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Non-Intrusive Speech Quality Prediction Using

Modulation Energies and LSTM-Network
Benjamin Cauchi, Student Member, IEEE, Kai Siedenburg, João F. Santos

Tiago H. Falk, Senior Member, IEEE, Simon Doclo, Senior Member, IEEE, Stefan Goetze, Member, IEEE

Abstract—Many signal processing algorithms have been pro-
posed to improve the quality of speech recorded in the presence
of noise and reverberation. Perceptual measures, i.e., listening
tests, are usually considered the most reliable way to evaluate the
quality of speech processed by such algorithms but are costly and
time-consuming. Consequently, speech enhancement algorithms
are often evaluated using signal-based measures, which can be
either intrusive or non-intrusive. As the computation of intrusive
measures requires a reference signal, only non-intrusive measures
can be used in applications for which the clean speech signal is
not available. However, many existing non-intrusive measures
correlate poorly with the perceived speech quality, particularly
when applied over a wide range of algorithms or acoustic condi-
tions. In this paper, we propose a novel non-intrusive measure of
the quality of processed speech that combines modulation energy
features and a recurrent neural network using long short-term
memory cells. We collected a dataset of perceptually evaluated
signals representing several acoustic conditions and algorithms
and used this dataset to train and evaluate the proposed measure.
Results show that the proposed measure yields higher correlation
with perceptual speech quality than benchmark intrusive and
non-intrusive measures when considering various categories of
algorithms. Though the proposed measure is sensitive to mis-
match between training and testing, results show that it is a
useful approach to evaluate specific algorithms over a wide range
of acoustic conditions and may thus become particularly useful
for real-time selection of speech enhancement algorithm settings.

Index Terms—Speech quality, non-intrusive prediction, modu-
lation energy, LSTM-network.

I. INTRODUCTION

IN many speech communication applications, such as tele-

conferencing or hearing-aids, speech of a distant user is

recorded by a single or by multiple microphones. Often,

the recorded speech signal is corrupted by ambient noise

and reverberation, which may severely degrade the perceived
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speech quality and speech intelligibility. To overcome these

effects, many speech enhancement algorithms have been pro-

posed [1], [2], [3], [4]. Although many algorithms are able

to substantially reduce the amount of noise and reverberation

in the recorded signal, the choice of the best suited algo-

rithm often depends on the acoustic condition, and processing

artefacts may result in a degradation of speech quality [5].

Consequently, speech enhancement algorithms need to be

evaluated in terms of speech intelligibility and quality.

Perceptual speech quality evaluation based on listening tests

requires a group of human assessors to evaluate the processed

speech signals with respect to predefined attributes, such as

overall quality, level of reverberation or residual noise, or

coloration. Such evaluation is typically performed by grading

each attribute on a scale which either consists of a few values,

such as for the mean opinion score (MOS) [6], or continuous

values, as in the multiple stimuli test with hidden reference and

anchor (MUSHRA) [7]. Speech intelligibility can be assessed

as the number of speech items, i.e., phonemes or words,

identified by assessors in relation to the total number of items

present in the signal under test [8]. Speech intelligibility is

often reported using the speech reception threshold (SRT), i.e.,

the level of degradation for which only 50 % of the speech

items are correctly identified by an assessor [9]. Perceptual

measures are generally considered the most reliable way to

assess the quality or intelligibility of processed speech signals.

However, since these measures are costly and time-consuming,

speech enhancement algorithms are often evaluated using

signal-based measures.

Signal-based measures, aiming at either speech quality or

speech intelligibility prediction, can be categorized as either

intrusive or non-intrusive. The computation of intrusive mea-

sures requires a (clean) reference signal in addition to the

target signal under test, whereas non-intrusive measures can be

computed from the target signal only. Among intrusive mea-

sures, the articulation index (AI) [10], the speech transmission

index (STI) [11], the speech intelligibility index (SII) [12],

the short-time objective intelligibility (STOI) [13] and mutual-

information-based techniques, such as the algorithm proposed

in [14], aim at speech intelligibility prediction, whereas the

perceptual evaluation of speech quality (PESQ) [15], the per-

ceptual objective listening quality assessment (POLQA) [16]

or the perception model for quality (PEMO-Q) [17] are used

to predict the speech quality. However, in practice, a reference

signal is not available, e.g., to evaluate algorithms using

realistic corpora or to automatically select the best algorithm

for a specific acoustic condition. Consequently, reliable non-
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intrusive measures are required.

Several measures have been proposed to remove the need

for a reference signal. Non-intrusive measures of the speech

intelligibility include the recently proposed non-intrusive STOI

(NI-STOI) [18], that relies on estimating the amplitude enve-

lope of the clean speech from the input signal, and the use of

a trained speech recognizer as proposed in [19]. To evaluate

speech quality, non-intrusive measures such as P.563 [20]

and ANIQUE+ [21] exist, which have not been explicitly

developed for the evaluation of speech enhancement algo-

rithms but rather for the evaluation of narrow-band speech

codecs. Measures such as the signal to reverberant modulation

ratio (SRMR) [22] and its extension, the normalized SRMR

(SRMRnorm) [23], have been developed for both intelligibility

and quality prediction and apply a rather simple predict-

ing function to a set of time-averaged modulation energies.

Though this measure has shown promising results, e.g., when

predicting intelligibility for cochlear implants users in [24],

its performance, similarly as for P.563 and ANIQUE+, can

be unpredictable when applied to signals processed with

different categories of algorithms, as reported in [25]. In [26],

twin hidden Markov models (HMMs) have been proposed to

generate an estimate of the clean speech before using this

estimate and the signal under test as input to an intrusive

measure. The reliability of the obtained prediction largely

depends on the accuracy of the estimated clean signal such that

the method does not outperform the used intrusive measure.

Recent approaches have focused on applying machine learning

techniques to train a predicting function for speech quality.

The approach in [27] uses a classification and regression

tree (CART) algorithm while the approach in [28] uses a

similar combination of classification and regression with a so-

called model-tree [29]. In both [27] and [28], the predicting

function does not take into account the time dependencies

within the target signal and the evaluation of both approaches

was limited by the datasets used for training. Indeed, [27] only

uses data labeled using existing signal-based measures and no

perceptually evaluated data, whereas [28], used perceptually

evaluated data but trained the predicting function separately,

in turn, for each acoustic condition.

This paper proposes a novel non-intrusive measure aiming

at reliably predicting the speech quality of processed signals

across various acoustic conditions and types of processing. For

this purpose, we use a predicting function that takes the time

dependency of the target signal into account and is trained on

a perceptually evaluated dataset.

This paper is structured as follows. In Section II, we present

the proposed measure, which combines modulation energy

(ME) and a recurrent neural network (RNN) using long short-

term memory (LSTM) cells. Using such network as predicting

function allows to model the time dependency of the proposed

signal and to apply the proposed measure to signals of arbitrary

length. In Section III, we describe the perceptually evalu-

ated dataset of speech signals, representing various acoustic

conditions, i.e., room impulse responses (RIRs), noise types

and signal-to-noise ratios (SNRs), and several categories of

algorithms, single- and multichannel, with different settings

resulting in various level of interference suppression and

processing artefacts. In Section IV, we describe how we used

this dataset to train and evaluate the proposed measure and

we present our experimental framework and the considered

benchmark. The results presented in Section V show that

the proposed measure, when trained for a single category of

algorithms, outperforms existing non-intrusive measures and

yields similar performance as the intrusive measures. When

considering several categories of algorithms, the proposed

measure outperforms both non-intrusive and intrusive existing

measures.

II. PROPOSED APPROACH

The time-domain signal ym(n) recorded in the m-th mi-

crophone of M ≥ 1 available microphones can be modeled

as

ym(n) = xm(n) + vm(n) = s(n) ∗ hm(n) + vm(n), (1)

where n denotes the sample index, s(n) denotes the anechoic

speech signal, hm(n) denotes the RIR of length Lh between

the source and the m-th microphone and vm(n) denotes the

additive noise component. The reverberant speech component

xm(n) can be written as

xm(n) = dm(n) + rm(n), (2)

where

dm(n) = s(n) ∗ hd
m(n), (3)

rm(n) = s(n) ∗ hr
m(n), (4)

with hd
m(n) and hr

m(n) defined as

hd
m(n) =

{

hm(n) if n ≤ Ld,

0 otherwise,
(5)

hr
m(n) =

{

hm(n) if n > Ld,

0 otherwise,
(6)

where Ld is set so that hd
m(n) contains the direct path

and a few early reflections while hr
m(n) contains the late

reflections, i.e., the reverberant tail. The output signal ŝ(n) of a

speech enhancement algorithm is computed from the recorded

microphone signals ym(n), m ∈ [1 · · ·M ], as an estimate

of either s(n) or dref(n), where ref denotes the index of a

reference microphone.

The perceived speech quality pŝ of the processed signal

ŝ(n) can be obtained from a listening test conducted with

several assessors (cf. Section III-B). The measure proposed

in this paper aims at non-intrusively predicting pŝ, i.e., at

computing an estimate p̂ŝ of pŝ from the signal ŝ(n) while

requiring neither a listening test nor or reference signal, i.e.,

s(n) or dref(n). The proposed measure relies on extracting

a set of time-varying features which are used as input to

a predicting function. Section II-A describes the considered

features before presenting the RNN used as predicting function

in Section II-B.
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A. Considered features

The proposed measure uses modulation energies (MEs) as

features, which have already been used in the field of speech

quality prediction in [30] and further elaborated in [23], [28].

The computation of these features is depicted in Fig. 1 and

can be summarized as follows.

First, the signal under test ŝ(n) is filtered by a gammatone

filterbank with J channels, resulting in J filtered signals s̃j [n],
where j denotes the filter index. The temporal envelope ej(n)
is extracted from s̃j [n] as

ej(n) =
√

s̃2j [n] +H{s̃j [n]}
2
, (7)

where H{·} denotes the Hilbert transform. The temporal

envelopes are divided into L = ⌈N/(W − O)⌉ overlapping

windowed frames using an overlap of O samples and a window

of length W , with N the signal length. The modulation

spectral energy ej(k, ℓ) is computed as the squared magnitude

of the discrete Fourier transform of the ℓ-th frame in the k-th

modulation frequency bin.

The modulation spectral energies ej(k, ℓ), for frequency

bins in the interval kmin to kmax, are warped into B over-

lapping modulation bands whose centre frequencies are set as

in [23], resulting in the warped modulation energies ẽj(b, ℓ),
where b denotes the index of the modulation band. As pro-

posed in [23], thresholding is applied to ẽj(b, ℓ), resulting in

αepeak ≤ ěj(b, ℓ) ∈≤ epeak, where 0 ≤ α < 1 and where

epeak = max
j,b

(

1

L

L−1
∑

ℓ=0

ẽj(b, ℓ)

)

. (8)

Finally, a feature vector eℓ of length J · B is constructed for

each time frame as

eℓ =
[

ě0(0, ℓ), . . . , ě0(B − 1, ℓ), . . . ,

ěJ−1(0, ℓ), . . . , ěJ−1(B − 1, ℓ)
]T

,
(9)

where superscript T denotes the transpose operator.

In this paper, the different parameters of the feature extrac-

tion have been set as in [23]. The gammatone filterbank is

applied to signals downsampled to 8 kHz and uses J = 23

channels with center frequencies ranging from 125 Hz to

4 kHz. The modulation frequency bins are grouped into B = 8

bands. The temporal envelope ej(n) is divided in frames using

a Hamming window of length W corresponding to 256 ms

and an overlap of length O corresponding to 224 ms. The

indices kmin and kmax correspond to the range of modulation

frequencies between 4 Hz and 40 Hz and α is set to lower

bound modulation energies 30 dB below epeak. These values

have been shown to reduce the sensitivity of the extracted

features to speakers and pitch content [23] compared to the

settings initially proposed in [30].

It can be noted that previous use of the ME for speech

quality prediction [23], [28], [30] used a single feature vector

e of length B to represent the signal ŝ(n), i.e,

e =
[

e(0) e(1) . . . e(B − 1)
]T

, (10)

where

e(b) =
1

JL

J−1
∑

j=0

L−1
∑

ℓ=0

ěj(b, ℓ). (11)
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Fig. 1. Overview of the feature extraction for one time frame. Contrary
to previous works [23], [28], [30], the proposed measure does not
average the features over time before applying the predicting function.

The SRMR [30] and the SRMRnorm [23] differ in the ex-

traction of the vector e but both compute the estimate p̂ŝ
as the ratio between the lower and higher coefficients of e.

The measure proposed by the author in [28] computes the

estimate p̂ŝ as the output of a model tree, i.e., a combination

of classification rules and regression but uses the same features

as in [23] and therefore does not take into account time

dependencies in the input signal. We propose to compute the

estimate p̂ŝ using a time ordered sequence of vectors and a

trained LSTM-Network.

B. LSTM network as predictive function

Artificial neural networks (ANN) are composed of several

layers. Each λ-th layer applies a non linear mapping to an input

vector xλ, of length Lλ
x , in order to compute an output vector

zλ, of length Lλ
z . This mapping is applied by multiplying a

weight matrix Wλ
x,z of size Lλ

z ×Lλ
x , where subscripts indicate

the connections represented by the matrix, with the input

vector xλ before summing the results with a bias vector bλ
z of

length Lλ
z and applying a non-linear activation function F (·)

to the result, i.e.,

zλ = F
(

Wλ
x,zxλ + bλ

z

)

. (12)

The values of Wλ
x,z and bλ

z have to be learned during a training

phase (cf. Section IV-B) and any number of layers can be used

by setting xλ = zλ−1. Layers described by (12) and networks

composed exclusively of such layers are commonly qualified

as feed-forward.

The use of RNNs is a common extension of (12) to take

time dependencies into account. Similarly as feed-forward

ANNs, RNNs are composed of several layers. However, the

input of the λ-th RNN layer is an ordered sequence Xλ of Tλ

input vectors xλ
t , where t ∈ [0, Tλ − 1] denotes the sequence

index, i.e.,

Xλ =
{

xλ
0 , x

λ
1 , · · · , x

λ
Tλ

−1

}

. (13)
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t

Fig. 2. Overview of the updates applied by an LSTM-layer. Updates
are applied along the time-ordered sequence of input vectors resulting
in a sequence of hidden vectors used to compute the output of the layer
as in (15). The value of each hidden vector depends on the current input
as well as on the memory cell and of the weights applied in the input,
output and forget gates.

Each layer of an RNN computes a sequence Hλ of hidden

vectors hλ
t of length Lλ

h and a sequence Zλ of output vectors

zλt of length Lλ
z , both containing Tλ vectors and defined

similarly as in (13). The vectors in these sequences are

computed by iteratively applying [31]

hλ
t = F

(

Wλ
x,hxλ

t + Wλ
h,hhλ

t−1 + bλ
h

)

, (14)

zλt = F
(

Wλ
h,zhλ

t + bλ
z

)

, (15)

where Wλ
x,h, Wλ

h,h and Wλ
h,z denote weight matrices of size

Lλ
h × Lλ

x , Lλ
h × Lλ

h and Lλ
z × Lλ

h , respectively, and where bλ
h

and bλ
z are bias vectors of length Lλ

h and Lλ
z , respectively.

For our application, i.e. the prediction of speech quality,

RNNs have two main advantages over feed-forward networks.

First, the sequence of hidden vectors computed by an RNN

allows the prediction to take into account temporal depen-

dencies; second, the iterative updates can be applied to a

sequence of arbitrary length. However, the values of the weight

matrices and of the bias vectors still have to be learned during

a training phase and the formulation in (14) and (15) can

cause instability during training, leading to overly long training

time or even divergence [32]. In order to avoid these issues,

so-called gated units, such as in the LSTM layers used in this

paper, are used in practice.

Though in a standard RNN layer, the function F (·) in (14)

is commonly a simple non-linear function such as a sigmoid,

in an LSTM layer, this function relies on iterative updates of

sequences of vectors, Iλ, Oλ, Fλ and Cλ, the so-called, input

gate, output gate, forget gate and cell memory, respectively

and their mutual influence on the layer’s output is illustrated

in Fig. 2. For each step t of the input sequence Xλ, the vectors

iλt and fλt are computed from the input vector xλ
t and from the

e0

e1

eL−1

0

1

L0
h − 1

0

1

L1
h − 1

p̂ŝ

Input

sequence
LSTM

layer

λ = 0

LSTM

layer

λ = 1

Feedforward

layer

λ = 2

Fig. 3. Overview of the network used as predicting function. The first
LSTM-layer computes a sequence of input vectors containing as many
vectors as frames available in the target signal. The second LSTM-layer
applies updates along this sequence and the last vector of its output
sequence is input to the feed-forward layer whose sigmoid activation
function results in a prediction bounded between 0 and 1.

memory cell vector cλ
t−1 saved at the previous step, i.e.,

iλt = S
(

Wλ
x,ix

λ
t + Wλ

h,ih
λ
t−1 + Wλ

c,ic
λ
t−1 + bλ

i

)

, (16)

fλt = S
(

Wλ
x,fx

λ
t + Wλ

h,fh
λ
t−1 + Wλ

c,fc
λ
t−1 + bλ

f

)

, (17)

where S (·) denotes the logistic sigmoid function. The re-

sulting vectors iλt and fλt weight the influence of the current

and previous input, respectively, to the updated vector cλ
t

computed as

cλ
t = fλt cλ

t−1 + iλt tanh
(

Wλ
x,cxλ

t + Wλ
h,chλ

t−1 + bλ
c

)

. (18)

The influence of this memory cell vector cλ
t to the layer output

is weighted by the ouput gate oλ
t computed as

oλ
t = S

(

Wλ
x,oxλ

t + Wλ
h,ohλ

t−1 + Wλ
c,ocλ

t + bλ
o

)

, (19)

and used to compute the hidden vector hλ
t ,

hλ
t = oλ

t tanh
(

cλ
t

)

, (20)

from which the ouput vector zλt is finally computed as per (15).

We propose to use the stacking of Λ = 3 layers as the

predicting function of the quality of processed speech. Using

this network structure, similar to the one used in [33] and

depicted in Fig. 3, the speech quality from a signal ŝ(n) is

predicted by using the sequence of L time ordered frames of

features as input to the first LSTM layer, i.e. for λ = 0 we

have T 0 = L , and

X0 =
{

x0
0, x

0
1, · · · , x

0
T 0

−1

}

, with, (21)

x0
t = et, t ∈ [0, T 0 − 1]. (22)

The output sequence, obtained after iterating (16)–(20)

and (15) along the input sequence, is used as input to a second

LSTM layer, i.e., X1 = Z0 and the iterative updates yield the

output sequence Z1. The last vector of this sequence is input

to the last, feed-forward, layer, i.e., x2 = z1T 1
−1. Aiming at
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TABLE I
EXPECTED BEHAVIOR OF THE CONSIDERED ALGORITHMS.

UN SC MVDR GWPE-MVDR

Denoising Poor Good Fair Fair
Dereverberation Poor Poor Poor Good

Speech distortions Good Fair Good Fair
Noise distortions Good Fair Good Poor

an estimate p̂ŝ that is bounded between 0 and 1, we replace

F (·) in (12) by a sigmoid and compute the estimate of pŝ as

[p̂ŝ] = S
(

W2
x,zx2 + bλ

z

)

. (23)

The values of the multiple weight matrices and bias vectors

needed for the computation of (23) can be learned during

a training phase using perceptually labeled training data.

Section III presents the dataset that was collected for this

purpose and the training procedure is described in Section IV.

III. DATASET

In order to train and evaluate the proposed measure de-

scribed in Section II, we collected a database of noisy and

reverberant speech signals processed by several categories of

algorithms and labeled in terms of perceived speech quality.

This section provides short descriptions of the considered algo-

rithms before describing the perceptual evaluation conducted

in order to label signals in terms of perceived speech quality.

A. Considered algorithms

The algorithms considered in this paper process the recorded

signal in the short-time Fourier transform (STFT) domain, in

which the signal model from (1)–(2) can be expressed as

ym(k, ℓ) = xm(k, ℓ) + vm(k, ℓ), (24)

ym(k, ℓ) = dm(k, ℓ) + rm(k, ℓ) + vm(k, ℓ), (25)

where ym(k, ℓ), xm(k, ℓ), vm(k, ℓ), dm(k, ℓ) and rm(k, ℓ)
denote the STFTs of ym(n), xm(n), vm(n), dm(n), and

rm(n), respectively.

These algorithms aim at computing the STFT ŝ(k, ℓ) of ŝ(n)
from ym(k, ℓ). In addition to the unprocessed (UN) version

of the signal, we considered three categories of algorithms,

namely, single-channel spectral suppression (SC) [34], the

minimum variance distortionless response (MVDR) beam-

former and the application of this beamformer to the output

of the generalized weighted prediction error (GWPE) [35],

denoted by GWPE-MVDR. These algorithms have been cho-

sen for their applicability to realistic scenarios, e.g. real-time

applications, as well as to provide a wide range of processing

artefacts typically occurring in different reverberation and

noise conditions. The expected behavior of the algorithms in

terms of interference reduction and introduced distortions is

summarized in Table I and the categories of algorithms are

briefly described in the next subsections.

All signals have a sampling frequency of fs =16 kHz. Noisy

and reverberant signals have been generated by convolving

clean speech extracted from the WSJCAM0 database [36] with

RIRs and adding noise to the resulting reverberant speech.

We used 3 different RIRs extracted from the ACE challenge

dataset [37] recorded using a 42 cm linear array of M = 8

equidistant microphones, whose characteristics, summarized

in Table II, have been selected to represent a wide range of

reverberation levels. We considered two noise types, namely

fan noise and babble, for which noise signals recorded in the

same rooms and with the same microphones positions as for

the RIRs are available.We consider two SNRs, namely of 5 dB

and 15 dB, calculated according to [38]. The 12 resulting

combinations of RIRs with noise types and SNRs will be

referred to as acoustic conditions in the remainder of this

paper. When referring to UN as an algorithm, we consider

ŝ(n) = yref(n) with ref arbitrarily set to 1.

1) Single-channel spectral suppression (SC): SC algo-

rithms estimate ŝ(k, ℓ) by applying a real valued gain to the

STFT of one of the input channel, i.e.,

ŝ(k, ℓ) = g(k, ℓ)yref(k, ℓ). (26)

The gain g(k, ℓ) is computed as

g(k, ℓ) = max (g̃(k, ℓ), gmin) , (27)

where gmin is a spectral floor introduced to limit possible

speech distortion and where g̃(k, ℓ) is in this paper computed

as the solution to the minimum mean square error (MMSE)

estimator of the speech amplitude proposed in [39], i.e.,

g̃(k, ℓ) =

√

ξ(k, ℓ)

µ+ ξ(k, ℓ)
·





Gam
(

µ+ β
2

)

Gam (µ)

Φ
(

1− µ− β
2 , 1;−ν(k, ℓ)

)

Φ (1− µ, 1;−ν(k, ℓ))





1/β

·

(

√

γ(k, ℓ)
)

−1

,

(28)

where

ν(k, ℓ) =
γ(k, ℓ)ξ(k, ℓ)

µ+ ξ(k, ℓ)
, (29)

and where Φ(·) and Gam (·) denote the confluent hyperge-

ometric function and the complete Gamma function [40],

respectively, and where β and µ are parameters of the as-

sumed speech amplitude distribution [34]. Additionally, ξ(k, ℓ)
denotes the a priori signal-to-interference ratio (SIR) defined

as

ξ(k, ℓ) =
σ2
d,ref(k, ℓ)

σ2
r,ref(k, ℓ) + σ2

v,ref(k, ℓ)
, (30)

and γ(k, ℓ) denotes the a posteriori SIR, defined as

γ(k, ℓ) =
|yref(k, ℓ)|

2

σ2
r,ref(k, ℓ) + σ2

v,ref(k, ℓ)
. (31)

In (30) and (31), σ2
d,ref(k, ℓ), σ2

r,ref(k, ℓ) and σ2
v,ref(k, ℓ)

denote power spectral densities (PSDs), i.e.,

σ2
d,ref(k, ℓ) = E

{

|dref(k, ℓ)|
2
}

, (32)

where E {·} denotes the expectation operator, and with

σ2
r,ref(k, ℓ) and σ2

v,ref(k, ℓ) defined similarly. In practice,
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TABLE II
RIRS USED TO GENERATE THE RECORDINGS ALONG WITH THEIR

RESPECTIVE CHARACTERISTICS.

Labels Room T60 [s] DRR [dB]

RIR 1 Office 1 0.35 10.45
RIR 2 Building Lobby 0.77 5.13
RIR 3 Lecture Room 2 1.26 3.79

these PSDs are unknown and their estimates, σ̂2
d,ref (k, ℓ),

σ̂2
r,ref (k, ℓ) and σ̂2

v,ref (k, ℓ) have to be used instead.

The choice of the PSD estimators can greatly influence

the performance of SC algorithms. In this paper, we denote

by ‘SCa’ the combination described in [34], which has been

shown effective in improving speech qualtiy in reverberant

scenarios [41], [42]. The estimates of the PSDs, σ2
v,ref(k, ℓ),

σ2
r,ref(k, ℓ) and σ2

d,ref(k, ℓ), are estimated using a modified

version of the well known minimum statistics (MS) estima-

tor [43], the Lebart approach [44] and cepstral smoothing [45],

respectively, g̃(k, ℓ) is computed using (28) and gmin is set

to a minimum gain of -10 dB. A detailed description of the

approach is available in [34].

Aiming at measuring the effect of distortions that a poorly

tuned SC algorithm could introduce, we used a modified

version of this scheme denoted by ‘SCb’. In this case, we esti-

mate σ2
v,ref(k, ℓ) and σ2

d,ref(k, ℓ) using the estimators proposed

in [46] and in [47], respectively, and set gmin to a minimum

gain of -30 dB.

2) MVDR beamformer: The MVDR beamformer consid-

ered in this paper estimates ŝ(k, ℓ) by filtering and summing

the STFT coefficients of the multichannel input, i.e., with

superscript H denoting hermitian conjugation,

ŝ(k, ℓ) = wH
θ̂
(k)y(k, ℓ) (33)

where wθ̂(k) denotes the stacked filter coefficient vector of the

beamformer steered towards the estimate θ̂ of the direction

of arrival (DOA), θ, of the target speech and where y(k, ℓ)
denotes the M -dimensional stacked vector of the received

microphone signals

y(k, ℓ) = [y1(k, ℓ) y2(k, ℓ) . . . yM (k, ℓ)]T. (34)

Aiming at minimizing the noise power while providing a

unity gain in the direction of the target speech, the filter

coefficients of the MVDR beamformer are computed as [48]

wθ̂(k) =
Γ̂
−1

(k)dθ̂(k)

dH
θ̂
(k)Γ̂

−1
(k)dθ̂(k)

, (35)

where dθ(k) and Γ̂(k) denote the steering vector of the target

speaker and the noise coherence matrix, respectively.

In this paper, the estimate Γ̂(k) is computed as

Γ̂(k) = Γ(k) + ̺(k)IM , (36)

where Γ(k) denotes the coherence matrix of a diffuse noise

field [48], IM denotes the M×M -dimensional identity matrix

and ̺(k) denotes a frequency-dependent regularization param-

eter used to limit potential amplification of uncorrelated noise,

especially at low frequencies. This regularization parameter is

computed iteratively such that

wH
θ̂
(k)wθ̂(k) ≤ WNGmax, (37)

where WNGmax denotes the so-called white noise gain con-

straint [49]. In this paper we set this constraint to -10 dB,

compute the steering vector dθ̂(k) using a far-field assumption

and measure the true θ from the main peaks of the used

RIRs. In order to evaluate the impact of steering error on the

performance of the beamformer we consider perfectly steered,

i.e. θ̂ = θ, denoted by ‘MVDRa’, and missteered beamformer,

i.e. θ̂ = θ + ǫθ̂ with ǫθ̂ = π/4 denoted by ‘MVDRb’.

3) GWPE-MVDR: The combination of GWPE and MVDR

beamformer (GWPE-MVDR) considered in this paper esti-

mates ŝ(k, ℓ) as

ŝ(k, ℓ) = wH
θ̂
(k)
(

y(k, ℓ)− r̂(k, ℓ)
)

, (38)

where wθ̂(k) is computed as in (35) and

r̂(k, ℓ) = [r̂1(k, ℓ) r̂2(k, ℓ) . . . r̂M (k, ℓ)]T, (39)

where r̂m(k, ℓ) denotes an estimate of rm(k, ℓ), i.e., ŝ(k, ℓ)
is estimated by subtracting a complex valued estimate of the

late reverberation from the multichannel input signal before

applying an MVDR beamformer.

In this paper, the estimate r̂(k, ℓ) is computed using the

approach described in [35], i.e. as

r̂(k, ℓ) = PH(k, ℓ)ỹ(k, ℓ−∆), (40)

where ∆ denotes a delay introduced to preserve the early

reflections, and

P(k, ℓ) = [p1(k, ℓ) · · ·pM (k, ℓ)] ∈ C
MLP×M , (41)

where pm(k, ℓ) ∈ C
MLP denotes a multichannel prediction

filter, and

ỹ(k, ℓ) =[y1(k, ℓ) · · · y1(k, ℓ− LP + 1) · · ·

yM (k, ℓ) · · · yM (k, ℓ− LP + 1)]T,
(42)

denotes a vector of STFT coefficients of length M · LP .

For each time-frequency bin, the matrix P(k, ℓ) is computed

by applying γ iterative updates aiming at solving the optimiza-

tion problem [35]

argmin
P(k,ℓ)

tr
{

PH(k, ℓ)Â(k, ℓ)P(k, ℓ)
}

− 2ℜ
{

tr
{

PH(k, ℓ)B̂(k, ℓ)
}}

subject to |PH(k, ℓ)ỹ(k, ℓ−∆)|2 ≤ σ̂
2
r (k, ℓ) ,

(43)

where

σ̂
2
r (k, ℓ) = [σ̂2

r,1 (k, ℓ) · · · σ̂2
r,M (k, ℓ)]T, (44)

and σ̂2
r,m (k, ℓ) is computed similarly as in Section III-A1 and

with

Â(k, ℓ) =
ℓ
∑

i=1

δℓ−iŵP (k, i)ỹ(k, i−∆)ỹH(k, i−∆), (45)

B̂(k, ℓ) =
ℓ
∑

i=1

δℓ−iŵP (k, i)ỹ(k, i−∆)yH(k, i), (46)
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TABLE III
OVERVIEW OF THE DATABASE OF PERCEPTUALLY EVALUATED DATA,

EXCLUDING REFERENCES AND ANCHORS. NUMBERS DENOTE THE

DURATION IN MINUTES, FOR EACH COMBINATION OF ACOUSTIC

CONDITION AND ALGORITHM, FOR A TOTAL OF 5.23 HOURS AND 1920
PERCEPTUALLY EVALUATED SIGNALS.

UN SC MVDR
GWPE-
MVDR

Noise SNR a b a b a b

R
IR

1 Fan
5 dB 6.27 3.55 3.03 3.41 3.31 3.35 3.45

15 dB 6.32 3.04 3.14 3.41 3.49 3.14 3.20

Babble
5 dB 6.52 3.38 3.13 3.27 3.30 3.14 3.67

15 dB 6.36 3.50 2.96 3.00 3.44 3.04 3.20

R
IR

2 Fan
5 dB 6.53 3.22 2.92 3.06 3.40 2.87 3.17

15 dB 6.63 2.94 3.19 3.05 3.45 3.21 3.52

Babble
5 dB 6.52 3.43 3.37 3.30 3.51 3.35 3.26

15 dB 6.62 3.58 3.27 3.30 3.30 3.25 3.32

R
IR

3 Fan
5 dB 6.88 3.40 3.26 3.34 3.33 3.55 3.31

15 dB 6.64 3.29 3.27 3.09 3.44 3.06 3.12

Babble
5 dB 6.44 3.41 3.24 3.18 3.04 3.12 3.31

15 dB 6.48 3.28 3.46 3.20 3.32 3.50 3.51

where δ ∈ [0, 1] denotes a smoothing constant, and ŵP (k, ℓ)
denotes the weight used to emphasize frames where the

the signal to be preserved is expected to have low power,

computed as

ŵP (k, ℓ) =

(

1

M
‖σ̂2

d (k, ℓ) ‖
2
2 + ǫ

)

−1

, (47)

where ǫ denotes a small regularization constant and where

σ̂
2
d (k, ℓ) = [σ̂2

d,1 (k, ℓ) · · · σ̂2
d,M (k, ℓ)]T, (48)

where σ̂2
d,m (k, ℓ) is an estimate of σ2

d,m(k, ℓ) computed from

σ̂2
r,m (k, ℓ) and σ̂2

y,m (k, ℓ) using recursive temporal smooth-

ing.

It can be noted that the optimization problem in (43) does

not take noise into account as the approach presented in [35]

has been designed aiming at dereverberation in noise-free

scenarios. The filtered noise signal resulting from (38) might

have different spatial properties than the noise signal recorded

by the microphones and might result in lower noise reduction

achieved by GWPE-MVDR compared to MVDR alone. In

practice, GWPE-MVDR could be combined with spectral sup-

pression to overcome such drawbacks. Such combination has

not been considered in this paper in order to obtain processed

signals containing a wide range of processing artefacts. We

used prediction filters of length LP = 5 and a smoothing

constant δ = 0.95. Other parameters have been set as in [35].

Similarly as for MVDR, we consider both perfect steering

and steering error and refer to the corresponding settings as

‘GWPE-MVDRa’ and ‘GWPE-MVDRb’, respectively.

All STFTs have been computed using a Hamming window.

In the case of SC and MVDR, we used a window of 32 ms

and an overlap of 16 ms while in the case of GWPE-MVDR,

we used a window of 64 ms and an overlap of 48 ms, in order

to replicate the implementation from [34] and [35].
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Fig. 4. MUSHRA scores after removing references and anchors, for
all combinations of acoustic conditions, algorithms and settings. The
mean, represented by a red dot, is considered the ground truth.

B. Perceptual evaluation

In order to obtain a dataset of processed signals labeled in

terms of overall quality, we conducted a MUSHRA test [7]

involving 20 self-reported normal-hearing assessors. All as-

sessors evaluated all combinations of the algorithm categories

SC, MVDR and GWPE-MVDR, with two settings being con-

sidered for each, e.g., SCa and SCb, with the 12 acoustic con-

ditions described in Section III-A. For each assessor, this total

of 72 combinations was divided into two equally sized groups

assigned to two sessions of listening tests. For each session,

the UN algorithm was added to the group of combinations to

be evaluated resulting in a total of 48 combinations per session

and per assessor. The 48 combinations were randomly divided

into six partitions and three clean male speech and three clean

female speech utterances were randomly extracted from the

WSJCAM0 database [36], with a sanity check insuring that

no utterance would have been previously assigned to another

session or assessor. One clean speech utterance was randomly

assigned to each partition and used to generate signals, for

the corresponding combinations as described in Section III-A.

Each partition was appended with the clean signal, used as

reference signal, and two anchors, differing in the type of

considered noise signal, either babble or fan noise. These

anchors were generated by convolving the clean signal with

the first channel of RIR 3 (cf. Table I), and adding noise with

a SNR of 5 dB measured according to [38] and band-pass

filtering the resulting noisy and reverberant signal according

to [50]. Once all signals were generated, the test procedure

for each assessor was conducted as follows.

The signals under test were normalized to have their max-

imum level, calculated over segments of 500 ms, equal to

65 dB SPL. Stimuli were diotically presented over headphones

(Senheiser HD200) in a soundproof booth. The speech material

presented to the assessor was first presented in a training

phase during which the assessor could listen to all stimuli in

order to become familiar with the material. Subsequently, the
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Fig. 5. Performance of the considered measures in terms of ρsig (top) and ǫ − RMSE (bottom). The labels along the x-axis denote the category of
algorithms included in training and testing sets. Numbers in bold typeface denote the best attained performance (statistically indifferent) per considered
category of algorithm.

signals corresponding to each partition of test conditions were

presented simultaneously on a screen. For each signal, there

was a corresponding slider that the assessor was prompted to

use in order to grade the overall quality of the material on

an integer-valued scale between 0 (poor) and 100 (excellent).

The scores assigned to the reference and anchor conditions

were used to ensure that the assessors conducted the task

reliably, i.e., that they assigned the highest score to the hidden

reference and a low score to the anchor. The significance of

differences between the 12 acoustic conditions was assessed

using a repeated-measures analysis of variance (ANOVA) and

post-hoc analysis, whose details are presented in Appendix A.

An overview of the collected dataset is presented in Table III

and the scores for all combinations are summarized in Fig. 4.

In the remainder of this paper, we consider the true perceived

speech quality of a signal to be the mean of the scores assigned

by the assessors to all signals of the same acoustic condition,

algorithm and algorithm setting and refer to it as the ground

truth.

IV. EXPERIMENTS

A. Benchmark and figures of merit

The results presented in Section V compare the perfor-

mance of the proposed measure with several measures of

the literature. Though aiming at non-intrusive prediction of

the speech quality, our benchmark includes three intrusive

measures, namely PESQ [15], POLQA [16], PEMO-Q [17]

as they are commonly used to evaluate speech enhancement

algorithms. It should however be emphasized that, as the

computation of these measures requires the clean reference

signal, they are not applicable in all scenarios and have an

advantage in terms of performance compared to non-intrusive

measures. Our benchmark includes four non-intrusive mea-

sures, namely P.563 [20], ANIQUE+ [21], SRMRnorm [23]

and the combination of modulation energies and model tree

proposed by the author in [28] and denoted by ‘Tree’. It

should be noted that both Tree and the proposed measure

rely on predicting functions trained using machine-learning

techniques and that, contrary to the other considered measures,

their performance depends on the data included in the training

set.

We assess the performance of the proposed measure and

of the benchmark measures using four figures of merit. For

each measure, the linear relationship between the predicted

quality and the ground truth is quantified using the Pearson

correlation coefficient ρ, the ranking capability of each mea-

sure is quantified by the Spearman rank correlation coefficient

ρspear and the correlation coefficient ρsig is computed similarly

as ρ after applying a sigmoidal mapping, whose parameters

are computed from the training set, to the predicted values.

Finally, ǫ−RMSE is used to represent the error between the

predicted value and the ground truth. This figure of merit is

similar to the conventional RMSE but takes the uncertainty

of the subjective ratings into account, i.e., ǫ−RMSE will be

lower if the variance of the subjective ratings is high. An ideal

measure should yield correlation values close to one and an

ǫ−RMSE close to zero. Details on the computation of ρsig
and ǫ−RMSE can be found in [51].

B. Training framework

The training of the predicting functions used by the pro-

posed approach and of Tree, as well as the linear mapping
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Fig. 6. Performance of the considered measures in terms of ρsig (top)
and ǫ−RMSE (bottom). All considered categories of algorithms were
included in both training and testing sets. Numbers in bold typeface
denote the best attained performance (statistically indifferent).

used in the computation of ρsig require a training set of

signals for which the ground truth value of pŝ is known.

Additionally, a testing set is needed to assess the performance

of these trained measures and of the benchmark measures

listed above. The network described in Section II was set

with L0
h = L1

h = 128 and was trained using Keras [52]

and the Adam algorithm [53]. During training, zero padding

was applied to ensure that all sequences had same length

and a masking layer was added before the first LSTM layer

to ignore time frames containing only zeros. Each training

epoch computed as many iterations as needed to take the entire

training set into account using a batch size of 128 sequences.

In our implementation Dropout [54] was applied both to the

input of the network and to the output of each LSTM layer,

i.e., 30% of the values input to the network and output by

each LSTM layer were randomly selected and replaced by

zeros at each iteration. At each iteration, the model, i.e. weight

matrices and bias vectors, was updated to minimize the mean

squared error (MSE) between the predicted and ground truth

value of the speech quality assigned to each file of the training

set. In order to avoid overfitting, 10% of the training set was

set aside prior to each training phase to be used as a validation

set. The training algorithm computed 500 epochs and testing

was done using the model that yielded the lowest MSE over

the validation set.

We conducted three experiments that differ in the training

and testing sets constructed from the dataset presented in

Section III. In all experiments, anchors and reference signals

were discarded before training and testing. The first experi-

ment aims at assessing the ability of the proposed measure

to predict the speech quality from signals processed using a

single category of algorithms, e.g., SC, but different settings,

e.g. SCa and SCb. For this purpose, the dataset was divided

into 4 subsets containing only files processed with the same

category of algorithm (UN, SC, MVDR and GWPE-MVDR).

For each subset, we used 5-folds cross validation, proceeding

as follows. The 20 assessors have been randomly divided into
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Fig. 7. Scatter plot of the predicted speech quality over ground truth
data for SRMRnorm and the proposed measure when trained and
tested for all considered algorithm categories, for all signals. Values
corresponding to signals processed using SCa and SCb are highlighted,
for readability, scores are normalized to range between 0 and 1.

5 equally-sized disjoint groups. For each fold, the signals in

one of these groups were considered as the test set, while

the data corresponding to the remaining groups were used

for training. Using this folding, assessors, speech stimuli and

noise segments always differ between training and testing. The

second experiment aims at assessing the ability of the proposed

measure to predict the speech quality from signals processed

with a variety of algorithms categories. For this purpose, we

use the same 5-folds validation procedure but apply it to the

entire collected dataset. We used the same training sets and

folds for the proposed approach, Tree, and learning of the

parameters of the sigmoid used in the computation of ρsig.

The third experiment examines the behavior of the proposed

approach in case of mismatch between the algorithms included

in the training and the testing set. For this purpose, all signals

processed with a single category of algorithms are included

in the testing set while all others are included in the training

set. It should be noted that using such partition yields a larger

training set than for the previous experiments.

The figures of merit reported for the first and second

experiments in Section V are averaged over all folds. In

the case of the correlation measures, a Fisher Z-test, at a

significance level of 0.05, has been conducted before averaging

to ensure that the values did not differ significantly between

folds [55]. A similar Fisher Z-test has been used to determine

if the difference between the correlations measures yielded

by the considered measures were significant. In the case of

ǫ−RMSE, significance was determined using the F-measure

criteria suggested by ITU-T in [56] and detailed, e.g., in [51].

V. RESULTS

This section reports the results obtained considering the

different training and testing sets previously described. As the

three measures of correlation showed similar behavior at all of

the considered measures we only report ρsig and ǫ− RMSE.

The performance obtained when training and testing the pro-

posed measure for a single category of algorithms at a time

are depicted in Fig. 5 along with the performance of the
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Fig. 8. Performance of the considered measures in terms of ρsig (top)
and ǫ − RMSE (bottom). The labels along the x-axis denote the
category of algorithms included in testing sets while other categories
were included in training.

considered benchmark measures on the same testing sets. With

the exception of the proposed measure, non-intrusive measures

are consistently outperformed by intrusive measures, as could

be expected. The proposed measure, however, yields similar

performance as the intrusive measures for all considered

categories of algorithms and, when training and testing on

either unprocessed signals (UN) or signals processed using the

MVDR beamformer, there is no significant difference between

the proposed measure and the intrusive measures (indicated by

bold typeface in Fig. 5). Although for SC and GWPE-MVDR

the proposed measure yields a slightly poorer performance

than the intrusive measures, it outperforms all non-intrusive

measures in terms of both ρsig and ǫ − RMSE, except for

GWPE-MVDR where the proposed measure yields a slightly

higher ǫ − RMSE than the benchmark measures. The non-

intrusive benchmark measures yield similar performance for

unprocessed signals but perform inconsistently across the other

categories of algorithms. Notably, ANIQUE+, SRMRnorm and

Tree yield low ρsig (0.2 to 0.4) and high ǫ − RMSE (0.2 to

0.3) in the case of SC. As both SRMRnorm and Tree use

ME features which are, contrary to the case of the proposed

measure, averaged over time, this suggests that taking into

account the time-dependency is beneficial. It can be noted

than the difference in performance along different categories

of algorithms is coherent with the results from previous works

such as [25], in which it appeared that existing quality mea-

sures are often reliable when considering only one category

of algorithms.

The performance obtained when training and testing the

proposed measure for all categories of algorithms are depicted

in Fig. 6 along with the performance of the considered

benchmark measures on the same testing sets. Unsurprisingly,

for all measures, correlations are lower than when considering

a single category at a time and, still with the exception

of the proposed measure, non-intrusive measures are con-

sistently outperformed by intrusive measures. The measure

Tree performs poorly suggesting that, though it had been
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Fig. 9. Scatter plot of the predicted speech quality over ground truth
data for Tree (left) and the proposed measure (right) when using a
testing set of signals processed using either GWPE-MVDR (top) or
SC (bottom). Scores are normalized to range between 0 and 1.

shown to yield high correlations in [28], it is not suitable to

predict the speech quality in various acoustic conditions or

with algorithms that might produce high levels of distortions.

Similarly as in the case of SC showed in Fig. 5, SRMRnorm

performs poorly with ρsig =0.09, while the proposed measure

outperforms all measures, including the intrusive ones, in

terms of both ρsig and ǫ − RMSE. This behavior is better

illustrated in Fig. 7. In terms of ground truth, a clear divide

appears between SCa and SCb, illustrating the clear preference

of assessors for the well tuned single-channel scheme (SCa)

over the purposefully poorly tuned (SCb). It appears as well

that SRMRnorm largely overestimates the speech quality for

signals processed with SCb while the proposed measure is able

to adequately reflect the difference in performance between

the two settings. This behavior is to be expected as, by

averaging features over time, SRMRnorm effectively discards

information about time-varying distortions (such as musical

noise) while the proposed measure is designed to model such

time-dependent effects.

As the RNN used as predicting function for the proposed

measure is dependent on a training phase, one might want

to consider the performance obtained in case of mismatch

between the algorithms included in the training and the testing

set. The performance of Tree and of the proposed measure

in the presence of such mismatch is depicted in Fig. 8. It

appears that when using a testing set composed of signals

processed using either UN or MVDR, both Tree and the

proposed measure yield similar performance as in the previous

experiments in terms of ρsig and an even lower ǫ − RMSE.

Such behavior can be explained by the fact that MVDR,

even misteered, does not introduce large amount of distortions
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and that the predicting functions were trained on a larger

training set. However, mismatch between algorithms included

in training and testing greatly deteriorates performance of

both Tree and the proposed measure when the testing set is

composed of signals processed using either GWPE-MVDR or

SC.

In the case of GWPE-MVDR, for the proposed measure,

correlation decreases only slightly in comparison with previous

experiments, ρsig = 0.75. However, the variance is high,

ǫ − RMSE = 0.31. In the case of SC, both Tree and the

proposed measure fail in their prediction, with low correlations

ρsig = 0.30 and ρsig = 0.25 for Tree and the proposed

measure, respectively. This difference in performance between

the two measures and algorithms considered for testing is

better illustrated in Fig. 9.

It appears that in the case of GWPE-MVDR, Tree does

not yield an accurate prediction for any of the settings,

i.e., GWPE-MVDRa and GWPE-MVDRb, while the proposed

measure seems to overestimate the quality of signals processed

with GWPE-MVDRa. It the case of SC, Tree fails similarly

as in the GWPE-MVDR case but the poor performance of

the proposed measure seems to come from an overestimation

of the quality of signals processed using SCb. This behavior

is unsurprising considering that the distortions introduced by

spectral suppression, e.g., musical noise, differ greatly from

the ones introduced by the other algorithms and that using

this mismatch training set the predicting functions could not

take them into account. Consequently, the proposed measure

cannot be reliably used if the algorithm category under test is

not included in the training set.

VI. CONCLUSION

Aiming at non-intrusively predicting the quality of pro-

cessed signals, in this paper, we proposed a combination of

modulation energies and of an RNN with LSTM cells that

takes the time-dependency of the target signal into account.

For this purpose, we collected a large dataset of perceptu-

ally evaluated signals representing a wide range of acoustic

conditions and various categories of algorithms with different

settings. We conducted several experiments, differing in terms

of training and testing sets used to train and evaluate the

proposed measure. The aim of these experiments was to

evaluate the reliability of the proposed measure when trained

and tested for either a single category of algorithms or several

categories, and to investigate the performance of the measure

in case of a mismatch between the algorithms included in the

training and the testing sets.

Experimental results show that when trained and tested

for a single category of algorithms, the proposed measure

outperforms the considered non-intrusive benchmark measures

and yields a similar performance as the intrusive benchmark

measures. When trained and tested for several categories of

algorithms, the proposed measure outperforms both intrusive

and non-intrusive benchmark measures. However, as could

be expected, the proposed measure can be unreliable in case

of a mismatch in terms of algorithms between the training

and testing sets. Consequently, the proposed measure might

not be suitable to assess the performance of completely new

categories of algorithms, but could be a useful approach for

the real-time selection of algorithms or algorithm parameters.

APPENDIX A

STATISTICAL ANALYSIS OF PERCEPTUAL SCORES

A repeated-measures analysis of variance (ANOVA) and

post-hoc analysis was applied to the perceptual scores pre-

sented in Subsection III-B in order to assess the significance of

differences between the 12 acoustic conditions. This analysis

indicated that all three acoustic factors, i.e., RIR, noise type

and SNR, significantly affected the rating scores.

First, there was a significant effect of RIR (F (2, 38) =
11.4, p = 0.0013, η2p = 0.376) which was mainly due to

significantly lower scores for RIR 2 (mean M = 37.2)

compared to RIR 1 (M = 42.8) and RIR 3 (M = 41.6, paired

t(19) > 3.6, p < 0.002) but no significant differences between

RIR 1 and RIR 3 (t(19) = 0.82, p = 0.42). Second, there

was a significant effect of noise type (F (1, 19) = 23.2, p <
0.001, η2p = 0.55) and fan noise (M = 43.2) was rated

significantly higher compared to babble noise (M = 37.9).

Third, there was a significant of SNR (F (1, 19) = 204.4, p <
0.001, η2p = 0.91) and the 5 dB condition (M = 33.0)

was rated significantly lower compared to 15 dB condition

(M = 48.0).

In addition, there was a significant interaction between RIR

and SNR (F (2, 38) = 40.9, p < 0.001, η2p = 0.68). At 5 dB

this was associated with significantly lower scores of RIR 1

(M = 32.6) and RIR 2 (M = 28.6) compared to RIR 3 (M =
38.0, paired t(19) > 3.4, p < 0.018, Bonferroni-corrected for

multiple comparisons, n = 6) and only marginal differences

between RIR 1 and RIR 2 (t(19) = 2.8, p = 0.0624). At

15 dB this was associated with significantly higher scores of

RIR 1 (M = 53.1) compared to RIR 2 (M = 45.8) and

RIR 3 (M = 45.2, paired t(19) > 4.0, p < .001) but no

significant differences between RIR 2 and RIR 3 (t(19) =
0.4, p = 0.72). The above two-way interaction appears to be

partially driven by the significant three-way interaction of RIR,

noise type, and SNR (F (2, 38) = 5.0, p = 0.0119, η2p = 0.21).

This interaction was due to insignificant differences of RIR

1 at 5 dB fan noise (M = 33.2) compared to babble noise

(M = 32.0, paired t(19) = 0.53, p = 0.59) and insignificant

differences of RIR 3 at 15 dB fan noise (M = 47.6) compared

to babble noise (M = 42.9, t(19) = 2.2, p = 0.23) but at

least marginally significant differences between the two noise

types in all other combinations of conditions (t(19) > 2.8, p <
0.065, using Bonferroni-correction for multiple comparisons,

n=6).
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