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Fig. 1. Overview of our framework.

Crowd simulation is a central topic in several ields including graphics. To

achieve high-idelity simulations, data has been increasingly relied upon for

analysis and simulation guidance. However, the information in real-world

data is often noisy, mixed and unstructured, making it diicult for efective

analysis, therefore has not been fully utilized. With the fast-growing volume

of crowd data, such a bottleneck needs to be addressed. In this paper, we

propose a new framework which comprehensively tackles this problem.

It centers at an unsupervised method for analysis. The method takes as

input raw and noisy data with highly mixed multi-dimensional (space, time

and dynamics) information, and automatically structure it by learning the

correlations among these dimensions. The dimensions together with their

correlations fully describe the scene semantics which consists of recurring

activity patterns in a scene, manifested as space lows with temporal and dy-

namics proiles. The efectiveness and robustness of the analysis have been
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tested on datasets with great variations in volume, duration, environment

and crowd dynamics. Based on the analysis, new methods for data visual-

ization, simulation evaluation and simulation guidance are also proposed.

Together, our framework establishes a highly automated pipeline from raw

data to crowd analysis, comparison and simulation guidance. Extensive

experiments and evaluations have been conducted to show the lexibility,

versatility and intuitiveness of our framework.

CCS Concepts: ·Computingmethodologies→Animation;Topicmod-

eling; Learning in probabilistic graphical models; Scene understand-

ing; Activity recognition and understanding; Multi-agent planning;

· Mathematics of computing → Probabilistic inference problems;

Nonparametric statistics.

Additional Key Words and Phrases: Crowd Simulation, Simulation Evalua-

tion, Bayesian Inference
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Scene Decomposition for Crowd Analysis, Comparison and Simulation

Guidance. ACM Trans. Graph. 39, 4, Article 1 (July 2020), 15 pages. https:

⁄⁄doi.org⁄10.1145⁄3386569.3392407

1 INTRODUCTION

Crowd simulation has been intensively used in computer anima-

tion, as well as other ields such as architectural design and crowd

management. The idelity or realism of simulation has been a long-

standing problem. The main complexity arises from its multifaceted

nature. It could mean high-level global behaviors [Narain et al. 2009],

mid-level low information [Wang et al. 2016] or low-level individ-

ual motions [Guy et al. 2012]. It could also mean perceived realism

[Ennis et al. 2011] or numerical accuracy [Wang et al. 2017]. In
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any case, analyzing real-world data is inevitable for evaluating and

guiding simulations.

The main challenges in utilizing real-world data are data com-

plexity, intrinsic motion randomness and the shear volume. The

data complexity makes structured analysis diicult. As the most

prevalent form of crowd data, trajectories extracted from sensors

contain rich but mixed and unstructured information of space, time

and dynamics. Although high-level statistics such as density can

be used for analysis, they are not well deined and cannot give

structural insights [Wang et al. 2017]. Second, trajectories show

intrinsic randomness of individual motions [Guy et al. 2012]. The

randomness shows heterogeneity between diferent individuals and

groups, and is inluenced by internal factors such as state of mind

and external factors such as collision avoidance. Hence a single

representation is not likely to be able to capture all randomness

for all people in a scene. This makes it diicult to guide simulation

without systematically considering the randomness. Lastly, with

more recording devices being installed and data being shared, the

shear volume of data in both space and time, with excessive noise,

requires eicient and robust analysis.

Existing methods that use real-world data for purposes such as

qualitative and quantitative comparisons [Wang et al. 2016], sim-

ulation guidance [Ren et al. 2018] or steering [López et al. 2019],

mainly focus on one aspect of data, e.g. space, time or dynamics,

and tend to ignore the structural correlations between them. Also

during simulation and analysis, motion randomness is often ignored

or uniformly modelled for all trajectories [Guy et al. 2012; Helbing

et al. 1995]. Ignoring the randomness (e.g. only assuming the least-

efort principle) makes simulated agents to walk in straight lines

whenever possible, which is rarely observed in real-world data; uni-

formly modelling the randomness fails to capture the heterogeneity

of the data. Besides, most existing methods are not designed to deal

with massive data with excessive noise. ℧any of them require the

full trajectories to be available [Wolinski et al. 2014] which cannot

be guaranteed in real world, and do not handle data at the scale of

tens of thousands of people and several days long.

In this paper, we propose a new framework that addresses the

three aforementioned challenges. This framework is centered at an

analysis method which automatically decomposes a crowd scene

of a large number of trajectories into a series of modes. Each mode

comprehensively captures a unique pattern of spatial, temporal and

dynamics information. Spatially, a mode represents a pedestrian low

which connects subspaces with speciic functionalities, e.g. entrance,

exit, information desk, etc.; temporally it captures when this low

appears, crescendos, wanes and disappears; dynamically it reveals

the speed preferences on this low. With space, time and dynamics

information, each mode represents a unique recurring activity and

all modes together describe the scene semantics. These modes serve

as a highly lexible visualization tool for general and task-speciic

analysis. Next, they form a natural basis where explicable evaluation

metrics can be derived for quantitatively comparing simulated and

real crowds, both holistically and dimension-speciic (space, time

and dynamics). Lastly, they can easily automate simulation guidance,

especially in capturing the heterogeneous motion randomness in

the data.

The analysis is done by a new unsupervised clustering method

based on non-parametric Bayesianmodels, because manual labelling

would be extremely laborious. Speciically, Hierarchical Dirichlet

Processes (HDP) are used to disentangle the spatial, temporal and

dynamics information. Our model consists of three intertwined

HDPs and is thus named Triplet HDPs (THDP). The outcome is a

(potentially ininite) number of modes with weights. Spatially, each

mode is a crowd low represented by trajectories sharing spatial

similarities. Temporally, it is a distribution of when the low appears,

crescendos, peaks, wanes and disappears. Dynamically, it shows the

speed distribution of the low. The whole data is then represented by

a weighted combination of all modes. Besides, the power of THDP

comes with an increased model complexity, which brings challenges

on inference. We therefore propose a new method based on ℧arkov

Chain ℧onte Carlo (℧C℧C). The method is a major generalization

of the Chinese Restaurant Franchise (CRF) method, which was orig-

inally developed for HDP. We refer to the new inference method as

Chinese Restaurant Franchise League (CRFL). THDP and CRFL are

general and efective on datasets with great spatial, temporal and

dynamics variations. They provide a versatile base for new methods

for visualization, simulation evaluation and simulation guidance.

Formally, we propose the irst, to our best knowledge, multi-

purpose framework for crowd analysis, visualization, simulation

evaluation and simulation guidance, which includes:

(1) a new activity analysis method by unsupervised clustering.

(2) a new visualization tool for highly complex crowd data.

(3) a set of new metrics for comparing simulated and real crowds.

(4) a new approach for automated simulation guidance.

To this end, we have technical contributions which include:

(1) the irst, to our best knowledge, non-parametric method that

holistically considers space, time and dynamics for crowd

analysis, simulation evaluation and simulation guidance.

(2) a new ℧arkov Chain ℧onte Carlo method which achieves

efective inference on intertwined HDPs.

2 RELATED ΩORK

2.1 Crowd Simulation

Empirical modelling and data-driven methods have been the two

mainstreams in simulation. Empirical modelling dominates early

research, where observations of crowd motions are abstracted into

mathematical equations and deterministic systems. Crowds can be

modelled as ields or lows [Narain et al. 2009], or as particle systems

[Helbing et al. 1995], or by velocity and geometric optimization

[van den Berg et al. 2008]. Social behaviors including queuing and

grouping [Lemercier et al. 2012; Ren et al. 2016] have also been

pursued. On the other hand, data-driven simulation has also been

explored, in using e.g. irst-person vision to guide steering behaviors

[López et al. 2019] or trajectories to extract features to describe

motions [Karamouzas et al. 2018; Lee et al. 2007]. Our research is

highly complementary to simulation research in providing analysis,

guidance and evaluation metrics. It aims to work with existing

steering and global planning methods.

AC℧ Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.
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2.2 Crowd Analysis

Crowd analysis has been a trendy topic in computer vision [Wang

and O'Sullivan 2016; Wang et al. 2008]. They aim to learn structured

latent patterns in data, similar to our analysis method. However, they

only consider limited information (e.g. space only or space⁄time)

compared to our method because our method explicitly models

space, time, dynamics and their correlations. In contrast, another

way of scene analysis is to focus on the anomalies [Charalambous

et al. 2014]. Their perspective is diferent from ours and therefore

complementary to our approach. Trajectory analysis also plays an

important role in modern sports analysis [Sha et al. 2018, 2017], but

they do not deal with a large number of trajectories as our method

does. Recently, deep learning has been used for crowd analysis in

trajectory prediction [Xu et al. 2018], people counting [Wang et al.

2019], scene understanding [Lu et al. 2019] and anomaly detection

[Sabokrou et al. 2017]. However, they either do not model low-level

behaviors or can only do short-horizon prediction (seconds). Our

research is orthogonal to theirs by focusing on the analysis and its

applications in simulations.

Besides computer vision, crowd analysis has also been investi-

gated in physics. In [Ali and Shah 2007], Lagrangian Particle Dy-

namics is exploited for the segmentation of high-density crowd

lows and detection of low instabilities, where the target was simi-

lar to our analysis. But they only consider space when separating

lows, while our research explicitly models more comprehensive

information, including space, time and dynamic. Physics-inspired

approaches have also been applied in abnormal trajectory detec-

tion for surveillance [Chaker et al. 2017; ℧ehran et al. 2009]. An

approach based on social force model [℧ehran et al. 2009] is intro-

duced to describe individual movement in microscopic by placing a

grid particle over the image. A local and global social network are

built by constructing a set of spatio-temporal cuboids in [Chaker

et al. 2017] to detect anomalies. Compared with these methods, our

anomaly detection is more informative and versatile in providing

what attributes contribute to the abnormality.

2.3 Simulation Evaluation

How to evaluate simulations is a long-standing problem. One major

approach is to compare simulated and real crowds. There are quali-

tative and quantitative methods. Qualitative methods include visual

comparison [Lemercier et al. 2012] and perceptual experiments [En-

nis et al. 2011]. Quantitative methods fall into model-based methods

[Golas et al. 2013] and data-driven methods [Guy et al. 2012; Lerner

et al. 2009; Wang et al. 2016, 2017]. Individual behaviors can be

directly compared between simulation and reference data [Lerner

et al. 2009]. However, it requires full trajectories to be available

which is diicult in practice. Our comparison is based on the latent

behavioral patterns instead of individual behaviors and does not

require full trajectories. The methods in [Wang et al. 2016, 2017]

are similar to ours where only space is considered. In contrast, our

approach is more comprehensive by considering space, time and

dynamics. Diferent combinations of these factors result in diferent

metrics focusing on comparing diferent aspects of the data. The

comparisons can be spatially focused or temporally focused. They

can also be comparing general situations or speciic modes. Overall,

our method provides greater lexibility and more intuitive results.

2.4 Simulation Guidance

Quantitative simulation guidance has been investigated before,

through user control or real-world data. In the former, trajectory-

based user control signals can be converted into guiding trajectories

for simulation [Shen et al. 2018]. Predeined crowd motion ‘patches'

can be used to compose heterogeneous crowd motions [Jordao et al.

2014]. The purpose of this kind of guidance is to give the user the

full control to ‘sculpture' crowd motions. The latter is to guide sim-

ulations using real-world data to mimic real crowd motions. Given

data and a parameterized simulation model, optimizations are used

to it the model on the data [Wolinski et al. 2014]. Alternatively,

features can be extracted and compared for diferent simulations,

so that predictions can be made about diferent steering methods

on a simulation task [Karamouzas et al. 2018]. Our approach also

heavily relies on data and is thus similar to the latter. But instead

of anchoring on the modelling of individual motions, it focuses on

the analysis of scene semantics⁄activities. It also considers intrinsic

motion randomness in a structured and principled way.

3 ℧ETHODOLOGY OVERVIEΩ

The overview of our framework is in Fig. 1. Without loss of gener-

ality, we assume that the input is raw trajectories⁄tracklets which

can be extracted from videos by existing trackers, where we can

estimate the temporal and velocity information. Naively modelling

the trajectories⁄tracklets, e.g. by simple descriptive statistics such

as average speed, will average out useful information and cannot

capture the data heterogeneity. To capture the heterogeneity in the

presence of noise and randomness, we seek an underlying invariant

as the scene descriptor. Based on empirical observations, steady

space lows, characterized by groups of geometrically similar tra-

jectories, can be observed in many crowd scenes. Each low is a

recurring activity connecting subspaces with designated function-

alities, e.g. a low from the front entrance to the ticket oice then

to a platform in a train station. Further, this low reveals certain

semantic information, i.e. people buying tickets before going to the

platforms. Overall, all lows in a scene form a good basis to describe

the crowd activities and the basis is an underlying invariant. How

to compute this basis is therefore vital in analysis.

However, computing such a basis is challenging. Naive statistics of

trajectories are not descriptive enough because the basis consists of

many lows, and is therefore highly heterogeneous and multi-modal.

Further the number of lows is not known a priori. Since the lows

are formed by groups of geometrically similar trajectories⁄tracklets,

a natural solution is to cluster them [Bian et al. 2018]. In this spe-

ciic research context, unsupervised clustering is needed due to that

the shear data volume prohibits human labelling. In unsupervised

clustering, popular methods such as K-means and Gaussian ℧ixture

℧odels [Bishop 2007] require a pre-deined cluster number which

is hard to know in advance. Hierarchical Agglomerative Clustering

[Kaufman and Rousseeuw 2005] does not require a predeined clus-

ter number, but the user must decide when to stop merging, which

is similarly problematic. Spectral-based clustering methods [Shi and

AC℧ Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.
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℧alik 2000] solve this problem, but require the computation of a

similarity matrix whose space complexity isO(n2) on the number of

trajectories. Too much memory is needed for large datasets and per-

formance degrades quickly with increasing matrix size. Due to the

afore-mentioned limitations, non-parametric Bayesian approaches

were proposed [Wang et al. 2016, 2017]. However, a new approach

is still needed because the previous approaches only consider space,

and therefore cannot be reused or adapted for our purposes.

We propose a new non-parametric Bayesian method to cluster

the trajectories with the time and velocity information in an unsu-

pervised fashion, which requires neither manual labelling nor the

prior knowledge of cluster number. The outcome of clustering is a

series of modes, each being a unique distribution over space, time

and speed. Then we propose new methods for data visualization,

simulation evaluation and automated simulation guidance.

We irst introduce the background of one family of non-parametric

Bayesian models, Dirichlet Processes (DPs), and Hierarchical Dirich-

let Processes (HDP) (Sec. 4.1). We then introduce our new model

Triplet HDPs (Sec. 4.2) and new inference method Chinese Restau-

rant Franchise League (Sec. 5). Finally new methods are proposed

for visualization (Sec. 6.1), comparison (Sec. 6.2) and simulation

guidance (Sec. 6.3).

4 OUR ℧ETHOD

4.1 Background

Dirichlet Process. To understand DP, imagine there is a multi-

modal 1D dataset with ive high-density areas (modes). Then a

classic ive-component Gaussian ℧ixture ℧odel (G℧℧) can it the

data via Expectation-℧inimization [Bishop 2007]. Now further gen-

eralize the problem by assuming that there are an unknown number

of high-density areas. In this case, an ideal solution would be to

impose a prior distribution which can represent an ininite number

of Gaussians, so that the number of Gaussians needed, their means

and covariances can be automatically learnt. DP is such a prior.

A DP(γ , H) is a probabilistic measure on measures [Ferguson

1973], with a scaling parameter γ ¿ 0 and a base probability measure

H . A draw from DP,G ˜DP(γ ,H ) is:G =
∑∞
k=1

βkδϕk , where βk ∈ β

is random and dependent on γ . ϕk ∈ ϕ is a variable distributed

according to H , ϕk ∼ H . δϕk is called an atom at ϕk . Speciically for

the example problem above, we can deineH to be a Normal-Inverse-

Gamma (NIG) so that any draw, ϕk , from H is a Gaussian, thenG

becomes an Ininite Gaussian ℧ixture ℧odel (IG℧℧) [Rasmussen

1999]. In practice, k is inite and computed during inference.

Hierarchical DPs. Now imagine that the multi-modal dataset in

the example problem is observed in separate data groups. Although

all the modes can be observed from the whole dataset, only a subset

of the modes can be observed in any particular data group. To model

this phenomenon, a parent DP is used to capture all the modes with

a child DP modelling the modes in each group:

G j ∼ DP(α j ,G) or G j =

∞∑

i=1

βjiδψji where G =

∞∑

k=1

βkδϕk (1)

where G j is the modes in the jth data group. α j is the scaling factor

andG is its based distribution. βji is the weight and δψji is the atom.

Now we have the Hierarchical DPs, or HDP [Teh et al. 2006] (Fig. 2

Fig. 2. Let: HDP. Right: Triplet HDP.

Left). At the top level, the modes are captured by G ∼ DP(γ ,H ). In

each data group j , the modes are captured byG j which is dependent

on α j and G. This way, the modes, G j , in every data group come

from the common set of modesG , i.e.ψji ∈ {ϕ1,ϕ2, ...,ϕk }. In Fig. 2

Left, there is also a variable θ ji called factor which indicates with

which mode (ψji or equally ϕk ) the data sample x ji is associated.

Finally, ifH is again a NIG prior, then the HDP becomes Hierarchical

Ininite Gaussian ℧ixture ℧odel (HIG℧℧).

4.2 Triplet-HDPs (THDP)

We now introduce THDP (Fig. 2 Right). There are three HDPs in

THDP, to model space, time and speed. We name them Time-HDP

(Green), Space-HDP (Yellow) and Speed-HDP (Blue). Space-HDP is

to compute space modes. Time-HDP and Speed-HDP are to compute

the time and speed modes associated with each space mode, which

requires the three HDPs to be linked. The modeling choice of the

links will be explained later. The only observed variable in THDP

is w , an observation of a person in a frame. It includes a location-

orientation (x ji ), timestamp (ykd ) and speed (zkc ). θ
s
ji , θ

t
kd

and θe
kc

are their factor variables. Given a single observation denoted asw ,

we denote one trajectory as w̄ , a group of trajectories as w̌ and the

whole data set as w . Our inal goal is to compute the space, time

and speed modes, givenw :

Gs =

∞∑

k=1

βkδϕs
k

Gt =

∞∑

l=1

ζlδϕt
l

Ge =

∞∑

q=1

ρqδϕeq (2)

In THDP, a space mode is deined to be a group of geometrically

similar trajectories w̌ . Since these trajectories form a low, we also

refer to it as a space low. A space low's timestamps (ykd s) and

speed (zkc s) are both 1D data and can be modelled in similar ways.

We irst introduce the Time-HDP. One space low w̌ might appear,

crescendo, peak, wane and disappear several times. If a Gaussian

distribution is used to represent one time peak on the timeline,

multiple Gaussians are needed. Naturally IG℧℧ is used to model

the ykd ∈ w̌ . A possible alternative is to use Poisson Processes to

model the entry time. But IG℧℧ is chosen due to its ability to it

complex multi-modal distributions. It can also model a low for the

entire duration. Next, since there are many space lows and the

ykd s of each space low form a timestamp data group, we therefore

assume that there is a common set of time peaks shared by all space

AC℧ Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.
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Fig. 3. From let to right: 1. A space flow. 2. Discretization and flow cell

occupancy, darker means more occupants. 3. Codebook with normalized

occupancy as probabilities indicated by color intensities. 4. Five colored

orientation subdomains (Pink indicates static).

lows and each space low shares only a subset. This way, we use a

DP to represent all the time peaks and a child DP below the irst DP

to represent the peaks in each space low. This is a HIG℧℧ (for the

Time-HDP) where the Ht is a NIG. Similarly for the speed, zkc ∈ w̌

can also have multiple peaks on the speed axis, so we use IG℧℧

for this. Further, there are many space lows. We again assume that

there is a common set of speed peaks and each space low only has

a subset of these peaks and use another HIG℧℧ for the Speed-TDP.

After Time-HDP and Speed-HDP, we introduce the Space-HDP.

The Space-HDP is diferent because, unlike time and speed, space

data (x ji s) is 4D (2D location + 2D orientation), which means its

modes are also multi-dimensional. In contrast to time and speed, a

4D Gaussian cannot represent a group of similar trajectories well. So

we need to use a diferent distribution. Similar to [Wang et al. 2017],

we discretize the image domain (Fig. 3: 1) into a m × n grid (Fig. 3:

2). The discretization serves three purposes: 1. the cell occupancy

serves as a good feature for a low, since a space low occupies a ixed

group of cells. 2. it removes noises caused by frequent turns and

tracking errors. 3. it eliminates the dependence on full trajectories.

As long as instantaneous positions and velocities can be estimated,

THDP can cluster observations. This is crucial in dealing with real-

world data where full trajectories cannot be guaranteed. Next, since

there is no orientation information so that the representation cannot

distinguish between lows from A-to-B and lows from B-to-A, we

discretize the instantaneous orientation into 5 cardinal subdomains

(Fig. 3: 4). This makes the grid m × n × 5 (Fig. 3: 3), which now

becomes a codebook and every 4D x ji can be converted into a cell

occupancy. Note although the grid resolution is problem-speciic, it

does not afect the validity of our method.

Next, since the cell occupancy on the grid (after normalization)

can be seen as a ℧ultinomial distribution, we use ℧ultinomials to

represent space lows. This way, a space low has high probabilities

in some cells and low probabilities in others (Fig. 3:3). Further, we

assume the data is observed in groups and any group could contain

multiple lows. We use a DP to model all the space lows of the

whole dataset with child DPs representing the lows in individual

data groups, e.g. video clips. This is a HDP (Space-HDP) with Hs
being a Dirichlet distribution.

After the three HDPs introduced separately, we need to link them,

which is the key of THDP. For a space low w̌1, all x ji ∈ w̌1 are

associated with the same space mode, denoted by ϕs1 , and all ykd ∈

w̌1 are associated with the time modes –ϕt1˝ which forms a temporal

proile of ϕs1 . This indicates that ykd 's time mode association is

dependent on x ji 's space mode association. In other words, if x1ji ∈

w̌1 (ϕs1) and x
2
ji ∈ w̌2 (ϕs2), where x

1
ji = x2ji but w̌1 , w̌2 (two

lows can partially overlap), then their corresponding y1
kd

∈ w̌1

and y2
kd

∈ w̌2 should be associated with –ϕt1˝ and –ϕt2˝ where –ϕ
t
1˝ ,

–ϕt2˝ when w̌1 and w̌2 have diferent temporal proiles. We therefore

condition θ t
kd

on θsji (The left red arrow in Fig. 2 Right) so thatykd 's

time mode association is dependent on x ji 's space mode association.

Similarly, a conditioning is also added to θe
kc

on θsji . This way,w's

associations to space, time and speed modes are linked. This is the

biggest feature that distinguishes THDP from just a simple collection

of HDPs, which would otherwise require doing analysis on space,

time and dynamics separately, instead of holistically.

5 INFERENCE

Given dataw , the goal is to compute the posterior distribution p(β ,

ϕs , ζ , ϕt , ρ, ϕe — w). Existing inference methods for DPs include

℧C℧C [Teh et al. 2006], variational inference [Hofman et al. 2013]

and geometric optimization [Yurochkin and Nguyen 2016]. However,

they are designed for simpler models (e.g. a single HDP). Further,

both variational inference and geometric optimization sufer from

local minimum. We therefore propose a new ℧C℧C method for

THDP. The method is a major generalization of Chinese Restaurant

Franchise (CRF). Next, we irst give the background of CRF, then

introduce our method.

5.1 Chinese Restaurant Franchise (CRF)

A single DP has a Chinese Restaurant Process (CRP) representation.

CRF is its extension onto HDPs. We refer the readers to [Teh et al.

2006] for details on CRP. Here we directly follow the CRF metaphor

on HDP (Eq. 1, Fig. 2 Left) to compute the posterior distribution p(β ,

ϕ — x). In CRF, each observation x ji is called a customer. Each data

group is called a restaurant. Finally, since a customer is associated

with a mode (indicated by θ ji ), the mode is called a dish and is to

be learned, as if the customer ordered this dish. CRF dictates that,

in every restaurant, there is a potentially ininite number of tables,

each with only one dish and many customers sharing that dish.

There can be multiple tables serving the same dish. All dishes are on

a global menu shared by all restaurants. The global menu can also

contain an ininite number of dishes. In summary, we have multiple

restaurants with many tables where customers order dishes from a

common menu.

CRF is a Gibbs sampling approach. The sampling process is con-

ducted at both customer and table level alternatively. At the cus-

tomer level, each customer is treated, in turn, as a new customer,

given all the other customers sitting at their tables. Then she needs

to choose a table in her restaurant. There are two criteria inluenc-

ing her decision: 1. how many customers are already at the table

(table popularity) and 2. how much she likes the dish on that table

(dish preference). If she decides to not sit at any existing table, she

can create a new table then order a dish. This dish can be from the

menu or she can create a new dish and add it to the menu. Next, at

the table-level, for each table, all the customers sitting at that table

are treated as a new group of customers, and are asked to choose a

dish together. Their collective dish preference and how frequently

the dish is ordered in all restaurants (dish popularity) will inluence

their choice. They can choose a dish from the menu or create a new
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ALGORITHM 1: Chinese Restaurant Franchise

Result: β , ϕ (Eq. 1)

1 Input: x ;

2 while Not converged do

3 for every restaurant j do

4 for every customer x ji do

5 Sample a table tji (Eq. 11, Appx. A);

6 if a new table is chosen then

7 Sample a dish or create a new dish (Eq. 12, Appx. A)

8 end

9 end

10 for every table and its customers xjt do

11 Sample a new dish (Eq. 13, Appx. A)

12 end

13 end

14 Sample hyper-parameters [Teh et al. 2006]

15 end

one and add it to the menu. We give the algorithm in Algorithm 1

and refer the readers to Appx. A for more details.

5.2 Chinese Restaurant Franchise League (CRFL)

We generalize CRF by proposing a new method called Chinese

Restaurant Franchise League. We irst change the naming conven-

tion by adding preixes space-, time- and speed- to customers, restau-

rant and dishes to distinguish between corresponding variables in

the three HDPs. For instance, an observation w now contains a

space-customer x ji , a time-customer ykd and a speed-customer zkc .

CRFL is a Gibbs sampling scheme, shown in Algorithm 2. The dif-

ferences between CRF and CRFL are on two levels. At the top level,

CRFL generalizes CRF by running CRF alternatively on three HDPs.

This makes use of the conditional independence between the Time-

HDP and the Speed-HDP given the Space-HDP ixed. At the bottom

level, there are three major diferences in the sampling, between

Eq. 11 and Eq. 3, Eq. 12 and Eq. 4, Eq. 13 and Eq. 5.

ALGORITHM 2: Chinese Restaurant Franchise League

Result: β , ϕs , ζ , ϕt , ρ , ϕe (Eq. 2)

1 Input: w ;

2 while Not converged do

3 Fix all variables in Space-HDP;

4 Do one CRF iteration (line 3-13, Algorithm 1) on Time-HDP;

5 Do one CRF iteration (line 3-13, Algorithm 1) on Speed-HDP;

6 for every space-restaurant j in Space-HDP do

7 for every space-customer x ji do

8 Sample a table tji (Eq. 3);

9 if a new table is chosen then

10 Sample a dish or create a new dish (Eq. 4);

11 end

12 end

13 for every table and its space-customers xjt do

14 Sample a new space-dish (Eq. 5);

15 end

16 end

17 Sample hyper-parameters (Appx. B.3);

18 end

The irst diference is when we do customer-level sampling (line

8 in Algorithm 2), the left side of Eq. 11 in CRF becomes:

p(tji = t, x ji ,ykd , zkc |x
−ji
, t−ji, k, y−kd, o−kd, l, z−kc, p−kc, q) (3)

where tji is the new table for space-customer x ji . ykd and zkc are

the time and speed customer. x−ji and t−ji are the other customers

(excluding x ji ) in the jth space-restaurant and their choices of tables.

k is the space dishes. Correspondingly, y−kd and o−kd are the other

time-customers (excluding ykd ) in the kth time-restaurant and their

choices of tables. l is the time dishes. Similarly, z−kc and p−kc are the

other speed-customers (excluding zkc ) in the kth speed-restaurant

and their choices of tables. q is the speed-dishes. The intuitive in-

terpretation of the diferences between Eq. 3 and Eq. 11 is: when a

space-customer x ji chooses a table, the popularity and preference

are not the only criteria anymore. She has to also consider the prefer-

ences of her associated time-customer ykd and speed-customer zkc .

This is because when x ji orders a diferent space-dish, ykd and zkc
will be placed into a diferent time-restaurant and speed-restaurant,

due to that the organizations of time- and speed-restaurants are

dependent on the space-dishes (the dependence of θ t
kd

and θe
kc

on θsji ). Each space-dish corresponds to a time-restaurant and a

speed-restaurant (see Sec. 4.2). Since a space-customer's choice of

space-dish can change during CRFL, the organization of time- and

speed-restaurants becomes dynamic! This is why CRF cannot be

directly applied to THDP.

The second diference is when we need to sample a dish (line 10

in Algorithm 2), the left side of Eq. 12 in CRF becomes:

p(kjtnew = k, x ji ,ykd , zkc |k
−jtnew

, y−kd, o−kd,

l, z−kc, p−kc, q) ∝
{

m ·kp(x ji | · · · )p(ykd | · · · )p(zkc | · · · )

γp(x ji | · · · )p(ykd | · · · )p(zkc | · · · )
(4)

where kjtnew is the new dish for customer x ji . · · · represents all

the conditional variables for simplicity. p(ykd | · · · ) and p(zkc | · · ·)

are the major diferences. We refer the readers to Appx. B regarding

the computation of Eq. 3 and Eq. 4.

The last diference is when we do the table-level sampling (line

14 in Algorithm 2), the left side of Eq. 13 in CRF changes to:

p(kjt = k, xjt, ykdjt , zkcjt |k
−jt
, y−kdjt , o−kdjt ,

l−ko, z−kcjt , p−kcjt , q−kp) ∝
{

m
−jt

·k
p(xjt | · · · )p(ykdjt | · · · )p(zkcjt | · · · )

γp(xjt | · · · )p(ykdjt | · · · )p(zkcjt | · · · )
(5)

where xjt is the space-customers at the t th table, ykdjt and zkcjt are

the associated time- and speed-customers. k−jt, y−kdjt , o−kdjt , l−ko,

z−kcjt , p−kcjt , q−kp are the rest and their table and dish choices in

three HDPs. · · · represents all the conditional variables for sim-

plicity. p(xjt | · · · ) is the ℧ultinomial f as in Eq. 13. Unlike Eq. 4,

p(ykdjt | · · · ) and p(zkcjt | · · · ) cannot be easily computed and needs

special treatment. We refer the readers to Appx. B for details.
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Now we have fully derived CRFL. Given a data setw, we can com-

pute the posterior distribution p(β , ϕs , ζ , ϕt , ρ, ϕe — w) where β , ζ

and ρ are the weights of the space, time and speed dishes,ϕs ,ϕt and

ϕe respectively. ϕs are ℧ultinomials. ϕt and ϕe are Gaussians. As

mentioned in Sec. 5.1, the number of ϕs , is automatically learnt, so

we do not need to know the space dish number in advance. Neither

do we need it for ϕt and ϕe . This makes THDP non-parametric.

Further, since one ϕs could be associated with potentially an in-

inite number of ϕt s and ϕe s and vice versa, the many-to-many

associations are also automatically learnt.

5.3 Time Complexity of CRFL

For each sampling iteration in Algorithm 2, the time complexities of

sampling on time-HDP, speed-HDP and space-HDP are O[W (N +

L)+KNL],O[W (A+Q)+KAQ] andO[W (M+K)+2W (K+1)η+JMK]

respectively, where η = N + L +A +Q .W is the total observation

number. K , L andQ are the dish numbers of space, time and speed. J

is the number of space-restaurants.M , N andA are the average table

numbers in space-, time- and speed-restaurants respectively. Note

that K appears in all three time complexities because the number of

space-dishes is also the number of time- and space-restaurants.

The time complexity of CRFL isO[W (N + L)+KNL]+O[W (A+

Q)+KAQ]+O[W (M+K)+2W (K+1)η+ JMK]. This time complexity

is not high in practice.W can be large, depending on the dataset,

over which a sampling could be used to reduce the observation

number. In addition, K is normally smaller than 50 even for highly

complex datasets. L and Q are even smaller. J is decided by the user

and in the range of 10-30.M , N andA are not large either due to the

high aggregation property of DPs, i.e. each table tends to be chosen

by many customers, so the table number is low.

6 VISUALIZATION, ℧ETRICS AND SI℧ULATION

GUIDANCE BASED ON THDP

THDP provides a powerful and versatile base for new tools. In

this section, we present three tools for structured visualization,

quantitative comparison and simulation guidance.

6.1 Flexible and Structured Crowd Data Visualization

After inference, the highly rich but originally mixed and unstruc-

tured data is now structured. This is vital for visualization. It is

immediately easy to visualize the time and speed modes as they are

mixtures of univariate Gaussians. The space modes require further

treatments because they are m×n×5 ℧ultinomials and hard to vi-

sualize. We therefore propose to use them as classiiers to classify

trajectories. After classiication, we select representative trajectories

for a clear and intuitive visualization of lows. Given a trajectory w̄ ,

we compute a softmax function:

pk (w̄) =
epk (w̄ )

∑K
k=1

epk (w̄ )
k ∈[1, K] (6)

where pk (w̄) = p(w̄ |βk ,ϕ
s
k
,ζk ,ϕ

t
, ρk ,ϕ

e ). ϕs
k
and βk are the kth

space mode and its weight. The others are the associated time and

speed modes. The time and speed modes (ϕt and ϕe ) are associated

with space low ϕs
k
, with weights, ζk and ρk . K is the total number

of space lows. This way, we classify every trajectory into a space

low. Then we can visualize representative trajectories with high

probabilities, or show anomaly trajectories with low probabilities.

In addition, since THDP captures all space, time and dynamics,

there is a variety of visualization. A period of time can be represented

by a weighted combination of time modes –ϕt ˝. Assuming that the

user wants to see what space lows are prominent during this period,

we can visualize trajectories based on
∫
ρ ,ϕe p(β,ϕ

s |{ϕt }), which

gives the space lows with weights. This is very useful if for instance

–ϕt ˝ is rush hours,
∫
ρ ,ϕe p(β,ϕ

s |{ϕt }) shows us what lows are

prominent and their relative importance during the rush hours.

Similarly, if we visualize data based on
∫
ζ ,ϕ t p(ρ,ϕ

e |ϕs ), it will tell

us if people walk fast⁄slowly on the space low ϕs . A more complex

visualization is p(ζ ,ϕt , ρ,ϕe |ϕs ) where the time-speed distribution

is given for a space low ϕs . This gives the speed change against

time of this space low, which could reveal congestion at times.

Through marginalizing and conditioning on diferent variables

(as above), there are many possible ways of visualizing crowd data

and each of them reveals a certain aspect of the data. We do not

enumerate all the possibilities for simplicity but it is very obvious

that THDP can provide highly lexible and insightful visualizations.

6.2 Newuantitative Evaluation ℧etrics

Being able to quantitatively compare simulated and real crowds is

vital in evaluating the quality of crowd simulation. Trajectory-based

[Guy et al. 2012] and low-based [Wang et al. 2016] methods have

been proposed. The irst low-based metrics are proposed in [Wang

et al. 2016] which is similar to our approach. In their work, the two

metrics proposed were: average likelihood (AL) and distribution-

pair distance (DPD) based on Kullback-Leibler (KL) divergence. The

underlying idea is that a good simulation does not have to strictly

reproduce the data but should have statistical similarities with the

data. However, they only considered space. We show that THDP

is a major generalization of their work and provides much more

lexibility with a set of new AL and DPD metrics.

6.2.1 AL Metrics. Given a simulation data set, ŵ = (x̂ji , €̂kd , ẑkc )

andp(β ,ϕs ,ζ ,ϕt , ρ,ϕe —w) inferred from real-world dataw , we can

compute the AL metric based on space only, essentially computing

the average space likelihood while marginalizing time and speed:

1

|ŵ |

∑

j ,i

K∑

k=1

βk

∫

z

∫

y
p(x̂ ji |ϕ

s
k
, ŷkd , ẑkc ) p(ŷkd )p(ẑkc )dydz (7)

where |ŵ | is the number of observations in ŵ . The dependence on β ,

ϕs , ζ , ϕt , ρ, ϕe are omitted for simplicity. If we completely discard

time and speed, Eq. 7 changes to the AL metric in [Wang et al. 2017],
1
|ŵ |

∑
j ,i

∑
k βkp(x̂ ji |ϕ

s
k
). However, the metric is just a special case

of THDP. We give a list of AL metrics in Table 1, which all have

similar forms as Eq. 7.

6.2.2 DPD Metrics. AL metrics are based on average likelihoods,

summarizing the diferences between two data sets into one number.

To give more lexibility, we also propose distribution-pair metrics.

We irst learn two posterior distributions p(β̂ , ϕ̂s , ζ̂ , ϕ̂t , ρ̂, ϕ̂e — ŵ)

and p(β , ϕs , ζ , ϕt , ρ, ϕe — w). Then we can compare individual
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℧etric To compare

1. 1
|ŵ |

∑
p(x̂ ji , ŷkd , ẑkc |•) overall similarity

2. 1
|ŵ |

∑
p(x̂ ji , ŷkd |•) space&time ignoring speed

3. 1
|ŵ |

∑
p(x̂ ji , ẑkc |•) space&speed ignoring time

4. 1
|ŵ |

∑
p(ŷkd , ẑkc |•) time&speed ignoring space

5. 1
|ŵ |

∑
p(x̂i j |•) space ignoring time & speed

6. 1
|ŵ |

∑
p(ŷkd |•) time ignoring space & speed

7. 1
|ŵ |

∑
p(ẑkc |•) speed ignoring space & time

Table 1. AL ℧etrics, • represents {β , ϕs
, ζ , ϕt

, ρ , ϕe }.

pairs of ϕs and ϕ̂s , ϕt and ϕ̂t , ϕe and ϕ̂e . Since all space, time and

speed modes are probability distributions, we propose to use Jensen-

Shannon divergence, as oppose to KL divergence [Wang et al. 2017]

due to KL's asymmetry:

JSD(P | |Q) =
1

2
D(P | |M) +

1

2
D(Q | |M) (8)

where D is KL divergence andM = 1
2 (P +Q). P and Q are probabil-

ity distributions. Again, in the DPD comparison, THDP provides

many options, similar to the AL metrics in Table 1. We only give

several examples here. Given two space lows, ϕs and ϕ̂s , JSD(ϕs

—— ϕ̂s ) directly compares two space lows. Further, P and Q can be

conditional distributions. If we compute JSD(p(ϕt — ϕs ) —— p(ϕ̂t — ϕ̂s ))

where ϕt and ϕ̂t are the associated time modes of ϕs and ϕ̂s respec-

tively. This is to compare the two temporal proiles. This is very

useful when ϕs and ϕ̂s are two spatially similar lows but we want

to compare the temporal similarity. Similarly, we can also compare

their speed proiles JSD(p(ϕe — ϕs ) —— p(ϕ̂e — ϕ̂s )) or their time-speed

proiles JSD(p(ϕt , ϕe — ϕs ) —— p(ϕ̂t , ϕ̂e — ϕ̂s )). In summary, similar

to AL metrics, diferent conditioning and marginalization choices

result in diferent DPD metrics.

6.3 Simulation Guidance

We propose a new method to automate simulation guidance with

real-world data, which works with existing simulators including

steering and global planning methods. Assuming that we want to

simulate crowds in a given environment based on data, there are

still several key parameters which need to be estimated including,

starting⁄destination positions, the entry timing and the desired

speed. After inferring, we use G℧℧ to model both starting and

destination regions for every space low. This way, we completely

eliminate the need for manual labelling, which is diicult in spaces

with no designated entrances⁄exits (e.g. a square). Also, we removed

the one-to-one mapping requirement of the agents in simulation

and data. We can sample any number of agents based on space low

weights (β) and still keep similar agent proportions on diferent

lows to the data. In addition, since each low comes with a temporal

and speed proile, we sample the entry timing and desired speed

for each agent, to mimic the randomness in these parameters. It is

diicult to manually set the timing when the duration is long and

sampling the speed is necessary to capture the speed variety within

a low caused by latent factors such as diferent physical conditions.

Next, even with the right setting of all the afore-mentioned param-

eters, existing simulators tend to simulate straight lines whenever

possible while the real data shows otherwise. This is due to that no

intrinsic motion randomness is introduced. Intrinsic motion ran-

domness can be observed in that people rarely walk in straight lines

and they generate slightly diferent trajectories even when asked

to walk several times between the same starting position and desti-

nation [Wang et al. 2017]. This is related to the state of the person

as well as external factors such as collision avoidance. Individual

motion randomness can be modelled by assuming the randomness

is Gaussian-distributed [Guy et al. 2012]. Here, we do not assume

that all people have the same distribution. Instead, we propose to do

a structured modelling. We observe that people on diferent space

lows show diferent dynamics but share similar dynamics within

the same low. This is because people on the same low share the

same starting⁄destination regions and walk through the same part

of the environment. In other words, they started in similar positions,

had similar goals and made similar navigation decisions. Although

individual motion randomness still exists, their randomness is likely

to be similarly distributed. However, this is not necessarily true

across diferent lows. We therefore assume that each space low can

be seen as generated by a unique dynamic system which captures

the within-group motion randomness which implicitly considers

factors such as collision avoidance. Given a trajectory, w̄ , from a

low w̌ , we assume that there is an underlying dynamic system:

xw̄t = Ast + ωt ω ∼ N (0,Ω)

st = Bst−1 + λt λ ∼ N (0,Λ) (9)

where xw̄t is the observed location of a person at time t on trajectory

w̄ . st is the latent state of the dynamic system at time t . ωt and λt
are the observational and dynamics randomness. Both are white

Gaussian noises. A and B are transition matrices. We assume that Ω

is a known diagonal covariance matrix because it is intrinsic to the

device (e.g. a camera) and can be trivially estimated. We also assume

thatA is an identity matrix so that there is no systematic bias and the

observation is only subject to the state st and noiseωt . The dynamic

system then becomes: xw̄t ∼ N (Ist ,Ω) and st ∼ N (Bst−1,Λ), where

we need to estimate st , B and Λ. Given theU trajectories in w̌ , the

total likelihood is:

p(w̌) = Π
U
i=1p(w̄i ) where

p(w̄i ) = Π
Ti−1
t=2 p(x

i
t |st )P(st |st−1) s1 = x

i
1, sT = x

i
Ti

(10)

where Ti is the length of trajectory w̄i . We maximize loд P(w̌) via

Expectation-℧aximization [Bishop 2007]. Details can be found in

the Appx. C. After learning the dynamic system for a space low and

given a starting and destination location, s1 and sT , we can sample

diversiied trajectories while obeying the low dynamics. During

simulation guidance, one target trajectory is sampled for each agent

and this trajectory relects the motion randomness.

7 EXPERI℧ENTS

In this section, we irst introduce the datasets, then show our highly

informative and lexible visualization tool. Next, we give quantitative

comparison results between simulated and real crowds by the newly

proposed metrics. Finally, we show that our automated simulation
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Fig. 4. Forum (top), CarPark (℧iddle) and TrainStation (Botom) dataset. In each dataset, Top let: original data; P1-P9: the top 9 space modes; Top right: the

time modes of P1-P9; Botom right: the speed modes of P1-P9. Both time and speed profiles are scaled by their respective space model weights, with the y axis

indicating the likelihood.

guidance with high semantic idelity. We only show representative

results in the paper and refer the readers to the supplementary video

and materials for details.

7.1 Datasets

We choose three publicly available datasets: Forum [℧ajecka 2009],

CarPark [Wang et al. 2008] and TrainStation [Yi et al. 2015], to

cover diferent data volumes, durations, environments and crowd

dynamics. Forum is an indoor environment in a school building,

recorded by a top-down camera, containing 664 trajectories and

lasting for 4.68 hours. Only people are tracked and they are mostly

slow and casual. CarPark consists of videos of an outdoor car park

with mixed pedestrians and cars, by a far-distance camera and con-

tains totally 40,453 trajectories over ive days. TrainStation is a big

indoor environment with pedestrians and designated sub-spaces.

It is from New York Central Terminal and contains totally 120,000

frames with 12,684 pedestrians within approximately 45 minutes.

The speed varies among pedestrians.

7.2 Visualization Results

We irst show a general, full-mode visualization in Fig. 4. Due to

the space limit, we only show the top 9 space modes and their cor-

responding time and speed proiles. Overall, THDP is efective in

decomposing highly mixed and unstructured data into structured

results across diferent data sets. The top 9 space modes (with time

and speed) are the main activities. With the environment informa-

tion (e.g. where the doors⁄lifts⁄rooms are), the semantic meanings

of the activities can be inferred. In addition, the time and dynamics

are captured well. One peak of a space low (indicated by color) in

the time proiles indicates that this low is likely to appear around

that time. Correspondingly, one peak of a space low in the speed

proile indicates a major speed preference of the people on that low.

℧ultiple space lows can peak near one point in both the time and

speed proiles. The speed proiles of Forum and TrainStation are

slightly diferent, with most of the former distributed in a smaller

region. This is understandable because people in TrainStation in

general walk faster. The speed proile of CarPark is quite diferent

in that it ranges more widely, up to 10m⁄s. This is because both

pedestrians and vehicles were recorded.

Besides, we show conditioned visualization. Suppose that the

user is interested in a period (e.g. rush hours) or speed range (e.g.
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Fig. 5. Let: TrainStation, Right: CarPark. The space flow prominence (indi-

cated by bar heights) of P1-P9 in Fig. 4 respectively given a time period (blue

bars) or speed range (orange bars). The higher the bar, the more prominent

the space flow is.

Fig. 6. Space flows from Forum, CarPark and TrainStation and their time-

speed distributions. The y (up) axis is likelihood. The x and z axes are time

and speed. The redder, the higher the likelihood is.

to see where people generally walk fast⁄slowly), the associated low

weights can be visualized (Fig. 5). This allows users to see which

space lows are prominent in the chosen period or speed range.

Conversely, given a space low in interest, we can visualize the time-

speed distribution (Fig. 6), showing how the speed changes along

time, which could help identify congestion on that low at times.

Last but not least, we can identify anomaly trajectories and show

unusual activities. The anomalies here refer to statistical anomalies.

Although they are not necessarily suspicious behaviors or events,

they can help the user to quickly reduce the number of cases needed

to be investigated. Note that the anomaly is not only the spacial

anomaly. It is possible that a spatially normal trajectory that is ab-

normal in time and⁄or speed. To distinguish between them, we irst

compute the probabilities of all trajectories and select anomalies.

Then for each anomaly trajectory, we compute its relative probabili-

ties (its probability divided by the maximal trajectory probability) in

space, time and speed, resulting in three probabilities in [0, 1]. Then

we use them (after normalization) as the bary-centric coordinates of

a point inside of a colored triangle. This way, we can visualize what

contributes to their abnormality (Fig. 7). Take T1 for example. It has

a normal spacial pattern, and therefore is close to the ‘space' vertex.

It is far away from both ‘time' and ‘speed' vertex, indicating T1's

time and speed patterns are very diferent from the others'. THDP

can be used as a versatile and discriminative anomaly detector.

Non-parametric Bayesian approaches have been used for crowd

analysis [Wang et al. 2016, 2017]. However, existing methods can

be seen as variants of the Space-HDP and cannot decompose infor-

mation in time and dynamics. Consequently, they cannot show any

results related to time & speed, as opposed to Fig. 4-7. A naive alter-

native would be to use the methods in [Wang et al. 2016, 2017] to

Fig. 7. Representative anomaly trajectories. Every trajectory has a cor-

responding location in the triangle on the right, indicating what factors

contribute more in its abnormality. For instance, T1 is close to the space

vertex, it means its spatial probability is relatively high and the main abnor-

mality contribution comes from its time and speed. For T2, the contribution

mainly comes from its speed.

irst cluster data regardless time and dynamics, then do per-cluster

time and dynamics analysis, equivalent to using the Space-HDP

irst, then the time-HDP & Speed-HDP subsequently. However, this

kind of sequential analysis has failed due to one limitation: the

spatial-only HDP misclassiies observations in the overlapped ar-

eas of lows [Wang and O'Sullivan 2016]. The following time and

dynamics analysis would be based on wrong clustering. The simul-

taneity of considering all three types of information, accomplished

by the links (red arrows in Fig. 2 Right) among three HDPs in THDP,

is therefore essential.

7.3 Compare Real and Simulated Crowds

To compare simulated and real crowds, we ask participants (℧aster

and PhD students whose expertise is in crowd analysis and simula-

tion) to simulate crowds in Forum and TrainStation. We left CarPark

out because its excessively long duration makes it extremely dif-

icult for participants to observe. We built a simple UI for setting

up simulation parameters including starting⁄destination locations,

the entry timing and the desired speed for every agent. For simula-

tor, our approach is agnostic about simulation methods. We chose

ORCA in ℧enge [Curtis et al. 2016] for our experiments but other

simulation methods would work equally well. Initially, we provide

the participants with only videos and ask them to do their best to

replicate the crowd motions. They found it diicult because they

had to watch the videos and tried to remember a lot of information,

which is also a real-world problem of simulation engineers. This

suggests that diferent levels of detail of the information are needed

to set up simulations. The information includes variables such as

entry timings and start⁄end positions, which are readily available,

or descriptive statistics such as average speed, which can be rela-

tively easily computed. We systematically investigate their roles in

producing scene semantics. After several trials, we identiied a set

of key parameters including starting⁄ending positions, entry timing

and desired speed. Diferent simulation methods require diferent

parameters, but these are the key parameters shared by all. We also

identiied four typical settings where we gradually provide more

and more information about these parameters. This design helps us

to identify the qualitative and quantitative importance of the key

parameters for the purpose of reproducing the scene semantics.

The irst setting, denoted as Random, is where only the start-

ing⁄destination regions are given. The participants have to estimate
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Information ⁄ Setting Random SDR SDRT SDRTS

Starting⁄Dest. Areas ✓ ✓ ✓ ✓

Exact Starting⁄Dest. Positions × ✓ ✓ ✓

Trajectory Entry Timing × × ✓ ✓

Trajectory Average Speed × × × ✓

Table 2. Diferent simulation setings and the information provided.

℧etric⁄Simulations Random SDR SDRT SDRTS Ours

Overall (×10−8) 7.11 20.67 37.08 40.55 57.9

Space-Only (×10−3) 2.7 5.3 5.3 5.5 5.1

Space-Time (×10−7) 1.23 2.96 5.56 5.77 6.02

Space-Speed (×10−3) 1.5 3.6 3.5 4.0 4.9

Overall (×10−7) 6.7 11.97 13.96 19.39 19.89

Space-Only (×10−3) 3.5 6.8 6.7 6.6 6.9

Space-Time (×10−7) 8.02 15.87 19.00 18.84 20.44

Space-Speed (×10−3) 2.9 5.0 4.9 6.9 6.7

Table 3. Comparison on Forum (Top) and TrainStation (Botom) based on

AL metrics. Higher is beter. Numbers should only compared within the

same row.)

the rest. Based on Random, we further give the exact starting⁄ending

positions, denoted by SDR. Next, we also give the entry timing for

each agent based on SDR, denoted by SDRT. Finally, we give the

average speed of each agent based on SDRT, denoted by SDRTS.

Random is the least-informed scenario where the users have to esti-

mate many parameters, while SDRTS is the most-informed situation.

A comparison between the four settings is shown in Table 2.

We use four AL metrics to compare simulations with data, as they

provide detailed and insightful comparisons: Overall (Table 1: 1),

Space-Only (Table 1: 5), Space-Time (Table 1: 2) and Space-Speed

(Table 1: 3) and show the comparisons in Table 3. In Random, the

users had to guess the exact entrance⁄exit locations, entry timing

and speed. It is very diicult to do by just watching videos and thus

has the lowest score across the board. When provided with exact

entrance⁄exit locations (SDR), the score is boosted in Overall and

Space-Only. But the scores in Space-Time and Space-Speed remain

relatively low. As more information is provided (SDRT & SDRTS),

the scores generally increase. This shows that our metrics are sensi-

tive to space, time and dynamics information during comparisons.

Further, each type of information is isolated out in the comparison.

The Space-Only scores are roughly the same between SDR, SDRT

and SDRTS. The Space-Time scores do not change much between

SDRT and SDRTS. The isolation in comparisons makes our AL met-

rics ideal for evaluating simulations in diferent aspects, providing

great lexibility which is necessary in practice.

Next, we show that it is possible to do more detailed comparisons

using DPD metrics. Due to the space limit, we show one space low

from all simulation settings (Fig. 8), and compare them in space

only (DPD-Space), time only (DPD-Time) and time-speed (DPD-TS)

in Table 4. In DPD-Space, all settings perform similarly because

the space information is provided in all of them. In DPD-Time,

SDRT & SDRTS are better because they are both provided with the

timing information. What is interesting is that SDRTS is worse than

SDRT on the two lows in DPD-TS. Their main diference is that

the desired speed in SDRTS is set to be the average speed of that

trajectory, while the desired speed in SDRT is randomly drawn from

℧etric⁄Simulations SDR SDRT SDRTS Ours

DPD-Space 0.4751 0.3813 0.4374 0.2988

DPD-Time 0.3545 0.0795 0.064 0.0419

DPD-TS 1.0 0.8879 1.0 0.4443

DPD-Space 0.2753 0.2461 0.2423 0.1173

DPD-Time 0.0428 0.0319 0.0295 0.0213

DPD-TS 0.9970 0.8157 0.9724 0.5091

Table 4. Comparison on space flow P2 in Forum (Top) and space flow P1 in

TrainStation (Botom) based on DPD metrics, both shown in Fig. 4. Lower

is beter.

a Gaussian estimated from real data. The latter achieves a slightly

better performance on both lows in DPD-TS.

Quantitative metrics for comparing simulated and real crowds

have been proposed before. However, they either only compare

individual motions [Guy et al. 2012] or only space patterns [Wang

et al. 2016, 2017]. Holistically considering space, time & speed has

a combinatorial efect, leading to many explicable metrics evaluat-

ing diferent aspects of crowds (AL & DPD metrics). This makes

multi-faceted comparisons possible, which is unachievable in ex-

isting methods. Technically, the lexible design of THDP allows

for diferent choices of marginalization, which greatly increases

the evaluation versatility. This shows the theoretical superiority of

THDP over existing methods.

7.4 Guided Simulations

Our automated simulation guidance proves to be superior to careful

manual settings. We irst show the AL results in Table 3. Our guided

simulation outperforms all other settings that were carefully and

manually set up. The superior performance is achieved in the Over-

all comparisons as well as most dimension-speciic comparisons.

Next, we show the same space low of our guided simulation in

Fig. 8, in comparison with other settings. Qualitatively, SDR, SDRT

and SDRTS generate narrower lows due to straight lines are sim-

ulated. In contrast, our simulation shows more realistic intra-low

randomness which led to a wider low. It is much more similar to

the real data. Quantitatively, we show the DPD results in Table 4.

Again, our automated guidance outperforms all other settings.

Automated simulation guidance has only been attempted by a

few researchers before [Karamouzas et al. 2018; Wolinski et al. 2014].

However, their methods aim to guide simulators to reproduce low-

level motions for the overall similarity with the data. Our approach

aims to inform simulators with structured scene semantics. ℧ore-

over, it gives the freedom to the users so that the full semantics

or partial semantics (e.g. the top n lows) can be used to simulate

crowds, which no previous method can provide.

7.5 Implementation Details

For space discretization, we divide the image space of Forum, CarPark

and TrainStation uniformly into 40× 40, 40× 40 and 120× 120 pixel

grids respectively. Since Forum is recorded by a top-down camera,

we directly estimate the velocity from two consecutive observations

in time. For CarPark and TrainStation, we estimate the velocity by

reconstructing a top-down view via perspective projection. THDP

also has hyper-parameters such as the scaling factors of every DP
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Fig. 8. Space flow P2 in Forum (Top) and P1 in TrainStation (Botom) in diferent simulations. The y axes of the time and speed profiles indicate likelihood.

(totally 6 of them). Our inference method is not very sensitive to

them because they are also sampled, as part of the CRFL sampling.

Please refer to Appx. B.3 for details. In inference, we have a burn-in

phase, during which we only use CRF on the Space-HDP and ignore

the rest two HDPs. After the burn-in phase, we use CRFL on the

full THDP. We found that it can greatly help the convergence of the

inference. For crowd simulation, we use ORCA in ℧enge [Curtis

et al. 2016].

We randomly select 664 trajectories in Forum, 1000 trajectories

in CarPark and 1000 trajectories in Trainstation for performance

tests. In each experiment, we split the data into segments in time

domain to mimic fragmented video observations. The number of

segments is a user-deined hyper-parameter and depends on the

nature of the dataset. We chose the segment number to be 384, 87

and 28, for Forum, CarPark and TrainStation respectively to cover

situations where the video is inely or roughly segmented. During

training, we irst run 5k CRF iterations on the Space-HDP only in

the burn-in phase, then do the full CRFL on the whole THDP to

speed up the mixing. After training, the numbers of space, time and

speed modes are 25, 5 and 7 in Forum; 13, 6 and 6 in CarPark; 16, 3

and 4 in TrainStation. The training took 85.1, 11.5 and 7.8 minutes

on Forum, Carpark and TrainStation, on a PC with an Intel i7-6700

3.4GHz CPU and 16GB memory.

8 DISCUSSION

We chose ℧C℧C to avoid the local minimum issue. (Stochastic)

Variational Inference (VI) [Hofman et al. 2013] and Geometric Op-

timization [Yurochkin and Nguyen 2016] are theoretically faster.

However, VI for a single HDP is already prone to local minimum

[Wang et al. 2016]. We also found the same issue with geometric

optimization. Also, can we use three independent HDPs? Using in-

dependent HDPs essentially breaks the many-to-many associations

between space, time and speed modes. It can cause mis-clustering

due to that the clustering is done on diferent dimensions separately

[Wang and O'Sullivan 2016].

The biggest limitation of our method does not consider the cross-

scene transferability. Since the analysis focuses on the semantics

in a given scene, it is unclear how the results can inspire simula-

tion settings in unseen environments. In addition, our metrics do

not directly relect visual similarities on the individual level. We

deliberately avoid the agent-level one-to-one comparison, to allow

greater lexibility in simulation setting while maintaining statistical

similarities. Also, we currently do not model high-level behaviors

such as grouping, queuing, etc. This is due to that such informa-

tion can only be obtained through human labelling which would

incur massive workload and be therefore impractical on the chosen

datasets. We intentionally chose unsupervised learning to deal with

large datasets.

9 CONCLUSIONS AND FUTURE ΩORK

In this paper, we present the irst, to our best knowledge, multi-

purpose framework for comprehensive crowd analysis, visualization,

comparison (between real and simulated crowds) and simulation

guidance. To this end, we proposed a new non-parametric Bayesian

model called Triplet-HDP and a new inference method called Chi-

nese Restaurant Franchise League. We have shown the efectiveness

of our method on datasets varying in volume, duration, environment

and crowd dynamics.

In the future, wewould like to extend thework to cross-environment

prediction. It would be ideal if the modes learnt from given envi-

ronments can be used to predict crowd behaviors in unseen envi-

ronments. Preliminary results show that the semantics are tightly

coupled with the layout of sub-spaces with designated functionali-

ties. This means a subspace-functionality based semantic transfer is

possible. Besides, we will look into using semi-supervised learning

to identify and learn high level social behaviors, such as grouping

and queuing.
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A CHINESE RESTAURANT FRANCHISE

To give the mathematical derivation of the sampling process de-

scribed in Sec. 5.1, we irst give meanings to the variables in Fig. 2

Left. θ ji is the dish choice made by x ji , the ith customer in the jth

restaurant. G j is the tables with dishes and the dishes are from the

global menuG . Since θ ji indicates the choice of tables and therefore

dishes, we use some auxiliary variables to represent the process.

We introduce tji and kjt as the indices of the table and the dish

on the table chosen by x ji . We also denotemjk as the number of

tables serving the kth dish in restaurant j and njtk as the number of

customers at table t in restaurant j having the kth dish. We also use

them to represent accumulative indicators such asm ·k representing

the total number of tables serving the kth dish. We also use super-

script to indicate which customer or table is removed. If customer

x ji is removed, then n
−ji

jtk
is the number of customers at the table t

in restaurant j having the kth dish without the customer x ji .

Customer-level sampling. To choose a table for x ji (line 5 in

Algorithm 1), we sample a table index tji :

p(tji = t |t
−ji
, k) ∝

{
n
−ji
jt · f

−x ji
kjt

(x ji ) if t already exists

α jp(x ji |t
−ji
, tji = t

new
, k) if t = tnew

(11)

where n
−ji
jt · is the number of customers at table t (table popularity),

and f
−x ji
kjt

(x ji ) is how much x ji likes the kjt th dish, fkjt , served on

that table (dish preference). fkjt is the dish and thus is a problem-

speciic probability distribution. f
−x ji
kjt

(x ji ) is the likelihood of x ji

on fkjt . In our problem, fkjt is ℧ultinomial if it is the Space-HDP

or otherwise Normal. α j is the parameter in Eq. 1, so it controls how

likely x ji will create a new table, after which she needs to choose

a dish according to p(x ji |t
−ji
, tji = t

new
, k). When a new table is

created, tji = t
new , we need sampling a dish (line 7 in Algorithm 1),

indexed by kjtnew , according to:
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p(kjtnew = k |t, k
−jtnew ) ∝

{
m ·k f

−x ji
k

(x ji ) if k already exists

γ f
−x ji
knew

(x ji ) if k = k
new

(12)

wherem ·k is the total number of tables across all restaurants serving

the kth dish (dish popularity). f
−x ji
k

(x ji ) is how much x ji like the

kth dish, again the likelihood of x ji on fk . γ is the parameter in

Eq. 1, so it controls how likely a new dish will be created.

Table-level sampling. Next we sample a dish for a table (line

11 in Algorithm 1). We denote all customers at the tth table in the

jth restaurant as xjt. Then we sample its dish kjt according to:

p(kjt = k |t, k
−jt) ∝

{
m

−jt

·k
f
−xjt
k

(xjt) if k already exists

γ f
−xjt
knew

(xjt) if k = k
new

(13)

Similarly,m
−jt

·k
is the total number of tables across all restaurants

serving the kth dish, without xjt (dish popularity). f
−xjt
k

(xjt) is how

much the group of customers xjt likes the kth dish (dish preference).

This time, f
−xjt
k

(xjt) is a joint probability of all x ji ∈ xjt.

Finally, in both Eq. 12 and Eq. 13, we need to sample a new

dish. This is done by sampling a new distribution from the base

distribution H , ϕk ∼ H . After inference, the weights β can be com-

puted as β ∼ Dirichlet(m ·1,m ·2, · · · ,m ·k ,γ ). The choice of H is

related to the data. In our metaphor, the dishes of the Space-HDP

are lows so we use Dirichlet. In the Time-HDP and Speed-HDP, the

dishes are modes of time and speed which are Normals. So we use

Normal-Inverse-Gamma for H . The choices are because Dirchlet

and Norma-Inverse-Gamma are the conjugate priors of ℧ultinomial

and Normal respectively. The whole CRF sampling is done by itera-

tively computing Eq. 11 to Eq. 13. The dish number will dynamically

increase⁄decrease until the sampling mixes. In this way, we do not

need to know in advance how many space lows or time modes or

speed modes there are because they will be automatically learnt.

B CHINESE RESTAURANT FRANCHISE LEAGUE

B.1 Customer Level Sampling

When we do customer-level sampling to sample a new table (line 8

in Algorithm 2), the left side of Eq. 11 becomes:

p(tji = t, x ji ,ykd , zkc |x
−ji
, t−ji, k, y−kd, o−kd, l, z−kc, p−kc, q) (14)

So whether ykd and zkc like the new restaurants should be taken

into consideration. After applying Bayesian rules and factorization

on Eq. 14, we have:

p(tji = t, x ji ,ykd , zkc |•) = p(tji |t
−ji
, k)

p(x ji |ykd , zkc , tji = t,kjt = k, •)

p(ykd |tji = t,kjt = k, y
−kd
, o−kd, l)

p(zkc |tji = t,kjt = k, z
−kc
, p−kc, q) (15)

where • is –x−ji, t−ji, k, y−kd, o−kd, l, z−kc, p−kc, q˝. The four proba-

bilities on the right-hand side of Eq. 15 have intuitive meanings.

p(tji |t
−ji
, k) and p(x ji |ykd , zkc , tji = t,kjt = k, •) are the table pop-

ularity and dish preference of x ji in the space-HDP:

p(tji |t
−ji
, k) ∝

{
n
−ji
jt if t already exists

α j if t = t
new

(16)

p(x ji |ykd , zkc , tji = t,kjt = k, •) ∝




f
−x ji
kjt

(x ji ) if t exists

m ·k f
−x ji
k

(x ji ) else if k exists

γ f
−x ji
knew

(x ji ) if k = k
new

(17)

Eq. 16 and Eq. 17 are just re-organization of Eq. 11 and Eq. 12.

The remaining p(ykd |tji = t,kjt = k, y
−kd
, o−kd, l) and p(zkc |tji =

t,kjt = k, z
−kc
, p−kc, q) can be seen as howmuch the time-customer

ykd and speed-customer zkc like the kth time and speed restaurant

respectively (restaurant preference). This restaurant preference does

not appear in single HDPs and thus need special treatment. This is

the irst major diference between CRFL and CRF. Since we propose

the same treatment for both, we only explain the time-restaurant

preference treatment here.

If every time we sample a tji , we compute p(ykd |tji = t,kjt =

k, y−kd, o−kd, l) on every time table in every time-restaurant, it will

be prohibitively slow. We therefore marginalize over all the time

tables in a time-restaurant, to get a general restaurant preference of

ykd :

p(ykd |tji = t,kjt = k, y
−kd
, o−kd, l) =

hk ·∑

okd=1

p(okd = o |tji = t,kjt = k, y
−kd
, o−kd)

p(ykd |okd = o, lko = l, l) (18)

where okd is the table choice ofykd in the kth time-restaurant. lko is

the time-dish served on the oth table in the kth time-restaurant.hk ·
is the total number of tables in the kth time-restaurant. Similar to

Eq. 16 and Eq. 17:

p(okd = o |tji = t,kjt = k, y
−kd
, o−kd) ∝

{
s−kd
ko

if o exists

ϵk if okd = o
new

(19)

where s−kd
ko

is the number of time-customers already at the oth table

and ϵk is the scaling factor.

p(ykd |okd = o, lko = l, l) ∝




д
−ykd
lko

(ykd ) if o exists

h ·lд
−ykd
l

(ykd ) else if l exists

εд
−ykd
lnew

(ykd ) if l = l
new

(20)

whereh ·l is the total number tables serving time-dish l andд is a pos-

terior predictive distribution of Normal, a Student's t-Distribution.

ε controls how likely a new time dish would be needed. Nowwe have

inished deriving the sampling forp(ykd |tji = t,kjt = k, y
−kd
, o−kd, l).

Similar derivations can be done forp(zkc |tji = t,kjt = k, z
−kc
, p−kc, q).

After table sampling, we need to do dish sampling (line 10 in

Algorithm 2). The left side of Eq. 12 becomes:
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p(kjtnew = k, x ji ,ykd , zkc |k
−jtnew

, y−kd, o−kd,

l, z−kc, p−kc, q) ∝
{

m
−jt

·k
p(x ji | · · · )p(ykd | · · · )p(zkc | · · · )

γp(x ji | · · · )p(ykd | · · · )p(zkc | · · · )
(21)

The diferences between Eq. 21 and Eq. 12 are p(ykd | · · · ) and

p(zkc | · · · ). Both are Ininite Gaussian ℧ixture ℧odel so the likeli-

hoods can be easily computed. We therefore have given the whole

sampling process for the customer-level sampling (Eq. 14). We still

need to deal with the table-level sampling.

B.2 Table Level Sampling

Similarly, when we do the table-level sampling (line 14 in Algo-

rithm 2), the left side of Eq. 13 change to:

p(kjt = k, xjt, ykdjt , zkcjt |k
−jt
, y−kdjt , o−kdjt ,

l−ko, z−kcjt , p−kcjt , q−kp) ∝
{

m
−jt

·k
p(xjt | · · · )p(ykdjt | · · · )p(zkcjt | · · · )

γp(xjt | · · · )p(ykdjt | · · · )p(zkcjt | · · · )
(22)

where xjt is the space-customers at the table t , ykdjt and zkcjt are the

associated time and speed customers. k−jt, y−kdjt , o−kdjt , l−ko, z−kcjt ,

p−kcjt , q−kp are the rest customers and their choices of tables and

dishes in three HDPs. · · · represents all the conditional variables

for simplicity. p(xjt | · · · ) is the ℧ultinomial f as in Eq. 13.

p(ykdjt | · · · ) and p(zkcjt | · · · ) are not easy to compute. However,

they can be treated in the same way so we only explain how to com-

pute p(ykdjt | · · · ) here. To fully compute p(ykdjt | · · · ) = p(ykdjt |kjt =

k, o−kdjt , l−ko), one needs to consider it for everyykdjt ∈ ykdjt which

is extremely expensive. This is because we deal with large datasets

and there can easily be thousands, if not more, of customers in ykdjt .

In Eq. 15, we already see how ykd 's time-restaurant preference

inluences the table choice of x ji . Given a group ykdjt , their collec-

tive time-restaurant preference, p(ykdjt | · · · ), will inluence the dish

choice of xjt. Since the distribution of individual time-restaurant

preference is hard to compute analytically, we approximate it. We

do a random sampling over ykdjt to approximate p(ykdjt | · · · ). This

number of samples is a hyper-parameter, referred as customer se-

lection. For every single y ∈ ykdjt we can compute its probability in

the same way as in Eq. 18. So we approximate the p(ykdjt | · · · ) with

the joint probability of the sampled time-customers.

B.3 Sampling for Hyper-parameters

A Dirichlet Process contains two parameters, a base distribution

and a concentration parameter. To make THDP more robust to

these parameters, we impose a prior, a Gamma distribution onto

the concentration parameter γ ∼ Γ(α,ϖ), where α is the shape

parameter and ϖ is the rate parameter. There are totally six αs and

ϖs for the six DPs in THDP. They are initialized as 0.1. Then they

are updated during the optimization using the method in [Teh et al.

2006]. The update is done in every iteration in CRFL, after sampling

all the other parameters. The customer selection parameter is set

to 1000 across all experiments. Finally, after CRFL, the inference is

done for the three distributions in Eq. 2:

ϕs
k
∼ Hs , β ∼ Dirichlet(m ·1,m ·2, · · · ,m ·k ,γ ) (23)

ϕt
l
∼ Ht , ζ ∼ Dirichlet(h ·1,h ·2, · · · ,h ·l , ε) (24)

ϕeq ∼ He , ρ ∼ Dirichlet(a ·1,a ·2, · · · ,a ·q , λ) (25)

wherem ·k is the total number of space-tables choosing space-dish

k ; h ·l is the total number of time-tables choosing time-dish l ; a ·q is

the total number of speed-tables choosing speed-dish q. γ , ε and λ

are the scaling factors of Gs , Gt and Ge .

C SI℧ULATION GUIDANCE

The dynamics of of one trajectory, w̄ , is:

xw̄t = Ast + ωt ω ∼ N (0,Ω)

st = Bst−1 + λt λ ∼ N (0,Λ)

Given theU trajectories, from a space low w̌ , the total likelihood

is:

p(w̌) = Π
U
i=1p(w̄i ) where

p(w̄i ) = Π
Ti−1
t=2 p(x

i
t |st )P(st |st−1) s1 = x

i
1, sT = x

i
Ti

(26)

where A is an identity matrix and Ω is a known diagonal matrix. Ti
is the length of the trajectory i . We use homogeneous coordinates

to represent both x = [x1, x2, 1]
T and s = [s1, s2, 1]

T. Consequently,

A is a R3×3 identity matrix. Ω is set to be a R3×3 diagonal matrix

with its non-zeros entries set to 0.001. B is a R3×3 transition matrix

and Λ is R3×3 covariance matrix, both to be learned.

We apply Expectation-℧aximization (E℧) [Bishop 2007] to esti-

mate parameters B,Λ and states S by maximizing the log likelihood

loд P(u). Each iteration of E℧ consists of a E-step and a ℧-step. In

the E-step, we ix the parameters and sample states s via the poste-

rior distribution of x . The posterior distribution and the expectation

of complete-data likelihood are denoted as

L = E
S |X ;B̂,Λ̂(loдP(S,X ;B,Λ))

=

∑

i

τiEs i |x i {p(s
i
, x i )} (27)

where τi is deined as τi =
1
Ti

∑Ti
t=1 p(x

i
t |s

i
t )

∑U
i=1

1
T i

∑Ti
t=1 p(x

i
t |s

i
t )
. In the ℧-step, we

maximize the complete-data likelihood and the model parameters

are updated as:

Bnew =

∑
i τi

∑Ti
t=2 P

i
t ,t−1

∑
i τi

∑Ti
t=2 P

i
t−1,t−1

(28)

Λ
new
=

∑
i τi (

∑Ti
t=2 P

i
t ,t − B

new ∑Ti
t=2 P

i
t ,t−1)∑

i τi (Ti − 2)
(29)

P it ,t = Es i |x i (st s
T
t ) (30)

P it ,t−1 = Es i |x i (st s
T
t−1) (31)

During updating, we use Λ = 1
2 (Λ + Λ

T) to ensure its symmetry.
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