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The UN Sustainable Development Goal 14 aims to “conserve and sustainably use the oceans, 47 
seas and marine resources for sustainable development”. Achieving this goal will require 48 
rebuilding the marine life-support systems that deliver the many benefits society receives 49 
from a healthy ocean.  In this Review we document the recovery of marine populations, 50 
habitats and ecosystems following past conservation interventions. Recovery rates across 51 
studies suggest that substantial recovery of the abundance, structure, and function of marine 52 
life could be achieved by 2050, should major pressures, including climate change, be 53 
mitigated. Rebuilding marine life represents a doable Grand Challenge for humanity, an 54 
ethical obligation, and a smart economic objective to achieve a sustainable future.  55 
 56 

 57 

The ability of the ocean to support human wellbeing is at a crossroads.  The ocean currently 58 

contributes 2.5% of global GDP and provides employment to 1.5% of the global workforce1, 59 

with an estimated output of US$1.5 trillion in 2010, expected to double by 20301. And there 60 

is increased attention on the ocean as a source of food and water2, clean energy1, and as a 61 

means to mitigate climate change3,4.  At the same time, many marine species, habitats and 62 

ecosystems have suffered catastrophic declines5-8 and climate change is further undermining 63 

ocean productivity and biodiversity9-14 (Fig. 1). 64 

 65 
The conflict between growing human dependence on ocean resources and declining marine 66 

life under human pressures (Fig. 1) is focusing unprecedented attention on the connection 67 

between ocean conservation and human well-being15. The UN Sustainable Development Goal 68 

14 (SDG14 or “life below water”) aims to “conserve and sustainably use the oceans, seas 69 

and marine resources for sustainable development” 70 

(https://sustainabledevelopment.un.org/sdg14). Achieving this goal will require rebuilding 71 

marine life, defined in the context of SDG14 as the life-support systems (populations, 72 

habitats, and ecosystems) that deliver the many benefits society receives from a healthy 73 

ocean16,17. Here we show that, in addition to being a necessary goal, substantially rebuilding 74 

marine life within a human generation is largely achievable, if the required actions, 75 

prominently mitigating climate change, are deployed at scale. 76 
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Slowing the decline of marine life and achieving net gains  77 

By the time the general public admired life below water through the “Undersea World of 78 

Jacques Cousteau” (1968-1976), the abundance of large marine animals was already greatly 79 

reduced5-7,18. And the abundance of marine animals and habitats that support ecosystems 80 

services has shrunk to a fraction of what was in place when the first frameworks to conserve 81 

and sustain marine life were introduced in the 1980s (Fig. 1), to a fraction of pre-exploitation 82 

levels5,6,19,20. Currently, at least one-third of fish stocks are overfished 21, one-third to half of 83 

vulnerable marine habitats have been lost8, a substantial fraction of the coastal ocean suffers 84 

from pollution, eutrophication, oxygen depletion and is stressed by ocean warming22-23,  and 85 

many marine species are threatened with extinction7,24-25. Nevertheless, biodiversity losses in 86 

the ocean are less pronounced than on land7, and many marine species are capable of 87 

remarkable recovery once pressures are reduced or removed (Figs. 2-3). Substantial 88 

wilderness areas remain in remote regions26, and large populations of marine animals are still 89 

found, for example, in mesopelagic (200-1000 m depth) ocean waters 27. 90 

 91 

 92 

 93 
Regional examples of impressive resilience include the rebound of fish stocks during World 94 

Wars I and II following drastic reduction in fishing pressure28, the recovery since 1958 of 95 

coral reefs in the Marshall Islands from 76 megatons of nuclear tests 29, and the improved 96 

health of the Black Sea30 and Adriatic Sea31 following sudden reduction in fertilizer 97 

application after the collapse of the Soviet Union. Although these rapid recoveries were 98 

unrelated to conservation actions, they helped inform subsequent interventions deployed in 99 

response to widespread ocean degradation7,32-33. These interventions include a suite of 100 
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initiatives to save threatened species, protect and restore vulnerable habitats, constrain 101 

fishing, reduce pollution, and mitigate climate change (Fig. 1, Table 1).  102 

 103 

Impactful Interventions 104 

 105 
Hunting Regulation  106 

Species protections through the Convention on the Trade of Endangered Species (CITES, 107 

1975, cites.org) and the global moratorium on commercial whaling (1982, iwc.int) are 108 

prominent examples of international actions to protect marine life34 (Fig. 1). These actions 109 

have been supplemented by national initiatives to reduce hunting pressure on endangered 110 

species and protect their breeding habitat34,35. 111 

 112 

Fisheries management 113 

Successful rebuilding of depleted fish populations has been achieved in many cases through 114 

well-proven management actions, including catch and effort restrictions, closed areas, 115 

regulation of fishing capacity and gear, catch shares, and co-management arrangements 116 

(Suppl. Material 1) 35-39. These interventions require detailed consideration of socio-117 

economic circumstances, with solutions being tailored to local context37. Persistent 118 

challenges include harmful subsidies, poverty and lack of alternative employment, illegal and 119 

unregulated fishing, and the disruptive ecological impacts of many fisheries36-39.  120 

 121 
Water quality improvement 122 

Policies to lower inputs of nutrients and sewage to reduce coastal eutrophication and hypoxia 123 

were initiated four decades ago in the USA and EU, leading to major improvements today40-124 

42. Many hazardous pollutants have been regulated or phased-out through the Stockholm 125 

Convention (www.pops.int) and, specifically in the ocean, by the MARPOL Convention 126 
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(www.imo.org), often reinforced by national and regional policies. Recent attention has 127 

focused on curbing plastic pollution entering the ocean, which remains a growing problem, 128 

with inputs currently estimated at between 4.8 to 12.7 million Mton per year43.  129 

 130 

Habitat protection and restoration  131 

The need to better protect sensitive habitats, including non-target species, has inspired the use 132 

of Marine Protected Areas (MPAs) as a comprehensive management tool3,44.  In 2000, only 133 

0.13 million km2 (0.003%) of the ocean was protected, but MPAs now cover 27.4 million 134 

km2 (7.6% of ocean area, or 4.8% if considering fully implemented MPAs (mpatlas.org, 135 

accessed May 3, 2019). MPA coverage continues to grow at about 8% per year (Fig. 2., 136 

Suppl. Video V1) .  137 

 138 

The 21st Century has seen a global surge of active habitat protection and restoration 139 

initiatives (Fig. 2, Suppl. Material 1, Suppl.Videos V1 and V2), even in challenging 140 

environments adjoining coastal megacities (Suppl. Material 1). These efforts have delivered 141 

benefits, such as improved water quality following oyster reef restoration. Additionally, Blue 142 

Carbon strategies, submitted within Nationally Determined Contributions of > 50 nations, at 143 

the heart of the Paris Agreement46, are being used to mitigate climate change and improve 144 

coastal protection by restoring seagrass, saltmarsh and mangrove habitats46-47 (Suppl. 145 

Material 1).  146 

 147 

Recovery to date 148 

 149 

Extinction risk reductions  150 

The proportion of marine species assessed by the IUCN Red List as threatened with global 151 

extinction (Suppl. Mat. S2) has decreased from 18% in 2000 to 11.4% in 2019 (sd=1.7%, 152 
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n=1743), with trends being relatively uniform across ocean basins and guilds (Fig. S2.1). In 153 

part, this reflects a growing number of species that has been assessed. However, many 154 

assessed species have improved their threat status over the past decade48-51. For marine 155 

mammals, 47% of 124 well-assessed populations34 showed a significant increase over the 156 

past decades, with 40% unchanged and only 13% decreasing (Fig. 3b, Table S2).  Some large 157 

marine species have exhibited particularly striking rebounds, even from the brink of 158 

extinction (Fig. 3c).  Humpback whales migrating from Antarctica to eastern Australia have 159 

been increasing at 10% to 13% year-1, from a few hundred animals in 1968 to >40,000 160 

currently49.  Northern elephant seals recovered from about 20 breeding individuals in 1880 to 161 

>200,000 today50, and gray seal populations have increased by 1410% in eastern Canada51 162 

and 823% in the Baltic41 since 1977. Southern sea otters have grown from about 50 163 

individuals in 1911 to several thousand today35. While still endangered, most sea turtle 164 

populations for which trends are available are increasing in size52, ranging from 4-14% 165 

increase year-1 for green turtle nesting populations52. 166 

 167 

Fisheries recovery 168 

Using a comprehensive stock assessment database53 we found that fish populations with 169 

available scientific assessments are increasingly managed for sustainability. The proportion 170 

of stocks with fishing mortality estimates (F) below the level that would produce maximum 171 

sustainable yield (F<FMSY) has increased from 60% in 2000 to 68% in 2012. Many fish 172 

stocks subjected to such management interventions display positive trends (Fig. 3a), and 173 

globally aggregated stock assessments suggest a slowing-down of fish stock depletion21,36,39, 174 

although this trend has not been measured for the majority of stocks that lack scientific 175 

assessment36. The most recent report of the Food and Agriculture Organisation on global 176 

fisheries21 also suggests that two thirds of large-scale commercial fisheries are exploited at 177 
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sustainable rates, but again this figure does also not account for smaller stocks or non-target 178 

by-catch species, which are often not assessed and in poor condition36,54. Available data 179 

suggests that scientifically-assessed stocks generally have a better likelihood of recovery due 180 

to improved management and regulatory status compared to unassessed species36, which still 181 

represent the majority of fisheries, especially in developing countries. 182 

 183 
Pollution reduction 184 

Time-series analyses show that legacy persistent organic pollutants have declined even in 185 

marine environments that tend to accumulate them (e.g. the Arctic55). The transition toward 186 

unleaded gasoline since the 1980’s reduced Pb to concentrations comparable to baseline 187 

levels across the global ocean by 2010-201156. Likewise, the total ban in 2008 of the anti-188 

fouling chemical TBT (tributyltin) led to rapid declines of imposex (females developing male 189 

sexual organs), a TBT-specific symptom, in an indicator gastropod57. Improved safety 190 

regulations have also led to a 14-fold reduction in large tanker vessel oil spills from 24.7 191 

events per year in the 1970’s to 1.7 events per year in the present decade58. Whereas evidence 192 

of improved coastal water quality following nutrient reductions was equivocal a decade 193 

ago59, multiple success stories have now been confirmed41,60, with positive ecosystem effects 194 

such as the net recovery of seagrass meadows in the USA61 (Fig. 1), Europe62, Baltic Sea41, 195 

and Japan63.  196 

 197 
Habitat restoration 198 
 199 
Evidence that mangrove restoration can be achieved at scale first came from the Mekong 200 

Delta, possibly the largest (1,500 km2 ) habitat restoration undertaken to date (Suppl. Material 201 

1). Global loss of mangrove forests has since slowed to 0.11% year-1 64,65, with stable 202 

mangrove populations along the Pacific coast of Colombia, Costa Rica, and Panama66, and 203 

increasing populations in the Red Sea67, Arabian Gulf 68 and China69. Large-scale restoration 204 
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of saltmarshes and oyster reefs has occurred in Europe and the USA (Fig. 2, Suppl. Material 205 

1). Restoration attempts of seagrass, seaweed and coral reef ecosystems are also increasing 206 

globally, although they are often very small in scale (Fig. 2, Suppl. Video V2, Suppl. 207 

Material 1).  Critically, a global inventory of total restored area is critically missing. 208 

 209 

Potential for rebuilding 210 

Efforts to rebuild marine life cannot aim to return the ocean to any particular past reference 211 

point. Our records of marine life are too fragmented to compose a robust baseline, and the 212 

ocean has changed dramatically and in some cases irreversibly, including the extinction of at 213 

least 20 marine species25. Yet by increasing abundances of key habitats and keystone species 214 

and restoring the three-dimensional complexity of benthic ecosystems, large and long-living 215 

marine animals and plants can again fulfill their ecosystem functions, promoting a diverse 216 

and vibrant ocean ecosystem. The yardstick of success should be the restoration of marine 217 

ecological structure, functions, resilience and ecosystem services, involving a greater 218 

capacity to supply the growing needs of an additional 2 to 3 billion people by 2050. To meet 219 

this goal, rebuilding of depleted populations and ecosystems must replace the goal of 220 

conserving and sustaining the status quo, taking swift action to avoid tipping points beyond 221 

which collapse may be irreversible11,18,33,33. 222 

Here we examine rates of recovery of marine species and habitats to date, and propose a 223 

tentative timeframe in which substantial recovery of marine life may be possible, should 224 

major pressures, including climate change, be mitigated.  We broadly define recovery as the 225 

rebound in populations of marine species and habitats following losses, which can be partial 226 

(i.e. 10-50% increase), substantial (50-90% increase) or full (> 90% increase)47.  227 

 228 
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Marine megafauna 229 
 230 

A number of megafauna species, including humpback whales and northern elephant seals, 231 

have recovered fully to historical baselines following protection (Fig. 3c), but rates depend on 232 

life history: some large whales may require >100 years to recover, while smaller pinnipeds 233 

may only need several decades35 (Fig. 3c,d).  Sea turtles have recovery time-scales of up to 234 

100 years, although some populations have partially re-grown much faster (e.g. green turtles 235 

in Hawaii increased 6-fold between 1973 and 201670). Seabird populations typically require a 236 

few decades to recover35,41 (Fig. 3c,d). 237 

 238 
Fish stocks 239 
 240 
Recovery can also refer to achieving resilient populations that support the full extent of 241 

ecosystem functions and services that characterize them. For instance, fish stock recovery is 242 

often defined in terms of biomass increases to the level that allows for maximum sustainable 243 

yield (BMSY), which fisheries harvest theory predict to be between 37% and 50% of the virgin 244 

biomass (B0), depending on the particular model used (cf. Suppl. Information S2, Fig. S2.2). 245 

This range is consistent with an empirical estimate of B0 for 147 exploited fish stocks, which 246 

found contemporary BMSY values to be  40% of B0, on average, with a range of 26% to 46% 247 

across taxa71. Reported recovery times to BMSY for exploited finfish and invertebrate stocks 248 

range between 3-30 years35 (Figs. 3 and 4), which is consistent with paleo-reconstructions of 249 

pre-historic collapse and recovery of anchovy, sardine and hake stocks72, data from fisheries 250 

closures54,73, and stock assessments for individual fisheries74. However, BMSY should be 251 

considered to represent a minimum recovery target39, since it does not account for ecosystem 252 

interactions, and might only provide limited resilience in the face of environmental 253 

uncertainty and change. 254 

 255 
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Minimum recovery times of populations are set by the maximum intrinsic rate of population 256 

increase (rmax), which is typically higher than observed rates, resulting in longer recovery 257 

times75,76. Recovery rates also depend on the fishing pressure imposed on the stock; for 258 

example, the time required to rebuild populations depleted to BMSY is estimated to range from 259 

about one decade, if fishing mortality (F) is rapidly reduced below the level that produces 260 

maximum sustainable yield (FMSY. Longer recovery times unfold if fishing pressure is 261 

reduced more slowly36,77 (Fig. 4). Recovery for longer-lived, slow-growing species such as 262 

most elasmobranchs (sharks, rays and skates), depleted coral reef fish and deep-sea species, 263 

may take much longer35,76.  264 

 265 

Coastal habitats 266 
 267 

Recovery for coastal habitats following removal of stressors or active restoration typically 268 

occurs on a similar time scale as fish stock recovery, less than a decade for oyster reefs78, and 269 

other invertebrate populations (Suppl. Information S3) and kelp-dominated habitats79,80, 270 

between one to two decades for saltmarsh81 and mangrove82 habitats, and one to several 271 

decades for seagrass meadows83 (Fig. 3d).  Deep-sea corals and sponges grow more slowly 272 

and recovery times from trawling disturbance or oil spills may range from 30 years to over a 273 

century84,85. Recovery timescales of coral reefs impacted by local stressors range from a few 274 

years to over a decade (Fig. 3d). However, recovery from severe coral bleaching has taken 275 

well over a decade and will slow in the future as ocean warming causes the interval between 276 

bleaching events to shrink12, with an associated steep reduction in recruitment86.  277 

 278 

In summary, available data suggest that many marine species and habitats require one to three 279 

decades to approach undisturbed or reference level ranges after removal of the causes of 280 
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decline35,86,87,90-92, with much longer recovery times required for some slow-growing groups35 281 

(Fig. 3).   282 

 283 

Recovery times 284 
 285 
The time required to rebuild marine life components depends on the extent of previous 286 

declines, which are often substantial. The reduction in species abundance and biomass 287 

relative to pre-disturbance baselines averages about 44 and 56%, respectively, across 288 

impacted marine ecosystems87. Similarly, the Living Blue Planet Report estimated a 49% 289 

decline in abundance of marine animal populations between 1970 and 201288, although many 290 

species and habitats have declined since89-90. Moreover, while maximum rates of marine 291 

population recovery typically range from 2 to 10% per year20 (Fig. 3c), rates slow down as 292 

carrying capacity is approached20. Assuming a reported average annual recovery rate of 293 

2.95% (95% C.I. 2.42 - 3.41%) across marine ecosystems20 and a characteristic rebuilding 294 

deficit of about 50% of pre-disturbance baselines87, we provisionally estimate that the 295 

average time to reach 90% of undisturbed baselines (i.e. achieve substantial recovery) would 296 

be about 21 years (95% C.I. 18 - 25 years) (Fig. 3d). However, the expectation of an average 297 

recovery time of about two decades is compromised by the fact that many species and 298 

habitats continue to decline, and some pressures, such as climate change and plastic 299 

pollution, are still increasing (Fig. 1). Hence, a longer time scale to achieve substantial (50 to 300 

90%), rather than full (> 90%), recovery may be a more realistic target for rebuilding marine 301 

life.  302 

 303 

Based on the case studies examined, we provisionally adopt three decades from today (2050) 304 

as a target timeline for substantial (i.e. 50 to 90%) recovery of many components of marine 305 

life (Fig. 3, Table 1), recognizing that many slow-growing, severely depleted species and 306 
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threatened habitats may take longer to recover (Fig. 3), and that natural variability may delay 307 

recovery further (Fig. 4).   308 

 309 

Critically, achieving substantial recovery by 2050 requires that major pressures are mitigated 310 

soon, including climate change under the Paris Agreement. Climate change impacting the 311 

demography, phenology and biogeography of many marine species and compromising 312 

productivity of marine ecosystems9-13,91-93 (Fig. 4). Impacts of realized climate change on 313 

many coral reefs today12 raise concerns about their future prospect (Table 1). Shall we 314 

succeed in mitigating against climate change and other pressures, we may witness the 315 

beginning of a trend-change from previous steep decline to stabilization and, in many cases, 316 

substantial global recovery of marine life in the 21st century (Figs. 1-4).  317 

 318 

A roadmap 319 

 320 

Steps taken to rebuild marine life to date have involved a process of trial and error that 321 

delayed positive outcomes (e.g. in the EU and USA41,42), but generated know-how to cost-322 

effectively propel subsequent efforts at scale. Improved ocean stewardship, as required by 323 

UN SDG 14, is a goal shared across many nations, cultures, faiths, and political systems, 324 

occupying an unprecedented prominent place in the agendas of governments, corporations, 325 

philanthropists, and individuals than ever before17,95. This provides a window of opportunity 326 

to mitigate existing pressures over the next decade while supporting global initiatives to 327 

achieve substantial recovery of marine life by 2050 (Table 1, Suppl. Information 3). We are 328 

at a point when we can choose between a legacy of a resilient and vibrant ocean or an 329 

irreversibly disrupted ocean, for the generations to follow. 330 
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 331 

Some of the interventions required to rebuild marine life have already been initiated, but 332 

decadal time lags imply that the full benefits are yet to be realized35,36,39,47,48,59. Because most 333 

policies to reduce local pressures and prompt recovery of marine life were introduced after 334 

the 1970’s (Figs. 1 and 2), it is only now that comprehensive benefits (Fig. 3) are becoming 335 

evident at a larger scale. Likewise, since most current MPAs are less than 10 years old (Fig. 336 

2), their full benefits, which increase with reserve age, are yet to be realized94, in the case of 337 

MPAs properly managed and enforced94.  338 

 339 

Recovery Wedges  340 

There is no silver bullet for achieving substantial recovery of marine life by 2050. Rather, 341 

recovery requires stacking a number of complementary actions, here termed recovery 342 

wedges, each helping to raise the recovery rate to reach or exceed the target of 2.4% increase 343 

year-1 across different ecosystem components (Table 1, Suppl. Information S1, S3 and S4). 344 

These wedges include protecting vulnerable habitats and species, adopting cautionary 345 

harvesting strategies, restoring habitats, reducing pollution, and mitigating climate change 346 

(Table 1, Suppl. Information S1, S3 and S4). The strength of the contribution of each of these 347 

wedges to the recovery target varies across species and ecosystems. For instance, mitigating 348 

climate change is the basal wedge to set coral reefs on a recovery trajectory, while improved 349 

habitat protection and fisheries management are the largest wedges for marine vertebrates 350 

and deep-sea habitats (Table 1, Suppl. Information S3).  351 

 352 

Ongoing efforts to remove pressures on marine life from anthropogenic climate change, 353 

hunting, fishing, habitat destruction, pollution and eutrophication (Fig. 1) must be expanded 354 

and made more effective (Table 1). A new framework to predict risks of new synthetic 355 
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chemicals is required to avoid circumstances where industry introduces new chemicals faster 356 

than their risks can be assessed. Challenges remain for persistent legacy pollutants (e.g. CO2, 357 

organochlorines and plastics) already added to the atmosphere and oceans, whose removal 358 

requires novel capture technologies and protection of long-term sinks, such as marine 359 

sediments, to avoid their remobilization.  360 

 361 

MPAs represent a necessary and powerful recovery wedge across multiple components of the 362 

ocean ecosystem, spanning from coastal habitats to fish and megafauna populations (Table 363 

1). Growth of MPAs (Fig. 2, Suppl. Video V1) is currently on track to meet the target of 10% 364 

of ocean area protected by 2020, 30% by 2037 and 50% by 204496. Many fish stocks could 365 

recover to BMSY by 2030, assuming global management reforms couple the use of closed and 366 

protected areas with measures to reduce overfishing and collateral ecosystem damage, 367 

adapted to local context (Fig. 4, Table 1). However, projected climate impacts on ocean 368 

productivity and increase in extreme events93 can delay recovery and, depending on emission 369 

pathways, may prevent recovery altogether (e.g. Fig. 4). The current focus on quantitative 370 

targets of percent ocean area protected has prompted concerns over the quality and 371 

effectiveness of MPAs97. Although 71% of assessed MPAs have been successful in 372 

enhancing fish populations, the level of protection is often weak (94% allow fishing98), and 373 

many areas are undermined by insufficient human and financial capacity99.  Improving the 374 

effectiveness of MPAs requires enhanced resourcing, governance, level of protection98-100 375 

and siting to better match the geography of threats 101, and to ensure desired outcomes. 376 

 377 

The current surge in restoration efforts (Fig. 2, Suppl. Video 2) can, if sustained, be an 378 

instrumental recovery wedge to meet rebuilding targets for marine habitats by 2050 (Table 379 

1). For instance, assuming a mean project size of 4197 ha102, restoring mangroves to their 380 



 

 

 

16 

original extent of 225,000 km2 by 2050 would require initiating 70 projects per year. This is 381 

not unrealistic, as realization of the benefits, such as reducing storm damage in low-lying 382 

areas40,103,104, encourages further growth in restoration efforts (Fig. 2, Video V2).  Past 383 

coastal restoration projects had reported average success rates ranging from 38% (seagrass) 384 

to 64% (saltmarshes and corals)102, but reasons for failure are well understood78,105-107, which 385 

should improve future outcomes. Much can be learned from increased reporting of failed 386 

attempts, because the published literature may be biased towards successful restoration 387 

projects102. Emerging technologies are now being developed to restore coral species in the 388 

presence of climate change108,109, but long-term testing is required before their effectiveness 389 

and lack of negative consequences are proven.  Kelp restoration at a national scale in Japan 390 

provides a successful model, rooted in cultural practices, for linking restoration to sustainable 391 

fishing (Suppl. Material S1). More broadly, these practices recognize that sustainable harvest 392 

of marine resources ought to be balanced by broader restoration actions embedded in a 393 

social-ecological context, including reducing greenhouse gas emissions, restoring habitats, 394 

removing marine litter, or managing hydrological flows to avoid hypoxia (Suppl. Material 395 

S1). These restoration experiences (Suppl. Material S1) also find involvement of local 396 

communities to be essential, because of their economic dependence, commitment to place, 397 

and ownership110. 398 

 399 

Removing pollution is a basal recovery wedge for seagrass meadows, coral reefs, and kelp 400 

forests (Table 1). Three decades of efforts to abate coastal eutrophication have provided 401 

valuable knowledge on how actionable science can guide restoration successes41,42,111. 402 

Additional interventions (e.g., restoring hydrological flows or rebuilding oyster reefs), can 403 

catalyze additional removal of nutrients while improving biodiversity111. Seaweed 404 

aquaculture can help to alleviate eutrophication and reduce hypoxia111,112. Nutrient reduction 405 
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has the additional benefit of locally reducing coastal acidification113 and hypoxia23 directly 406 

and indirectly through the recovery of seagrass meadows. Reducing sulfur dioxide 407 

precipitation, hypoxia, eutrophication, emissions and runoff from acidic fertilizers also helps 408 

reduce acidification of coastal waters22,113. Large-scale experiments in anoxic basins of the 409 

Baltic Sea for example, have shown that treatment of sediments with phosphorus-binding 410 

agents help break biogeochemical feedback loops keeping ecosystems in an alternative 411 

anoxic stable state114.  412 

 413 

Oil spills from tanker vessels should decline further with the incoming International Maritime 414 

Organisation (IMO) requirement (13 F of Annex 1 of MARPOL) for double hulls in new 415 

large oil tankers, although deep-water drilling, illustrated by the catastrophic Deep-Water 416 

Horizon Spill in 2010115, and increasing risks of oil spills from future oil drilling and tanker 417 

routes in the Arctic116 present new challenges.. Noise pollution from shipping and other 418 

industrial activities, such as drilling, pile driving and seismic surveys should be reduced117. 419 

Likewise, worldwide efforts to reduce or ban single-use plastic (initiated in developing 420 

nations), taxes on plastic bags, deposit-refunds on bottles, and other market-based 421 

instruments are being deployed to reduce marine litter, while providing incentives to build a 422 

circular economy for existing plastics while developing safer materials.  423 

 424 

Roadblocks  425 

 426 

A number of roadblocks may delay or prevent recovery of some critical components of 427 

marine life (Table 1). These include natural variability and intensification of environmental 428 

extremes caused by anthropogenic climate change (Fig. 4), “black swans” (i.e. unexpected 429 

natural or social events), and failure to meet commitments to reduce existing pressures and 430 
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mitigate climate change. In addition, growing human population, likely to exceed 9 billion by 431 

2050, will create additional demands for seafood, coastal space and other ocean resources. 432 

Accordingly, the aspiration if that recovery targets by 2050, if all necessary recovery wedges 433 

are stacked, could be substantial to full recovery (i.e. 50 to 100% increase relative to present) 434 

for most rebuilding components (Table 1). Partial to substantial (10 to >50 %) recovery can 435 

be targeted for deep-sea habitats, where slow-recovery rates lead to a modest rebuilding 436 

scope by 2050, and for coral reefs, where existing and projected climate change severely 437 

limits the rebuilding prospects13,93 (Table 1). 438 

 439 

A major roadblock to recovery for intertidal habitats, such as mangroves and saltmarshes, is 440 

their conversion to urban areas, aquaculture ponds or infrastructure (Table 1). However, even 441 

in large cities, such as New York and Shenzen, some restoration of degraded habitats has 442 

been achieved (Suppl. Information S1). Incentives to develop alternative sources of 443 

livelihood, relocate landholders, mediate land-tenure conflicts110, and improve land use 444 

planning can release more habitat for coastal restoration (Table 1). Tools are emerging to 445 

prioritize sites for restoration based on past experience and a broad suite of biophysical and 446 

socio-economic predictors of success118. Reduced sediment supply due to dam construction 447 

in watersheds119 is also an important challenge for the recovery of salt marshes and 448 

mangroves, exacerbated by sea level rise and climate change (Table 1). However, these 449 

habitats may be less vulnerable than previously thought120, with a recent assessment 450 

concluding that global gains of 60% of coastal wetland area are possible under sea level 451 

rise120. In contrast, enhanced sediment load from land clearing is often responsible for losses 452 

of nearshore coral reefs and hinders their capacity to recover from coral bleaching121.  453 

 454 

Overcoming the climate change roadblock 455 
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Climate change is the critical backdrop against which all future rebuilding efforts will play 456 

out. Current greenhouse gas emission trajectories lead to warming by 2100 of 2.6 to 4.5 °C 457 

above pre-industrial levels, far exceeding the long-term goal of the Paris Agreement122.  458 

Much stronger emission reduction efforts122,123 are needed to fill the gap between target 459 

emissions and projected emissions under the present voluntary Nationally Determined 460 

Contributions124 a challenging but not impossible task123. Efforts to rebuild marine life need 461 

to consider unavoidable impacts brought about by ocean warming, acidification and sea level 462 

rise already committed by past emissions, even if the climate mitigation wedge, represented 463 

by the Paris Agreement, is fully implemented. These changes include projected shifts in 464 

habitats and communities at subtropical-tropical (coral to algal turf and seaweed), 465 

subtropical-temperate (kelp to coral and urchin barrens, saltmarsh to mangrove) temperate-466 

Arctic (bare to kelp, ice fauna to pelagic), and intertidal (coastal squeeze) boundaries10-13,93, 467 

propelled by species displacements and mass mortalities from future heat waves11-13,93. 468 

Mapping the areas where the likelihood of these transitions is high can help prioritize where 469 

and how restoration interventions should be deployed118. For instance, conserving and 470 

restoring vegetated coastal habitats will help to defend shorelines against increasing risks 471 

from sea level rise while helping to mitigate climate change4,40,103. Well-managed MPAs may 472 

help build resilience to climate change121. However, many of them are already affected by 473 

ocean warming with further climate change potentially compromising their performance in 474 

the future125. 475 

 476 

Rebuilding coral reefs carries the highest risk of failure (Table 1), as cumulative pressures 477 

(e.g. overfishing and pollution) driving their historic decline are now increasingly 478 

compounded by warming-induced bleaching11,12. The IPCC projects that global warming to 479 

1.5°C above pre-industrial levels will result in very high risks and losses of coral reefs13 480 
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unless adaptation occurs faster than currently anticipated. A study published after the 1.5 oC 481 

IPCC assessment13, shows that while coral bleaching has increased in frequency and intensity 482 

in the last decade, the onset of coral bleaching is now occurring at significantly warmer 483 

temperatures (∼0.5 °C) than before, suggesting that the remaining coral populations now have 484 

a higher thermal threshold for bleaching, either due to decline of thermally-vulnerable species 485 

and genotypes and/or acclimation126. However, the capacity to restore coral reefs lags behind 486 

that of all other marine habitats, because coral-reef restoration efforts typically have a very 487 

small footprint, and are expensive and slow102. Coral restoration often fails because the 488 

original causes of mortality remain unchecked, and despite decades of effort (Fig. 2), only 489 

tens of hectares have been regrown so far. Our growing knowledge of ecological processes in 490 

coral reefs provides opportunities to catalyze recovery by reducing multiple pressures while 491 

repairing key processes, including herbivory and larval recruitment11,109. Mitigating the 492 

drivers of coral loss, particularly climate change, and developing innovative approaches 493 

within this decade are imperatives to revert coral losses at scale108-109. Efforts are underway to 494 

find corals resistant to temperatures and acidity levels expected by the end of the 21st century, 495 

to understand the mechanisms of their resistance and to use ‘assisted evolution’ to engineer 496 

these characteristics into other corals108,109. These efforts are in their infancy and their 497 

benefits currently unproven. 498 

 499 

Overall then, societal benefits that would accrue from substantially rebuilding marine life by 500 

2050 will be significantly dependent on the mitigation of greenhouse emissions and on the 501 

development of efficient CO2 capture and removal technologies to meet or, preferably, 502 

exceed the targets of the Paris Agreement. 503 

 504 

Investment needed and returns expected 505 
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Substantial rebuilding of marine life by 2050 requires sustained effort and financial support 506 

(Suppl. Material S4), with an estimated cost of at least $10-20 billion per year to extend 507 

protection actions to reach 50% of the ocean space127 and substantial additional funds for 508 

restoration. This is comparable to establishing a global MPA network conserving 20-30% of 509 

the ocean ($5 to $19 billion annually127,128). Yet the economic return from this commitment 510 

will be significant, around $10 per $1 invested and in excess of one million jobs127,128. 511 

Ecotourism in protected areas provides 4 to 12 times greater economic returns than fishing 512 

without reserves36 (e.g. A$5.5bn annually and 53,800 full time jobs in the Great Barrier 513 

Reef129). Rebuilt fisheries could increase the annual profits of the global seafood industry by 514 

$53 billion126. Conserving coastal wetlands could save the insurance industry $52 billion 515 

annually through reducing storm flooding127, while providing additional benefits of carbon 516 

sequestration, income and subsistence from harvesting, and from fisheries supported by 517 

coastal wetlands 40,127.  518 

 519 

A global rebuilding effort of exploited fish stocks could increase fishing yields by ~15% and 520 

profits by ~80%36,77 while reducing by-catch mortality, thereby helping to promote recovery 521 

in non-target species as well130. Rebuilding fish stocks can be supported by market-based 522 

instruments, such as rationalizing global fishing subsidies77, taxes and catch shares38, to end 523 

perverse incentives131, and by the growth of truly sustainable aquaculture to reduce pressure 524 

on wild stocks2. Whereas most regulatory measures focus on commercial fisheries, 525 

subsistence132 and recreational133 fishing are also globally relevant and need to be aligned 526 

with rebuilding efforts to achieve sustainability. 527 

 528 

Call to action 529 
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Rebuilding marine life requires a global partnership of diverse interests, including 530 

governments, businesses, resource users, and civil society127,134 aligned around an evidence-531 

based action plan supported by a sound policy framework, a science and educational plan, 532 

quantitative targets, metrics for success, and a business plan. It also requires leadership to 533 

assemble the scientific and socio-economic knowledge and technologies required to rebuild 534 

marine life and the capacity to deploy them. A concerted global effort to restore and protect 535 

marine life and ecosystems could create millions of new, and in many cases, well-paying, 536 

jobs127,135. Hence, commitments of governments, required to meet the UN SDGs by 2030, 537 

need to be supported and reinforced by commitments from society, non-governmental agents, 538 

including philanthropic groups, corporations and industry (Suppl. Information S4). The 539 

sectors operating in the ocean spaces, which bear considerable responsibility for the losses 540 

thus far experienced and, in many cases, are likely to be the main beneficiaries of efforts to 541 

rebuild marine life, must change their ethos to commit to net positive conservation impact as 542 

part of their social license to operate in the ocean space. Human use of the ocean should be 543 

designed for net positive conservation impact, creating add-on benefits136 that increase 544 

prosperity and catalyze political will to deploy further efforts in a positive feedback spiral of 545 

ocean bounty. 546 

 547 

The long-term commitment to rebuilding marine life requires a powerful narrative, supported 548 

by scientific evidence that conveys its feasibility in the face of climate change and growing 549 

human population, its alignment with societal values, and its widespread societal benefits. 550 

Growing numbers of success stories and positive outlooks could shift the balance from a 551 

wave of pessimism that dominated past scientific narratives of the future ocean5,7,11,32,33 to 552 

evidence-based ‘ocean optimism’
137 (e.g. #oceanoptimism in social media), conveying 553 

solutions and opportunities for actions that help drive positive change138. This optimism must 554 
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be balanced with transparent and robust communication of the risks posed by relevant 555 

pressures that are yet to be mitigated.  556 

 557 

Rebuilding marine life will benefit from nations declaring, analogous to the Paris Agreement 558 

on climate change, Nationally Determined Contributions (NDCs) toward rebuilding marine 559 

life127. NDCs aimed at rebuilding marine life will be essential for accountability, auditing 560 

milestones and forecasting success in reaching goals. NDCs can include both commitments 561 

for action within national Economic Exclusive Zones, as well as a catalogue of actionable 562 

opportunities available to investors, corporations and philanthropists127. 563 

 564 

The global policy framework required to rebuild marine life is largely in place through 565 

existing UN mechanisms (targets to be adopted in 2020 under the Global Biodiversity 566 

Framework of the CBD, SDGs, and Paris Agreement of the UNFCC), if their most ambitious 567 

goals are implemented, along with additional international conventions such as the Bonn 568 

Convention on the Conservation of Migratory Species of Wild Animals, the Moratorium on 569 

Commercial Whaling of the International Whaling Commission (1982), Ramsar Convention 570 

on Wetlands of International Importance, and CITES, among others. High-level coordination 571 

among all UN instruments and international policies addressing the oceans, including the 572 

High Seas, is needed.  573 

  574 

The UN initiated, in 2018, an Intergovernmental Conference to reach a new legally-binding 575 

treaty to protect marine life in the High Seas by 2020. This proposed treaty could enhance 576 

cooperation, governance and funds for conservation and restoration of high-seas and deep-sea 577 

ecosystems damaged or at risk from commercial interests139. This mandate would require 578 

funding of around $30 million annually, which could be financed through long-term bonds in 579 
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international capital markets or taxes on resource extraction139. Internationally Agreed 580 

Contributions will also be required, because populations of many species are shared across 581 

Exclusive Economic Zones of multiple nations. This approach could follow the model of the 582 

Regional Fisheries Management Organizations bringing together nations to manage shared 583 

fish stocks, including those in High Seas139. For example, in September 2010 the Convention 584 

for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) 585 

established the world's first MPA network on the high seas covering 286,200 km2 140.  586 

 587 

Rebuilding marine life will also require active oversight, participation and cooperation by 588 

local, regional, and national stakeholders. Readiness and capacity to implement recovery 589 

wedges differs across nations, and cooperation to rebuild marine life should remain flexible 590 

to adapt to variable cultural settings, and locally-designed approaches may be most 591 

effective141 (Suppl. Information S1). Past failures in some nations can inform new 592 

governance arrangements to avoid repeating mistakes elsewhere. Rebuilding marine life 593 

should draw on successful marine policy formulation, management actions, and technologies 594 

to nurture a learning curve that will propel future outcomes while reducing cost103,105-107. For 595 

instance, many developed nations have already implemented nutrient reduction plans but 596 

global fertilizer use is rising globally, supported mainly by demands from developing nations, 597 

which also continue to develop their shorelines. Adopting the measures now in place in 598 

developed nations to increase nitrogen-use efficiency in South and East Asia could lower 599 

global synthetic fertilizer use by 2050, even under the increased crop production required to 600 

feed a growing population142.   601 

 602 

Calls for international assistance to support recovery, whether it is for coastal wetlands to 603 

reduce risks of damages from natural disasters103 or marine life generally127, should include 604 
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assistance to improve governance and build institutional capacity. However, the capacity of 605 

both developed and developing nations to deploy effective recovery actions is already 606 

substantial.  Mangrove restoration projects are significantly larger and cheaper but similarly 607 

successful (about 50% survival reported) in developing nations compared to developed 608 

ones102, and small-island states are showing growing leadership in responding to plastics 609 

pollution and the marine impacts of climate change (aosis.org).  However, many developing 610 

countries need particularly high levels of investment to conserve and restore habitats that 611 

protect populations at risk in low-lying coastal areas, which could be financed through 612 

international climate-change adaptation funds103. Currently, the UN’s Green Climate Fund 613 

has mobilized $10.3 billion annually to assist developing countries adapt to climate change, 614 

with a goal of $100 billion per year in 2020 (https://www.greenclimate.fund/how-we-615 

work/resource-mobilization). Allocating a sizeable fraction of these funds to developing 616 

countries for the conservation and restoration of “blue infrastructure” (e.g. saltmarshes, 617 

oyster and coral reefs, mangroves, and seagrass beds) could increase resilience of coastal 618 

communities to climate change and to extreme events while improving their livelihoods103.  619 

 620 

Conclusion 621 

Based on the data reviewed here we conclude that substantial rebuilding across many 622 

components of marine life by 2050 is an achievable Grand Challenge for science and society. 623 

Meeting this challenge requires immediate action to reduce relevant pressures, including 624 

climate change, safeguarding places of remaining abundance, and recovering depleted 625 

populations, habitats and ecosystems elsewhere. This will require sustained substantial 626 

perseverance and substantial commitment of financial resources, but we suggest that the 627 

ecological, economic and social gains will be far-reaching. Success requires the 628 



 

 

 

26 

establishment of a committed and resilient global partnership of governments and societies 629 

aligned with this goal, supported by coordinated policies, adequate financial and market 630 

mechanisms, and evolving scientific and technological advances nurturing a fast learning 631 

curve of rebuilding interventions. Meeting the challenge of substantially rebuilding marine 632 

life would be a historic milestone in humanity’s quest to achieve a globally sustainable 633 

future. 634 

     635 
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 1021 

Table 1. Scenarios conducive to achieving the best aspirational outcomes toward 1022 
rebuilding marine life. These include rebuilding wedges, assessment of the maximum 1023 
recovery targets by 2050 shall these wedges be fully activated, key actors, actions, 1024 
opportunities, benefits, roadblocks and remedial actions to rebuild different components of 1025 
marine life (priority increases from lowest in blue, to yellow, orange and highest in red). See 1026 
Suppl. Information 3 for details.1027 



 

 

 

1 

Rebuilding Saltmarshes Mangroves Seagrass Coral reefs Kelp Oyster reefs Fisheries Megafauna Deep-sea 

Protect species  

Harvest wisely  

Protect spaces  

Restore habitats   

Reduce pollution  

Mitigate climate 

change  

Rcovery targets 

by 2050

Substantial to  

Complete 

Substantial 

to  Complete

Substanti

al to  

l

Partial to 

Substantiial

Substant

ial to  

l

Substantial to  

Complete

Substantia

l to  

l

Substantial Partial to 

Substantial 

Key Actors

Government, civil 

society and 

NGOs

Government, 

civil society 

and NGOs

Governm

ent, civil 

society 

and 

NGOs

Governmen

t, tourism 

operators, 

fishers 

organizatio

ns, civil 

Governm

ent, 

fishers 

organizat

ions and 

civil 

Government, 

fishers 

organizations, 

NGOs and 

civil society

Governme

nt, fishers 

organizatio

ns and 

civil 

society

Government, 

fishers 

organizations

, NGOs, and 

civil society

International sea 

bed authority, 

state and federal 

governments, 

mining/exploration 

companies, civil 

f

Key Actions

Protection of 

remaining 

saltmarsh, 

providing sources 

of sediment, 

potentially 

planting native 

species, 

providing space 

for landward 

migration, 

restoring 

hydrological 

connections

Protection, 

Provide 

alternative 

livelihoods 

for 

dependent 

communities

, providie 

space for 

landward 

migration; 

restore 

hydrological 

connections, 

i t i

Reduce 

nutrient 

inputs, 

protect, 

avoid 

physical 

impacts, 

and 

conduct 

restoratio

n projects

Ambitious 

reduction of 

green‐
house 

emissions. 

Reduce 

excess 

sediment 

and nutrient  

inputs, 

improve 

water 

quality, 

protect 

f

Restorati

on: 

remove 

excess 

herbivor

es. 

rebuild 

their 

predator

s, reduce 

sediment 

loads on 

rocky 

substrate

d

Protect 

remaining 

reefs, 

prohibiton of 

natural reef 

harvests, 

improve water 

quality, restore 

reefs

Reduce 

overfishing

,  bycatch 

and 

incidental 

mortality, 

ban 

destructive 

fishing 

practices, 

protect 

spawning/

breeding 

areas and 

Protect, 

reduce 

bycatch, 

reduce 

incidental 

mortality 

(ship strikes, 

entanglement

, ghost gear), 

reduce 

pollution 

(noise, 

debris, 

chemical), 

t t

Regulate  

industries 

operating in the 

deep‐sea. Ban 

deep sea fishing 

and impose a 

moratorium on 

deep‐sea mining  

until technologies 

free of impacts 

are available.  

Improve 

environmental 

safety of oil and 

ti
1028 

Key Opportunities

Blue Carbon and 

coastal defense 

strategies against 

storms and sea 

level rise, links to 

management for 

enhancing water 

quality , food 

provision  and 

biodiversity 

strategies

Blue Carbon 

and coastal 

defense 

strategies 

against 

storms and 

sea level 

rise, links to 

management 

for 

enhancing 

water quality 

, food 

provision  

and 

Blue 

Carbon 

and 

coastal 

defense 

strategies 

against 

storms 

and sea 

level rise, 

links to 

managem

ent for 

enhancing 

water 

Link to 

coastal 

defense, 

food 

provision  

and 

biodiversity 

strategies

Emergin

g role in 

Blue 

Carbon, 

water 

quality 

and 

biodivers

ity 

strategie

s

Link to water 

quality 

improvement , 

biodiversity  

and coastal 

protection 

strategies.

Sustainabl

e seafood, 

MSC 

certified 

fisheries, 

develop 

sustainabl

e 

aquacultur

e to 

release 

pressure 

on wild 

stocks

Marine 

wildlife 

tourism, 

cultural 

benefits, 

ethics

High % of unique, 

unexplored 

habitats and new 

species, potential 

for novel products 

important in 

fighting/preventin

g disease.  Huge 

carbon sink 

potential.

Key Benefits

Improved 

fisheries,  

protection from 

sea level rise and 

storm surges, 

recreational and 

cultural benefits, 

Improved 

fisheries, 

biodiversity 

and coastal 

defense, 

recreation 

cultural 

Protect 

shoreline 

from 

erosion 

and 

rebuilding 

biodiversit

Provision of 

fish, 

Protection 

from sea 

level rise 

and storm 

surges, 

Enhance

d 

fisheries

Improved 

water quality, 

increased 

habitat, 

recreational 

and cultural 

benefits, food 

Improved 

quality and 

quantity of 

seafood 

supply

Increased 

connectivity 

among ocean 

basins, 

enhanced 

nutrient 

cycling and 

Huge potential for 

discoveries and 

new resources. 

Avoidance of 

irreversible 

damage.

1029 
 1030 

Roadblocks

Many saltmarshes are filled, 

landward migration 

impeded because of 

infrastructure, not enough 
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Figure Legends  1034 

 1035 
Figure 1. Global Pressures on Marine Life. Many human pressures commenced well before the 1036 
industrial revolution, and a number of those peaked in the 1980’s and are slowing down at 1037 
present (with much regional variation), with the notable exceptions of pollution and climate 1038 
change. Initially, hunting and fishing were followed by deforestation, leading to excess sediment 1039 
export, and direct destruction of coastal habitat. Pollution (synthetic fertilizer, plastic and 1040 
industrial chemicals) and climate change represent more recent threats. Hunting of megafauna 1041 
has been heavily regulated or banned and fishing is now progressing toward more sustainable 1042 
harvest in many regions, while regulatory frameworks are reducing some forms of pollution. 1043 
Climate change, caused by greenhouse gas emissions accumulated since the onset of the 1044 
industrial revolution, became sizeable, against background variability, in the 1960’s and is 1045 
escalating as greenhouse gases continue to accumulate. As a net result of these cumulative 1046 
human pressures, marine biodiversity experienced a major decline by the end of the 20th 1047 
Century. 1048 
 1049 
Figure 2. Global growth of restoration interventions.  Distribution and growth of Marine 1050 
Protected Areas (left panels) and ecosystem restoration projects (right panels). Numbers within 1051 
symbols represent aggregated restoration projects where location was not provided (cf. Suppl. 1052 
Information 1 for detailed examples, Suppl. Information 2 for data sources and Suppl. Videos V1 1053 
and V2 for animation of growth over time). 1054 
 1055 
Figure 3. Recovery trends of marine populations showing (a) Current population trends in 1056 
scientifically assessed fisheries stocks based on the ratio of the annual biomass B relative to the 1057 
biomass that produces maximum sustainable yield, BMSY; (b) percent of assessed marine 1058 
mammal populations showing increasing or decreasing population trends or no change; (c) 1059 
sample recovery trajectories of recovering species and habitats from different parts of the world; 1060 
note that units were adjusted to a common scale by multiplying (*) or dividing (/) as indicated in 1061 
the legend, numbers at the end of the legends indicate initial count at the beginning of time 1062 
series; and (d) range of recovery times for marine populations and habitats and mean ± 95% 1063 
confidence limits (cl) recovery times for marine ecosystems.  Lines indicate reported range. See 1064 
Suppl. Information 2 for details on data sources and methods and Table S3 for data sources for 1065 
panel d. 1066 
 1067 
Figure. 4. Recovery projections for assessed fish stocks. (a) Trajectories of fisheries stock 1068 
biomass (B) relative to the biomass supporting maximum sustainable yield (BMSY, the ratio 1069 
denoted B/BMSY), over time based on scientific assessment of 371 globally distributed fish 1070 
stocks in the RAM Legacy Stock Assessment Database (version 4.44). Open circles give the 1071 
biomass-weighted global average of stock B/BMSY, asterisks represent years without sufficient 1072 
data, red and green lines represent four idealized future scenarios (BMSY values were taken 1073 
from stock assessments where available and estimated as 50% of the maximum historical 1074 
biomass otherwise; see Suppl. Information S2). (b) Frequency distributions for estimated 1075 
recovery times to BMSY for 172 stocks that are currently depleted to below BMSY. Projections 1076 
refer to three scenarios, corresponding to no fishing, fishing at 60% or 90% of fishing pressure 1077 
associated with maximum sustainable yield (FMSY). Projections show that under various 1078 
scenarios of reduced fishing pressure (F<FMSY) and different productivity regimes, the majority 1079 
of fish stocks could recover to BMSY with high probability before 2040. Note that recovery to 1080 



 

 

 

2

virgin biomass (B0) would take much longer. Solid lines give the median and hashed lines the 1081 
mean estimate of years to recovery. Productivity for each stock in panels b-d was fixed at mean 1082 
stock-specific historical productivity. See Supplementary Information S2 for details of data 1083 
sources and methods.   1084 
 1085 



Rebuilding Saltmarshes Mangroves Seagrass Coral reefs Kelp Oyster reefs Fisheries Megafauna Deep-sea 

Protect species  
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Protect spaces  
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Key Actors

Government, civil 

society and 

NGOs

Government, 

civil society 

and NGOs

Governm

ent, civil 

society 

and 

NGOs

Governmen

t, tourism 

operators, 

fishers 

organizatio
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society and 

NGOs
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society

Government, 

fishers 

organizations, 

NGOs and 

civil society

Governme

nt, fishers 

organizatio

ns and 

civil 

society

Government, 

fishers 

organizations

, NGOs, and 

civil society

International sea 

bed authority, 

state and federal 

governments, 

mining/exploration 

companies, civil 

society, fishing 

industry. 

Key Actions

Protection of 

remaining 

saltmarsh, 

providing sources 

of sediment, 

potentially 

planting native 

species, 

providing space 

for landward 

migration, 

restoring 

hydrological 

connections

Protection, 

Provide 

alternative 

livelihoods 

for 

dependent 

communities

, providie 

space for 

landward 

migration; 

restore 

hydrological 

connections, 

maintain 

sediment 

supply, 

restore 

damaged 

forests

Reduce 

nutrient 

inputs, 

protect, 

avoid 

physical 

impacts, 

and 

conduct 

restoratio

n projects

Ambitious 

reduction of 

green-

house 

emissions. 

Reduce 

excess 

sediment 

and nutrient  

inputs, 

improve 

water 

quality, 

protect 

reefs, 

rebuild food 

webs, and 

restore 

damaged 

reefs

Restorati

on: 

remove 

excess 

herbivor

es. 

rebuild 

their 

predator

s, reduce 

sediment 

loads on 

rocky 

substrate

s and 

plant 

kelps

Protect 

remaining 

reefs, 

prohibiton of 

natural reef 

harvests, 

improve water 

quality, restore 

reefs

Reduce 

overfishing

,  bycatch 

and 

incidental 

mortality, 

ban 

destructive 

fishing 

practices, 

protect 

spawning/

breeding 

areas and 

nursery 

grounds, 

remove 

perverse 

incentives

Protect, 

reduce 

bycatch, 

reduce 

incidental 

mortality 

(ship strikes, 

entanglement

, ghost gear), 

reduce 

pollution 

(noise, 

debris, 

chemical), 

protect 

breeding/haul 

out sites, 

safegard 

migration 

routes, 

reduce 

competition 

with fisheries

Regulate  

industries 

operating in the 

deep-sea. Ban 

deep sea fishing 

and impose a 

moratorium on 

deep-sea mining  

until technologies 

free of impacts 

are available.  

Improve 

environmental 

safety of oil and 

gas operations. 

Develop  facilities 

to test  

technologies prior 

to real-ocean 

deployment.

Key Opportunities

Blue Carbon and 

coastal defense 

strategies against 

storms and sea 

level rise, links to 

management for 

enhancing water 

quality , food 

provision  and 

biodiversity 

strategies

Blue Carbon 

and coastal 

defense 

strategies 

against 

storms and 

sea level 

rise, links to 

management 

for 

enhancing 

water quality 

, food 

provision  

and 

Blue 

Carbon 

and 

coastal 

defense 

strategies 

against 

storms 

and sea 

level rise, 

links to 

managem

ent for 

enhancing 

water 

Link to 

coastal 

defense, 

food 

provision  

and 

biodiversity 

strategies

Emergin

g role in 

Blue 

Carbon, 

water 

quality 

and 

biodivers

ity 

strategie

s

Link to water 

quality 

improvement , 

biodiversity  

and coastal 

protection 

strategies.

Sustainabl

e seafood, 

MSC 

certified 

fisheries, 

develop 

sustainabl

e 

aquacultur

e to 

release 

pressure 

on wild 

stocks

Marine 

wildlife 

tourism, 

cultural 

benefits, 

ethics

High % of unique, 

unexplored 

habitats and new 

species, potential 

for novel products 

important in 

fighting/preventin

g disease.  Huge 

carbon sink 

potential.

Key Benefits

Improved 

fisheries,  

protection from 

sea level rise and 

storm surges, 

recreational and 

cultural benefits, 

Improved 

fisheries, 

biodiversity 

and coastal 

defense, 

recreation 

cultural 

Protect 

shoreline 

from 

erosion 

and 

rebuilding 

biodiversit

Provision of 

fish, 

Protection 

from sea 

level rise 

and storm 

surges, 

Enhance

d 

fisheries

Improved 

water quality, 

increased 

habitat, 

recreational 

and cultural 

benefits, food 

Improved 

quality and 

quantity of 

seafood 

supply

Increased 

connectivity 

among ocean 

basins, 

enhanced 

nutrient 

cycling and 

Huge potential for 

discoveries and 

new resources. 

Avoidance of 

irreversible 

damage.

 

Roadblocks

Many saltmarshes are filled, 

landward migration 

impeded because of 

infrastructure, not enough 

sediment supply, sea level 

rise, increased 

decomposition rates with 

rising temperatures and/or 

excess nutrient loading. 

Reverting land use.

Alternative land uses 

and infrastructure, 

lack of alternative 

livelihoods and 

incentives for 

communities, 

uncertainties around 

climate change 

impacts

Infrastructure 

(e.g. areas 

occupied by 

harbors), severe 

and frequent 

heat waves with 

climate change

Dependence on 

climate change 

trajectories, 

mortality with 

ocean warming, 

ocean acidification 

and increased 

cyclone activitiy.

Climate 

change at the 

equatorial 

range edge of 

kelp species, 

high herbivore 

pressure  and 

sediment 

accumulation 

on rocky 

substrates

Poor management of 

fisheries on remaining 

reefs, degraded 

habitats, restoration 

costs, increased 

prevelance of disease 

with rising water 

temperatures.

Cumulative 

impacts from 

fishing, pollution, 

habitat 

alterations, 

changing 

distribution 

ranges, habitats 

and food due to 

climate change

Losses due to 

extinction, continued 

impacts from ship 

strikes, pollution, 

habitat alterations, 

changing habitats and 

food due to climate 

change

Slow and uncertain recovery 

and success of, hugely costly 

restoration, which will be 

monumentally difficult and 

expensive. Development 

multi-governmental 

cooperation, buy-in, and 

action toward this goal.

Remedial Actions

Restore hydrological flows 

and sediment delivery, 

restore native plants, 

restore transitional upland 

boundaries where possible, 

increase incentives to 

relocate users

Increase incentives 

to improve 

management and 

develop alternative 

livelihoods, 

restoration, 

landscape planning 

for landward 

migration

Compensatory 

restoration, 

improve water 

quality, reduce 

local stressors

Ambitious efforts to 

mitigate climate 

change, effective 

restoration 

technologies using  

thermal resistant 

genotypes, manage 

for resilience

Restore with 

thermal 

resistant 

genotypes, 

reduce 

sediment 

delivery to 

rocky habitats

Protect remaining reefs, 

large scale restoration 

efforts, defining success 

with not just increased 

harvest in mind but the 

many other benefits 

oyster reefs provide

Create MPAs as 

refuge sites, 

restore coastal 

breeding/nursery 

sites to aid 

recovery, develop 

breeding 

programs for 

critically 

endangered 

species

Create MPAs as refuge 

sites, safeguard 

migration routes, 

restore coastal 

breeding/nursery 

sites to aid recovery, 

develop breeding 

programs for critically 

endangered species

Protect what has not been 

damaged or destroyed  and 

prevent  further destruction in 

places that have. Widespread 

education on fragility of deep 

sea and benefits of deep sea 

ecosystems, strengthen 

regulation, decrease 

pollution, recycle products 

that require rare earth 

metals.
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