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A B S T R A C T

Electriied railways are large users of electrical power at a time when grid supply conversion to renewable
energy production is making supply to the grid less predictable and environmental concerns demand reduction
in energy use. These developments make it desirable to control and reduce both total energy usage and peak
power demand of railway systems. While AC systems have a well-developed ability to regenerate power to the
grid, high transmission losses in DC systems make local storage of energy a more attractive option.

A model has been created integrating a versatile and conigurable database-driven generic rail network model
with a power supply network representative of DC electric railways. The work is intended as a high-level design
tool to explore system wide behaviors prior to detailed inal design modelling of speciic technologies. To va-
lidate our method, predictions of train motion and power demand have been compared with data from the
Merseyrail network in the UK. Simulating a full day of traic for the Wirral Line of Merseyrail (237 services on
two routes) with the assumption of energy storage being available at each electrical sub-station revealed the
dependence of storage efectiveness on the timetable and traic density at speciic locations. The model is
combined with a genetic algorithm to optimise system parameters (storage size, charge/discharge power limits,
timetable, train driving style/trajectory) and also enables identiication of cases in which poorly speciied sto-
rage technology would have little impact on peak power and energy consumption.

1. Introduction

Railway electricity demand in systems internationally is rising be-
cause of (a) electriication of diesel services [1], (b) longer and more
frequent trains in response to increased passenger demand, and (c) the
higher power demands of modern rolling stock (improved acceleration
and interior comfort, e.g. air conditioning) (Smulders, 2005). Simulta-
neously with these demand-side changes, power supply networks are
also changing. An increased contribution from renewable sources
brings environmental beneits but their input to the supply grid is less
predictable than previously. Together these developments make it de-
sirable to control and reduce both total energy usage and peak power
demand. In addition to the wider grid beneits of reducing peak power
demand, existing power supply infrastructure may be utilised to serve
higher traic densities if localised power demand spikes can be avoided
and energy is delivered from the supply grid at a more uniform rate
(Fig. 1).

For AC power supplies, regeneration to the grid is a mature tech-
nology so, while energy storage could be applied to reduce power

peaks, there is less scope for reduction of overall energy consumption.
For DC networks regeneration to the grid remains problematic. While
AC supplies typically operate at ~25 kV, DC networks commonly op-
erate at 650–1500 V so eiciency in transmission of regenerated DC
power is low. The focus here is therefore on energy storage in DC-
powered rail networks that are common worldwide, either in 3rd or 4th
rail or overhead catenary systems. While models exist combining power
and train movement [1–5] the focus here is on integrating storage into
the system and enabling quantiication and optimization of its utiliza-
tion. The paper describes development of a versatile and conigurable
multi-train simulator combined with a power network model. These are
validated against data from the Wirral Line of Merseyrail in the UK, and
an example of energy storage for this network is presented highlighting
important design issues for energy storage systems.

The origin of this research was a desire to take a holistic view of
Transport Energy use, particularly as electric car use rises with many
countries having targets for cessation of fossil-fuel vehicle sales [6]. As
the proportion of electric cars in railway station car parks rises it is
expected there will be a demand for car charging, but also an
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opportunity presented by the energy storage pool these cars will to-
gether represent [7]. Although agnostic to the exact nature of the en-
ergy storage, this paper therefore describes a model considering energy
storage in an electriied rail network which may in future be im-
plemented through exchange of energy with parked road vehicles [8],
bringing opportunities for peak power bufering for the wider electrical
supply network.

The focus on enabling system optimization steers the research to
provide both models and methods that permit the user to arrive quickly
at a good solution. The task at hand contains highly non-linear dy-
namics, discontinuities and logical elements, has a complex cost (ob-
jective) function and constraint set and possesses a large number of free
parameters afecting overall outcome. Such problems are ill suited to
conventional mathematical programming methods such as linear or
quadratic programming or mixed integer / linear programming, whose
assumptions are often violated in practical problems. Instead, heuristic
search (a genetic algorithm here) can provide a way forward, swapping
the nice mathematical framework and optimality guarantees of math-
ematical programming for a directed search algorithm that requires a
large number, perhaps many thousands, of evaluations of the task, in
this case computer simulations of train movements and power transfer
across a rail network. A similar approach has been taken for optimi-
zation of rail networks for quality of passenger experience [9]. For such
an approach to be feasible and robust [10], the evaluation of each trial
must be fast, necessitating simple, idealised models that capture the
main characteristics of the system. Once an acceptably good solution is
arrived at through heuristic search, then a model of higher veracity can
be used to determine actual performance and to ine-tune the inal
design. In short, the simpliied model and heuristic search provides a
good estimate/design without pre-empting the outcome by embedding
existing component behaviors. Indeed, it can help deine required
component behavior, or the targets of research to develop components
able to achieve that behavior such as the converter design research of
Zhang et al. [11]. Such a methodology allows the user to explore a large
number of alternatives quickly before spending time and energy on the
inal design. This work focuses on providing a plausible model for this
“quick & dirty” phase of this process.

2. Methodology

The TransEnergy rail and power network modelling tool has been
developed using the PostgreSQL open source database [12] originally
developed at University of California, Berkeley, and ofering a good
balance of performance and memory utilization [13,14]. The calcula-
tions to simulate a railway and its power network are not of themselves

complex, for example, train movement is dependent on available trac-
tive or braking force, train resistance (all functions of velocity), applied
control, and also track gradient (a function of position). Using Newton's
second law, the train motion trajectory can be predicted by discretizing
the traverse of the network in either time or distance steps [15,4].
Application of train control (representing the driver's behavior) is a
function of position and velocity, aiming to achieve a particular time-
table. For DC powered systems, the trains can be represented as moving
resistive loads on the railway electrical power network, with network
losses based on transmission distances and internal properties of the
electrical supply sub-stations [16]. Considering multiple trains on the
network increases complexity in that the supply voltage to each train
depends on current drawn and consequent voltage drop for others
within the same electrical section.

The PostgreSQL data store (Fig. 2) holds a representation of the
trains, railway and power network infrastructure topology, and a
timetable for train movements across a day. The PL/pgSQL procedural
language supported by PostgreSQL enables a mechanical model of train
movement, and an electrical model in which trains represent moving
loads (or regeneration sources) on the power network, to be stored as
functions inside the database server. This provides rapid computation
with direct access to data, avoiding external data transfer as the model
simulates network operation on a time-discretised basis. Optimization
is enabled using the ParadisEO C++ evolutionary computation library
[17], connecting to the database using C++ client connector library.
These areas and some results are explored in the following sections.

2.1. Rail network topology and train movement model

The rail network topology is deined by nodes (stations, junctions,
electrical sub-stations, neutral sections) connected by lines with prop-
erties of length, end nodes, line-speed limit and gradient, the latter two
being functions of position. Train routes are deined by the sequence of
lines over which a train will run, including the direction, target traverse
time for each line, nodes at which to stop, minimum dwell time and
planned departure time relative to the start of the route for each stop.
Trains are deined with the properties in Table 1 and along with the
train routes and timetable are fully conigurable not hard coded. Train
control is applied with fully variable traction or braking between zero
and the full level available for their current speed. Trains may coast if a
control level of zero is set for both braking and traction, but no auto-
matic speed holding mode is implemented, although this could be ac-
commodated if needed, for example to represent a leet with this cap-
ability. Fig. 3 shows the network for which the case-study results below

Fig. 1. Physical system schematic.

Fig. 2. Modelling overview.
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have been generated.
A timetable deines which train runs on which route, and the time

each train will depart the irst station on its route. Two frames of re-
ference are considered: (i) Infrastructure: gradients and line speeds are
deined for each line from the origin node. (ii) Route: taking the origin
of a route the train will traverse and considering all the infrastructure
over which it will run. A route frame of reference is inherently more
suited to simulation of a journey across a range of infrastructure, and
translation of infrastructure properties to the route frame of reference is
conducted once at the start of each simulation to reduce computational
costs at each step in the movement of the trains. To further reduce
computational cost, pre-calculation is performed of braking distances
for each rolling stock type on the gradients present in the system, and of
maximum speeds allowable on approach to line-speed reductions. This
is performed once per simulation and values are stored for lookup from
the SQL database. The formulation can consider junctions and cases in
which a single line is traversed by multiple diferent service routes.

In previous work, for example by Goodwin et al. [15], train tra-
jectory calculations were conducted on the basis of distance steps, this
being the logical choice for the deinition of points during the journey
at which control changes (application of power or brakes) can be made.
While that is satisfactory when considering total energy used across
multiple trains each of which may be simulated independently, this is
not appropriate for a model considering the power network in which all
trains on an electrical section must be simulated synchronously so that
power drawn can be summed across the network at each instant. A time-
discretised model was therefore used (with a 2-second step in the case-
study), predicting forward motion by solution of Newton's equations at
each time-step for each train. Traction voltage available to each train
was taken from the previous time-step, and new voltages across the
network calculated after the movement of all the trains in service (see
Fig. 4). Eq. (1) shows Newton's equation under traction, in which Fgrad is
the force on the train due to the gradient of the line, considered at the
front of the train (variation of gradient throughout the length of the
train is relevant to long and heavy freight trains and could be accom-
modated if required, but the short passenger trains of the case-study can
be considered at a point). Positive direction was deined as the direction
of train forward motion, with upward gradients deined as positive in
this direction. The component of train weight parallel to the track on a
positive slope acts counter to the train motion, i.e. slows the train,
hence Fgrad will have a negative value on an upward slope and positive

value on a downward slope. Eq. (2) takes a similar format for braking,
where cB represents the proportion of available brake force being ap-
plied.

+ =c F v F v F M
dv

dt
· ( ) ( ) ·T T R grad train (1)

+ =c F v F v F M
dv

dt
· ( ) ( ) ·B B R grad train (2)

To enable the optimization described in Section 2.4 the ability to
store, modify and replay sequences of train control is included. Al-
though the simulation is time based the control points for later replay
(i.e. points at which traction or brake utilization is set) are primarily
location dependent and are stored by location rather than time elapsed
from journey start. This is because constraints on train operation (line
speed limits, stations at which to stop) occur at speciic locations not
speciic times during the journey. The translation between the time and
location frame of reference imposes some minor uncertainty in replay
of control sequences, equal to the distance covered in one timestep,
here taken as 2 s. Uncertainty can be reduced by using a smaller
timestep, but exploration with the model has shown that 2 s is a good
compromise between computational overhead and locational accuracy.
Train movement is controlled on a moving block basis, similar to that
planned for European Train Control System (ETCS) Level 3 [18,19]. A
headway is protected ahead of the train based on the braking distance
for its current speed and location.

2.2. Electrical power network model

The voltages at which DC rail systems typically operate imply high
current lows and consequently short electrical sections are used to
reduce transmission losses. For the section of Merseyrail system in the
case-study there are 8 sub-stations feeding just over 20 km of double-
track railway. Each track section may be “single-end”, fed by a single
sub-station (typically at the outer ends of the network), or “double-end”
fed by two substations. Sub-stations are not necessarily coincident with
passenger stations, and are modelled as neutral section locations with
each side of the neutral section being fed electrically independently
[20]. Interactions between separate electrical sections are therefore not
modelled. Active regulation of the system voltage was not present on
the case study system and is also therefore excluded from the model,

Table 1
Train description and case-study values.

Maximum speed (m/s) 34 Mass (Mtrain), tonnes 101

Hotel power (kW) 50 Nominal traction power (kW) 656
Regeneration voltage (V) 800 Conversion eiciency (η) 95%
Train control (CT, CB) Proportion of full traction (CT) or braking (CB) applied
Train resistance, FR, as a function of velocity, v. (N) = + +F v a bv cv( )R

2 a = 2155.1 N b = 1.7703 Ns/m c = 7.1989 Ns2/m2

Traction force, FT, as function of velocity, v. (N) = + +F v least m v c c( ) ( , )T

m

v
1 1

2
2

m1 = 0 Ns/m c1 = 94,658 N m2 = 1,124,990 Nm/s c2 = −26,592 N

Braking force, FB, as a function of velocity, v. (N) = + +F v least n v d d( ) ( , )B

n

v
1 1

2
2

n1 = 0 Ns/m d1 = 67,672 N n2 = 0 Nm/s d2 = 67,672 N

Fig. 3. Section of Merseyrail system modelled in case-study.
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although the versatile nature of the simulation means this could be
accommodated in future. The technology of the substations is described
by Tomlinson [21], uses 12-pulse rectiication and is designed for ± 6%
AC supply variation, although normally this is maintained to much
smaller variation. Regulation of the output voltage is 5%, this being due
primarily to reactance of the transformer components.

In a simple DC source and resistance network, sub-stations such as
those described by Tomlinson [21] are represented using an open-cir-
cuit voltage and internal resistance [22,23]. Trains drawing power are

represented as resistances with their location determining the supply
transmission length. Conducting and return rails have a resistance per
metre, giving an in-circuit resistance and consequent energy loss that
varies with train position. For simplicity these resistances are con-
sidered together in the model, with a combined value of 40.61 × 10−3

Ωkm−1 used for the case-study in Section 3 and 4 [24]. During re-
generation trains behave as voltage sources with internal resistance. It
is assumed that parallel tracks (with trains running in opposite direc-
tions) are electrically bonded so an electrical section can be represented
schematically as in Fig. 5 in which four trains are present, this being the
maximum number of trains envisaged on a single electrical section at
one time. The electrical section network was pre-solved algebraically
using Kirchhof's laws Eq. (3)-(5) with application to speciic cases
made by efectively “switching out” unneeded trains or sub-stations by
setting their internal resistances to a high value. Validation was un-
dertaken against the Qucs open-source circuit simulator [25].

=V

V V

V V

V V

V V

V V

1 3

3 4

4 5

5 6

6 2 (3)

=

+ +

+ +

+ +

+ +

+ +

R

R R R R

R R R R R

R R R R R

R R R R R

R R R R

1 2 6 6 0 0 0

6 3 6 7 7 0 0

0 7 4 7 8 8 0

0 0 8 8 9 10 10

0 0 0 10 10 11 5

(4)

= =I R V

I

I

I

I

I

1

2

3

4

5

1

(5)

The electrical and mechanical models are linked on the basis of
power (P) deined in terms of traction force at a given velocity (v) and
transmission energy conversion eiciency (η), which are used with
Eqs. (6) and 7 to calculate an equivalent resistance presented to the
electrical supply network. The supply voltage available at the train is
Vline, the auxiliary systems (“hotel”) power is Photel, and the traction
force relationship with velocity is given in Table 1.

=P
F v v( )

traction

T

(6)

=

+

V

P P
_train traction

line

traction hotel

2

(7)

Regeneration of power to the network during braking is enabled
when both the power captured from braking (Pbrake) exceeds the hotel
power required by the train, and when the train speed is above 2.68 m/
s. Below this speed regeneration is inefective and mechanical braking
with no energy recovery takes over. Braking power is dependent on the
brake force (Table 1), velocity and transmission energy conversion ef-
iciency (here assumed equal to the case for traction). The voltage
source associated with the train (Fig. 5) is conigurable to accommodate
the range which may exist on DC systems [26] and is set to 800 V in the
current work (Vregen), and the equivalent resistance of the train
(Ωtrain_regen) is determined by Eqs. (8) and 9.

=P F vbrake B (8)

=

V V V

P P
_

( )
train regen

regen regen line

brake hotel (9)

The electrical model is used to solve each electrical section of the
overall network at the end of each time step, with updated locations of
trains mapped on to the electrical sections so that current drawn may be
calculated and line voltages found for use in the next time-step. This is
shown schematically in Fig. 4.

Fig. 4. Modelling procedure based on time interval movement of trains and
calculation of currents/voltages in electrical network.
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2.3. Energy storage model

Energy storage is modelled as being located in sub-stations on the
grid side of the sub-station internal resistance, shown schematically in
Fig. 5. In the current implementation it is assumed that the grid capa-
city for supply and regenerated power is unlimited, although use in
excess of a limit can be penalised, i.e. this is a soft constraint in the
optimisation. Energy storage is deined by the parameters in Table 2
that describe energy stored and not a speciic storage or converter
technology (battery, lywheel, super-capacitor, etc.). The approach is
agonistic to the underlying technologies that are described in, for ex-
ample, Li et al. [27], and Cornic [28], as these are more relevant to high
veracity inal design modelling, not to the heuristic search whole net-
work modelling of interest here.

The implicit assumption is that if energy is stored it can be provided
at the voltage needed to feed the train supply system. The eiciency of
the storage (ratio of returned energy to stored energy) is considered
during the charging stage, meaning less energy is stored than enters the
storage, but whatever is stored is fully available for use.

To be efective energy storage systems should aim to have energy
available to supply trains, but also retain free capacity to accommodate
energy from braking trains, i.e. they should not be allowed to become
fully charged or discharged. The use of stored energy is subject to
management, shown schematically in Fig. 5 by the ‘Control’ boxes
linking the battery and grid energy supplies to the rail system. For
example stored energy may be used in preference to drawing energy
from the grid (an energy-use reduction strategy), or it may be held in
reserve and used only to remove very high peaks in demand (peak-
power reduction strategy). The number of charge cycles and consequent
life of the storage can also be managed, with storage management an
area of research for deployment of the TransEnergy model (). In the
case-study simulations (Section 4) stored energy is deployed for energy
use reduction, and state of charge is managed using upper and lower
limits beyond which trickle (dis)charging to grid is enabled provided
that grid power low is low. These limits are conigurable but have not

yet been subject to optimization.

2.4. Evolutionary computing optimization framework

Optimization of realistic and complex dynamical systems is chal-
lenging. While the formal approaches of mathematical programming
are highly advanced they frequently rely on assumptions that do not
conform to the objectives of the engineer, leading to solutions that may
not address the original engineering concerns. This has stimulated the
growth of heuristic search algorithms that permit the speciication of
mathematically diicult but physically meaningful problems. It is well
known that there is no such algorithm that is universally best for any
given problem in the absence of substantial prior knowledge about its
solution [29] so an evolutionary optimization algorithm is chosen here.
Broadly speaking, the method is based upon the principles of natural
selection and is a form of directed search, whereby a population of
potential solutions is generated by choosing (within realistic bounds) a
set of parameters for each member. A simulation of each member is
then run and its performance assessed by whatever measure is appro-
priate, allowing for complex, non-linear dynamical processes and
mathematically inconvenient (e.g. non-smooth, multi-modal) objective
functions. A strategy for selecting and combining the parameters of the
members of the current population then deines the next generation and
the process is repeated until a satisfactory performance is reached. In
this sense, heuristic methods reach acceptable, rather than globally
optimal, solutions. The speciic implementation used here, a so-called
(μ+λ) evolutionary algorithm, is implemented using the open-source
genetic algorithm (GA) library ParadiseEO described by Humeau et al.
[17]. For the GA the population = … …+P X X X X X X{ , , , , , , , }j j j µ1 2 1 1

consists of individuals each representing a candidate solution. Each
individual is represented by a real-valued vector

= … …+X x x x x x x[ , , , , , , , ]j i i i n1 2 1 1 , where each “gene”, = …x i n, 1, ,i

[30] represents a variable of interest e.g. driver proile. “Fitness” for
selection to pass into the next generation is evaluated through a cost
function that captures the objectives and the constraints of interest (see

Fig. 5. Single electrical section schematic with two substations each including energy storage, two trains taking power, and two trains regenerating.

Table 2
Energy storage properties.

Quantity Case-study battery
Small Medium Large

Storage energy capacity (MJ (kWhr)) 250 (69.4) 1000 (278) 3000 (833)
Storage energy eiciency (%) 95 95 95
Start of day state of charge (% of full charge) 50 50 50
Max power, storage to rail system (kW) 69.4 278 833
Max power, from regeneration to storage (kW) 69.4 278 833
Max grid power allowing trickle charge (kW) 750 750 750
Max grid regen. power for trickle discharge (kW) 750 750 750
Trickle discharge to grid, trigger charge level (MJ) 225 900 2700
Trickle charge from grid, trigger charge level (MJ) 125 500 1500
Trickle discharge power (kW) 6.94 27.8 83.3
Trickle charge power (kW) 6.94 27.8 83.3

D.I. Fletcher, et al. Journal of Energy Storage 30 (2020) 101425

5



Eq. (10)). Algorithm 1 outlines the evolutionary optimization process in
general.

In Step 1, a population P comprising μ individuals, = …X j µ1, ,j is
generated within the feasibility region. In Step 2, random selection is
employed to select “parents” to apply genetic operators. Uniform mu-
tation is applied in Step 3 where a set of genes is chosen and a random
mutation is applied to each chosen gene according the mutation rate
parameters. In Step 4, the cost function invokes the simulation with the
driver proile and storage parameters assigned to individual, Xj, as the
input and retrieves energy consumption, speed limit violations, delays
and power limit exceedances as the outputs at the end of the simulation.
Fitness for the individual is evaluated based on Eq. (10). In Step 5, we
use the ittest μ individuals as survivors. Table 3 provides a list of GA
parameters and the values used in our initial experiments.

What is of crucial importance in evolutionary methods is that eva-
luation of each simulation can be achieved quickly because a large
number of experiments must be carried out at each generation [9]. The
TransEnergy model has speciically been designed to meet this re-
quirement, through the storage and reply of train control strategies,
allowing the strategies themselves, the parameters of the network, or
the parameters of the train to be optimised. A feasible network control
strategy is required to initialise the optimization with the quality of
repeated runs judged through the value of a cost function such as the
weighted sum across all trains shown conceptually in Eq. (10) in which
n, m, p and q are relative weightings. The function could be extended to
include energy storage provision and/or maintenance costs for a more
holistic optimization.

= + +

+

C n Energy m
Power limit

exceedance
p

Timetable

violations

q
Speed

violations

( )

(10)

In a previous work by Goodwin et al. [15] initialization of train
trajectories was performed using random control strategies (locations of
brake/traction control application) with viable trajectories selected to
proceed further in the optimization process. This led to signiicant
wasted computation as many non-viable trajectories were generated. To
overcome this, an initialization process with “lat out” running of trains
using full acceleration and braking was developed to calculate an initial
control sequence representing a viable but probably sub-optimal oper-
ating strategy for the network. Application of the evolutionary com-
puting process is demonstrated for trajectory optimization in Fig. 6 in
which an energy saving of around 15% is achieved relative to this lat-
out initialization. The data plotted is extracted for a single train of three
active on the network during the optimization for movement non-stop
from Birkenhead North to Leasowe.

3. Train movement and electricity consumption validation

Validation was undertaken using data for the Merseyrail Wirral line
in the UK. Gradients and line speeds were available from Network Rail
[31]. Data were available from previous studies [24,20] for both on-
board and sub-station energy use. To supplement these data train

location monitoring was undertaken using GPS tracking to provide a
record of train trajectories against which the predictions of the simu-
lator could be validated.

Fig. 7 shows predicted train movement between Birkenhead Park
and West Kirby with seven intermediate stops, simulated on the basis of
lat-out running, alongside GPS train trajectory data collected for the
same route. The origin of movement is taken at James Street station,
but underground sections for which GPS data were unavailable are
excluded from the plot. It can be seen that there is very close agreement
in the trajectories, particularly at the start of each stage of the journey.
As speed increases there is divergence caused by the simulation of lat-
out running whereas drivers in reality reduce speed or use coasting. A
consequence of this behavior is that the lat-out running initialization
case leads to trains predicted to arrive at their stops early with extended
dwell times, but this is corrected during the optimization process.
Comparison between modelled and GPS tracked trains would not be

Table 3
Genetic algorithm (GA) parameters.

GA parameter Value

Parent population size 10
Ofspring population size 10
Adaptive mutation rate Starting rate of n/10 genes to mutate where n is the number of decision variables. After every 100 generations, its halved to support

algorithm convergence.
Mutation quantity 1/17 (For each chosen gene, a proportion of +−1/17th of its value is added to itself). This number is chosen after trial runs.
Number of generations 1000
Fitness function (Eq. (10)) parameters m = 1, n = 1, p = 100, q = 10

Fig. 6. Trajectory for one of three trains active on the network illustrating
optimization saving around 15% energy relative to lat-out running, travelling
from Birkenhead North to Leasowe.

Fig. 7. Train location: modelled and GPS tracked.
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expected to give complete agreement, but has some very positive
indings. First, the predictions are very good in the acceleration phase
of each journey stage, for which the assumption of using maximum
acceleration is reasonable. Second, the inter-station times are predicted
to be lower than timetabled, showing that by adopting a more realistic
driving style real behavior can be more closely approximated. The lat
out driving simulation is successful in simulating an upper bound on
behavior within which optimization can identify better driving styles.

Considering energy use validation it is important for two reasons to
replicate train motion and not just the stopping pattern: (i) diferent
trajectories lead to diferent energy consumption; (ii) diferent journey
times lead to diferent auxiliary energy power consumption. These
behaviors interact so a shorter journey time may use more traction
energy but have a lower overall energy consumption. A simulation was
conducted to match train trajectory observed [32] for the journey from
Birkenhead North depot running to Hoylake. Fig. 8 shows the modelled
energy consumption and the measured data (the position origin is taken
close to the Bidston East Junction while energy monitoring commenced
prior to this, hence is non-zero at the position origin). For the measured
data, energy consumption was monitored in one of the two power cars
of the train and it is assumed here this can be doubled to represent the
whole train, although separate monitoring shows that consumption can
difer by approximately 2% between the cars [32]. With good agree-
ment achieved between modelled and actual train speed proile, total
energy consumption is predicted to within 3.5% of that measured.
Given the simplicity of the traction system model and the unknown
driver control strategy that results in the observed speed proile, this
represents excellent agreement. To give context alternative models for
several railways worldwide achieved prediction within 4.3% of real
system measurements [33], in the range +1.87% to −2.31% relative to
transit database entries [34], and to within 2.42% [35]. In making this
comparison only energy use and not regeneration to the network is
considered because the class 507/508 trains running on this route do
not have regeneration capability.

Having shown that the model can replicate energy use monitored
onboard, Fig. 9 shows results for energy monitored at an electrical sub-
station. The data is for trains moving from West Kirby to Hoylake with a
single train running, this section being electrically fed from Hoylake by
a single sub-station. Current was monitored at the sub-station [20]
without parallel collection of data on the exact train locations, speeds or
driving style so two cases are simulated: (i) “lat out” driving, and (ii) a
train using a speed proile matched to a GPS trace of real train move-
ment. The diference between ive measured current traces (Fig. 9)
indicates the variation of driving style and trajectory that exists on the
real system. Comparing the predicted current drawn with the measured
data it can be seen that there is good similarity on the form of the
curves, particularly when modelling the real driving trajectory. The
lat-out running case incurs a higher and earlier peak in current demand
than the more realistic speed proile, as would be expected for a case

that is used to initialise the optimization process rather than to re-
present real world driving. The fall away in current demand with time is
well represented by the modelled real-world driving trajectory, and the
model is successful at predicting sub-station demand even though it is
based on simple representations of the track and train systems. Table 4
compares journey times, average current and total electrical charge
delivered (the product of current and time) across eight measured
journeys and the two modelled cases. This shows that lat-out running is
predicted to have average current just over 18% higher and charge
transferred of 11% higher than the maximum of these quantities ob-
served in the experimental data. Interestingly the measured journeys
included one that is 10 s faster than the modelled lat-out running case,
showing that the real train slightly outpaces its computer representa-
tion. Modelling a GPS-derived train trajectory brings the predicted
quantities within the range of those measured on the network. This
suggests that while the “lat-out” initialization case would represent
10–20% higher current and charge transfer than normal operation,
after optimization to more realistic driving trajectories the electrical
model is well positioned to capture real network electrical behavior.

3.1. Sensitivity study

To better understand the validation a sensitivity study was under-
taken focused on the substation inner resistance, and the combined
electrical resistance of the supply and return rails. These are diicult to
measure directly and for the case study had to rely on data reported in
literature about the studied system. Combinations of ± 20% change in
substation inner resistance and ± 20% change in the combined supply
and return rail resistance were considered. Predictions were made for
the train and the substation energy supply for a single train movement
between two stations on a single end fed electrical section, with the
results summarised in Table 5.

For the energy drawn at the train the predictions show low

Fig. 8. On-board energy consumption.

Fig. 9. Substation current: measured (I-VIII) [20] and predicted for two dif-
ferent driving styles.

Table 4
Sub-station data from model and summary of measurements from eight train
runs.

Case Journey
time / s

Charge
transfer /
Coulomb

Average
current / A

Measured journeys
1–8 [20]

Min 130 41,891 253
Max 165 67,355 450
Mean 149 55,067 372
SD 11 8205 61

Modelled Flat out 140 74,731 533
Real
trajectory

164 66,134 398
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sensitivity to the system resistance parameters. This is because, for
example, where additional resistance is present in the supply and return
rails and the train experiences lower supply voltage (but still within its
working capability) the energy drawn is maintained through higher
current draw, which was not limited in the modelled system. At the
substations there was slightly greater sensitivity of predicted energy
consumption to changes in system resistances. As would be expected
lowering system resistances reduces energy losses and hence reduces
overall energy drawn from the grid, but the efect is mild, with
around ± 3% change in energy drawn for the change of ± 20% in
system resistances. The sensitivity study indicates that the agreement
found between predicted and measured energy consumption at the
train is insensitive to the system resistances, and it would actually be
very diicult to speciically tune the system resistances to achieve
better agreement in train energy consumption. The sensitivity is greater
for substation energy consumption values, but this is the area in which
validation data is subject to unknown driver behavior so it is not pos-
sible to exactly replicate conditions of the experimental data collection
in any case.

4. Energy storage results and discussion

A full day of the Merseyrail Wirral line autumn 2018 timetable was
simulated (237 services, both ways on two routes) to evaluate the im-
pact of energy storage on total energy used and peaks in power demand.
All cases were modelled using “lat out” driving conditions and it was
assumed energy storage was available at every sub-station. Although
the Class 507/508 trains on this line cannot regenerate power to the
network they were taken to follow the regeneration behavior described
in Section 2.2. Modelling train movements and power network for a full
day timetable required just over 30 min on an Intel i7 laptop CPU.

The model is agnostic to the energy storage technology and this is
simply referred to as “storage” in the discussion below, but to ensure
realistic capacity and charge rates (Table 2) these were based on battery
storage typical of grid scale application [36]. Batteries may be de-
scribed by their “C” rate, i.e. the discharge rate they can support re-
lative to their maximum capacity, deined such that a 1C rate means
that the full capacity will be discharged in 1 h Diferent battery tech-
nology can support particular C rates but a rate around 1 is common,
and this was selected as the maximum charge and discharge rate.
Trickle charging or discharging of batteries aiming to prevent them
becoming fully charged or discharged was at 0.1C. Three sizes of energy
store were considered (Table 2) and in each case identically sized stores
were placed at every sub-station. A baseline case, without storage
present, was also run.

4.1. Behavior of energy storage

Fig. 10 shows typical behavior of a sub-station with energy storage

during the passage of a train through the supplied electrical section.
Prior to the train beginning to move (time=0) the energy store is at
50% capacity. Total demand from the substation (dotted line) rises as
the train moves into the considered electrical section (at around 60 s)
and energy is delivered from storage (dashed line). Stored energy falls
(thick solid line) but the storage reaches its discharge rate limit (dashed
line becomes horizontal around 100 s) and the grid (thin solid line)
supplies requirements in excess of this. A similar process happens
during regeneration as the train brakes (160–200 s) where the charging
rate limit of the storage means excess power is returned to the grid, or
may be lost in braking resistors. The presence of storage has success-
fully reduced peaks in power demand and absorbed some regenerated
energy, however, it is clear that the charge/discharge rate limit is
preventing it fully meeting train demand during acceleration or full
capture of regenerated power. After the train has left the electrical
section the substation demand falls to zero and the storage is returned
to its original charge state by trickle charging from the external grid
over the period 200–600 s. In this case there is no additional train
demand during the period but, in busier areas of the network, further
train demand may occur before this recharge process is complete. This
would lead to depletion of the battery with the potential that it could no
longer act to reduce peak demand on the network. Clearly, selecting
charge rates and capacity to match the traic frequency in speciic
areas of the network is crucial to achieving beneits from energy sto-
rage.

4.2. Full day timetable modelling

Following full timetable simulation it was found that storage was
performing diferently in diferent substations depending on the traic
density in the area. Results are extracted in Table 6 for two cases: (i)
Substation 1 (Hoylake) at which all but the smallest battery studied was
able to retain charge throughout the day, and (ii) substation 8 (Bir-
kenhead North) at which all but the largest battery considered dis-
charged during the day with a low mean charge held relative to capa-
city. The results are highly non-linear with variation in storage capacity
due to charge/discharge rate limits and particularly the case of total
discharge of storage. The primary diference between the locations is
the traic density, with the Birkenhead North station supporting double
the frequency of trains, prior to these separating on the individual lines
to West Kirby or New Brighton. While depleted storage retains its
ability to store regenerated electricity (i.e. bufering return of power to
the grid) there is a great reduction in its ability to bufer power demand
of trains, and peak power drawn from the grid is therefore only reduced
for the largest battery considered.

The behaviors observed point to important areas for future ex-
ploration with the model. For example, the limit of 1C charge/

Table 5
Results of sensitivity study as percentage of energy consumption predicted for
standard conditions used in the simulations. Electrical properties (a) substation
inner resistance and (b) rail resistance (combined supply and return) were
varied 20% around their nominal/standard values. Evaluation was for a single
train on a single end fed line for one complete start to inish train move.

Rail resistance (combined supply and
return)

Substation
inner resistance

Lower
(−20%)

Standard Higher
(+20%)

Energy drawn from
grid at the
substation

Lower (−20%) 97.3 99.3 101.6
Standard 98.0 100.0 102.3
Higher (+20%) 98.7 100.8 103.1

Energy drawn by the
train

Lower (−20%) 100.1 100.1 100.0
Standard 100.1 100.0 100.0
Higher (+20%) 100.0 100.0 99.9

Fig. 10. Hoylake substation modelled energy lows, one train acceleration and
braking.
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discharge rate, which is realistic for battery-based storage, greatly
limits the proportion of regenerated power the storage can accom-
modate, and its ability to meet demands from accelerating trains.
Similarly, the low “trickle charge” rate selected was insuicient to
support the timetable at the busier substation while being much more
satisfactory at the less busy Hoylake substation. Exploring the same
timetable with storage capable of higher power transfers (e.g. re-
presenting super-capacitors or lywheels) would allow selection of ap-
propriate technology for particular locations. Alternatively, it would be
possible to explore the increase in train services possible relative to the
current timetable for diferent storage technology at speciic locations.

The energy storage coniguration explored here was conigured so
that stored energy is always used irst, in preference to the grid con-
nection. While this may appear useful for total energy use reduction it is
important to consider that energy storage has an eiciency (here set to
95%). Results for substation 1 show that a small energy store is able to
achieve some marginal net energy use reduction but, in the conig-
uration considered, is insuicient to reduce peak power drawn from the
grid below the level without storage in the system. At substation 8,
which supports a higher traic density, storage is more successful at
reducing net energy consumption, which is reduced for all storage sizes
relative to the case without storage. At both substations use of a larger
store is more efective at reducing peak grid power drawn, but the in-
eiciency of the storage can lead to an increase in net energy use as
more energy lows in and out of storage. These storage losses are real,
but their size relative to the case without energy storage is partly an
artefact of the system boundary for considering net energy consump-
tion: the battery losses are considered, but transmission loss of re-
generated energy back to the grid after it has left the railway substa-
tions is excluded since the model has no representation of the external
supply grid. Such external losses, and also the location of losses relative
to the energy metering boundary are factors to consider in the design of
a storage system. Depending on supply constraints (and also the i-
nancial charging regime for electricity) the same storage considered
here may be more efectively used only for capping peaks in power
demand. This may also enable a lower charge cycle count to accumulate
over the day which is important for storage technology such as lithium-
based batteries. Such options for the management of storage tech-
nology, alongside the potential to optimise train trajectories and driving

styles to work better with energy storage, are areas for future ex-
ploration with the developed model. An important application is ex-
pected to be in enabling more train services with existing power supply
infrastructure, for example by optimizing energy storage to support the
supply voltage in poorly supplied areas of the network.

5. Conclusions

A model has been created integrating a versatile database-conig-
urable rail network model and power supply network representative of
a DC electric railway. It is intended as a high-level design tool to ex-
plore system wide behaviors prior to detailed inal design modelling of
speciic technologies. Predictions of train motion and power demand
have been validated against data from the Merseyrail network in the
UK. The validation showed good agreement: On-board energy predic-
tions were marginally (3.5%) low relative to measured data, this dif-
ference being comparable to the uncertainty in the experimental data
and to the uncertainty found by other researchers in similar cases.
Substation charge low predictions were comparable to measured data
and indicated signiicant dependence on driving style.

Deployment of energy storage across the modelled network and
simulating a full day of traic has revealed the dependence of storage
efectiveness on the timetable and traic density at speciic locations.
The model is combined with a genetic algorithm to optimise system
parameters (storage size, charge/discharge power limits, timetable,
train driving style/trajectory) and also enables identiication of cases in
which poorly speciied storage technology would have little or no po-
sitive impact on peak power and energy consumption. The developed
model will enable these to be explored in further research, a particular
application being the potential for pooling batteries of parked road
vehicles within a charging and power bufering approach to transport
energy management. Further work in applying the developed methods
may also consider combining the trackside energy storage with onboard
energy storage, exploring the impact of charge management require-
ments/characteristics of speciic storage technologies, and a cost-ben-
eit and life-cycle assessment of the conigurations.
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Table 6
Energy storage outcomes for full day of traic at two substations.

Sub-station, and storage capacity Energy (MJ) Peak power (MW) Battery charge (MJ)

Supplied from grid Regenerated to grid Net grid supply Supplied from grid Regenerated to grid Min / Max / Mean

1 No storage 5610 1600 4010 1.7 1.1 -
250MJ 5350 1370 3980 1.7 1.0 0 / 125 / 48
1000MJ 4890 786 4104 1.4 0.8 478 / 500 / 495
3000MJ 4240 14 4226 0.9 0.1 1446 / 1500 / 1492

8 No storage 9470 3550 5920 1.3 1.0 -
250MJ 8350 2450 5900 1.3 0.9 0 / 125 / 14
1000MJ 6870 1100 5770 1.3 0.7 0 / 500 / 81
3000MJ 5920 22 5898 0.5 0.08 230 / 1501 / 812

Algorithm 1
+µ EA( ) : Evolutionary Algorithm.

1) Initialise the population = … …+P X X X X X X{ , , , , , , , }j j j µ1 2 1 1 with μ individuals

= … …+X x x x x x x[ , , , , , , , ]j i i i n1 2 1 1 , i.e. a vector of decision variables representing

potential driver proile and energy storage parameters.

2) Select A⊆P where =A| | .
3) For each I ∈ A, produce ofspring I′ by mutation. Add ofspring to P.
4) Fitness evaluation of all I ∈ P.
5) Select D⊆P, where =D µ| | .

6) P≔D.
7) Repeat step 2 to 6 until termination criterion is reached.
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