

ik
in

g
 r

a
te

combined

traditional

(a) Striking rates

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

Trial number

L
a

n
d

in
g

 r
a

te

combined:(0,0.35]m

combined:(0.35,0.7]m

traditional:(0,0.35]m

traditional:(0.35,0.7]m

(b) Landing rates

Fig. 7: Statistical results of the combined learning method

and a traditional method in the simulated robotic system.

The curves represent mean values while error bars represent

standard deviations. (a): striking rates; (b): landing rates in

different regions (defined with landing errors).

the combined method uses the correlation measurement to

compare the ball flight trajectory and the racket trajectory so

that the restriction of striking points is alleviated. Hence, a

higher striking rate (99%) is achieved.

For the traditional method, both the landing rate-1 (d ≤
0.35m) and the landing rate-2 (0.35m < d ≤ 0.7m) are

around 22%. For the combined method, after around 6000

trials the landing rate-1 is nearly 41% while the landing rate-

2 is nearly 44%. For the traditional method, it is difficult

to determine a proper racket state at the striking time on

the basis of an analytical model, since both the ball-racket

contact model and the ball flight model are non-linear. Be-

sides, the fixed virtual striking plane increases the difficulty

of returning balls. For some inappropriate striking points, the

robot can only strike balls, but cannot return them well. A

benefit of the combined approach is that physical models are

avoided. On the basis of the feedback evaluations of actual

landing points, the RL method can modify joint trajectories

such that balls are returned well.

B. Evaluations on the Real Robotic System

In the real robotic system (Fig. 1), a 7-DoF Barrett

WAM robot is implemented. A launcher is used to send

−1

−0.5

0

0.5

1

−3

−2

−1

−1.4

−0.9

−0.4

X[m]
Y[m]

Z
[m

]
measured positions

predicted positions

Fig. 8: The ball trajectory prediction via the ball map in a

real robotic system is shown, where the entire ball rebound

trajectory is predicted.

balls towards the forehand side of the robot. A vision

system consisting of four Procsilica Gigabit GE640 cameras

(200fps) is applied to the measurement of the ball’s 3-D

positions. The ball map and the robot map are initialized with

500 prior data, respectively. The ball trajectory prediction

via the ball map is illustrated in Fig. 8, where the ball’s

initial state is estimated using the polynomial fitting method

[2]. It can be seen that the entire ball rebound trajectory is

predicted. Moreover, the predicted trajectory coincides well

with the ball’s actual trajectory. As more ball trajectories are

observed, the prediction via the ball map will improve.

We train the combined method with 90 trials, then we

evaluate the combined method with 25 trials: the striking

rate is 92%. Subsequently, we continue to train the combined

approach with 90 more trials and then evaluate it with

another 25 trials: the striking rate is 96%. Here, the ball

trajectories for evaluations have smaller variance compared

with that in the simulated system. We also run the traditional

method and evaluate it with 50 trials, the striking rate is 82%.

For the traditional method with physical models [1], [2],

it is difficult to predict the single striking point precisely

due to modelling errors in the ball flight model and the ball

rebound model. Especially, the linear rebound model can

not characterize the rebound phenomenon well. For some

ball trajectories, the virtual striking plane [1], [3] leads to

improper striking points for the robot, and it is very hard to

hit balls at these points.

Instead of physical models, the combined learning method

predicts the entire ball rebound trajectory from a data-driven

perspective. With the correlation measurement, the combined

method has a sufficient comparison between the entire ball

rebound trajectory and the entire racket trajectory. Thus,

more appropriate joint movement parameters are obtained.

VII. CONCLUSIONS

This paper contributes to providing a different perspective

to treat robot table tennis, where a novel learning framework

is illustrated. This framework consists of a regression part

and a RL part. The regression part is able to generate robot

joint trajectories so as to strike incoming balls. The RL part

is able to modify joint trajectories so as to return balls well.

Within this framework, the robot table tennis task is learned

from a data-driven perspective without inverse kinematics

and physical models.

Due to the difficulties in visual measurement of rotational

velocities, only the case of non-spinning balls is considered

in this paper. In the future, we will identify the rotational

information and incorporate spinning balls into our frame-

work. Besides, a possible extension of the current work is to

take the ball’s 2-D coordinates in images as the inputs and

the motor commands for the robot as the outputs. The data-

driven approach proposed in this paper can also be applied to

other robotic systems, such as the badminton robots and ball-

catching robots. Instead of explicit physical models, the data-

driven approach provides an alternative way to the robotics

systems with complicated dynamics.

REFERENCES

[1] K. Mülling, J. Kober and J. Peters, “A biomimetic approach to robot
table tennis,” Adaptive Behavior, pp. 359-376, 2011.

[2] Z. Zhang, D. Xu and M. Tan, “Visual measurement and prediction
of ball trajectory for table tennis robot,” IEEE Transactions on

Instrumentation and Measurement, vol. 59, no. 12, pp. 3195-3205,
2010.

[3] Z. Yu, Y. Liu, Q. Huang, X. Chen, W. Zhang and J. Li, etc, “Design
of a humanoid ping-pong player robot with redundant joints,” in Proc.
International Conference on Robotics and Biomimetics, Shenzhen,
China, 2013, pp. 911-916.

[4] P. Yang, D. Xu, H. Wang and Z. Zhang, “Control system design for
a 5-DOF table tennis robot,” in Proc. International Conference on

Control, Automation, Robotics and Vision, Singapore, 2010, pp. 1731-
1735.

[5] Y. Huang, D. Xu, M. Tan and H. Su, “Adding active learning to LWR
for ping-pong playing robot,” IEEE Transactions on Control Systems

Technology, vol. 21, no. 4, pp. 1489-1494, 2013.
[6] M. Matsushima, T. Hashimoto, M. Takeuchi and F. Miyazaki, “A

learning approach to robotic table tennis,” IEEE Transactions on

Robotics, vol. 21, no. 4, pp. 767-771, 2005.
[7] K. Mülling, J. Kober and J. Peters, “Learning table tennis with

a mixture of motor primitives,” in Proc. IEEE-RAS International

Conference on Humanoid Robots, Nashville, TN, USA, 2010, pp. 411-
416.

[8] H. Li, H, Wu, L. Lou, K. Khnlenz and O. Ravn, “Ping-pong robotics
with high-speed vision system,” in Proc. International Conference on

Control, Automation, Robotics & Vision, Guangzhou, China, 2012, pp.
106-111.

[9] Y. Huang, B. Schlkopf, J. Peters, “Learning optimal striking points
for a ping-pong playing robot,” in Proc. IEEE/RSJ International

Conference on Intelligent Robots and Systems, Hamburg, Germany,
2015, pp. 4587-4592.

[10] C. G. Atkeson, A. W. Moore and S. Schaal, “Locally weighted
learning,” Atificial Intelligence Review, vol. 11, pp. 11-73, 1997.

[11] C. E. Rasmussen and C. K. I. Williams, “Gaussian processes for
machine learning,” The MIT Press, 2006.

[12] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no.2, pp. 328-373, 2013.

[13] M. P. Deisenroth, G. Neumann and J. Peters, “A survey on policy
search for robotics,” Foundations and Trends in Robotics, vol. 2, nos.
1-2, pp. 1-142, 2011.

[14] J. Kober, E. Oztop and J. Peters, “Reinforcement learning to adjust
robot movements to new situations,” in Proc. International Joint

Conference on Artificial Intelligence, Barcelona, Spain, 2011, pp.
2650-2655.

[15] S. Schaal, “The SL simulation and real-time control software package,”
University of Southern California, 2006.

