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A refined sin hyperbolic shear deformation theory
for sandwich FG plates by enhanced meshfree with new 
correlation function

Tan-Van Vu . Jose L. Curiel-Sosa . Tinh Quoc Bui

Abstract The moving Kriging interpolation-based

(MKI) meshfree method is extended to mechanical

behavior analysis of isotropic and sandwich function-

ally graded material plates. The MKI meshfree

method, which is free of shear correction factors

effect in plate analysis, is further enhanced by

introducing a new multi-quadric correlation function,

eliminating drawbacks of its conventional form,

gaining accurate solution. In this paper, a new refined

sin hyperbolic shear deformation plate theory (N-

RSHSDT) is introduced for plate kinematics. The

present theory gives rise to four governing equations

only, and achieves the sin hyperbolic distribution of

the transverse shear strains through the plate thickness.

To show the accuracy and effectiveness of the

developed method, numerical experiments are per-

formed for both isotropic and sandwich composite

plates.

Keywords Sandwich plates � Functionally graded

materials � Meshfree � Hyperbolic shear deformation

theory � Moving Kriging interpolation

1 Introduction

The objective of the present work is to develop a

simple and effective computational approach for the

investigation of static bending, natural frequency, and

buckling modes of both sandwich functional compos-

ite plates and isotropic functional graded plates. The

model being presented here combines the moving

Kriging interpolation method (MKI) and a new refined

sin hyperbolic shear deformation plate theory (N-

RSHSDT). The N-RSHSDT theory gives rise to four

governing equations only, and does not require the

shear correction factors. The distribution of the

transverse shear strains through the plate thickness

are hence proposed by the sin hyperbolic function,

better representing the transverse shear strains.

Another objective of the present work is to improve

the performance of the conventional MKI in mod-

elling plate problems. As stated in the previous works
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detailed description of these two types of sandwich

plates is given in the subsequent sections. The

considerable advantages gained by the FGM over

conventional constituent materials are obvious, and

have been widely addressed in the literature. One of

the reasons for use of the FGM as the core or the facing

sheets in terms of sandwich plates is to reduce or

alleviate the material discontinuity among layers.

Stress distributions through those layers are smooth,

not discontinuous, which is a critical issue, and are

found in common conventional layered structures (Do

et al. 2017; Yaghoobi and Yaghoobi 2013; Neves et al.

2012; Bessaim et al. 2013).

Meshfree methods have been proved to be an

effective numerical technique, which have been intro-

duced and developed for the last few decades, see e.g.

(Bui et al. 2009, 2011; Bui and Nguyen 2011; Vu et al.

2017; Sadamoto et al. 2017) and references therein.

The application of the meshfree methods to engineer-

ing problems has become popular nowadays. The

advantages of meshfree methods over traditional

mesh-based methods, e.g., the finite element method

(FEM), arewell-known (Chen et al. 2017). The popular

application of the FEM to engineering problem is clear,

however its meshing issue is still challenging. In that

sense, meshfree methods show great advantages as

meshing is no longer required (Vu et al. 2017; Chen

et al. 2017;Bui et al. 2016). In general, there are several

versions of meshfree methods available in the litera-

ture. However, most meshfree methods require a

special treatment of the essential boundary conditions,

for instance, the moving least square method, where

the imposition of the essential boundary condition

must be carried out in the sense that theKronecker delta

property is automatically passed. In this context, the

MKI does better performance as it is automatically

satisfied the Kronecker delta function. Hence, the

imposition of the essential boundary condition is

treated exactly the same as the conventional FEM

(Bui et al. 2009, 2011, 2016; Bui and Nguyen 2011; Vu

et al. 2017; Sadamoto et al. 2017).

In summary, the novelties of the present contribu-

tion lie in the development of an effective and simple

computational approach as per the following features.

A newmulti-quadric correlation functions is presented

to construct MKI shape functions so that the under-

lying solution becomes stable. A four variable refined

plate formulation is derived using a new sin hyperbolic

distribution function of the transverse shear strains for

by the present authors (Bui et al. 2009, 2011), the 
conventional MKI inherently owns some drawbacks 
as its shape functions are significantly affected by the 
chosen correlation functions. It implies that the widely 
used Gaussian function, which depends on the so-
called correlation function, greatly influences the 
quality of the MKI shape functions, altering the final 
solutions of the problems of interest. In fact, this issue 
has already been analysed and discussed in the 
previous contributions (Bui et al. 2009, 2011; Bui 
and Nguyen 2011), and basically it is difficult to 
appropriately determine a correlation parameter which 
is applicable for any problems. As indicated in Bui 
et al. (2009), Bui and Nguyen (2011) the correlation 
parameter does not have any relation to the physical 
aspects of the problems. Neither analytical expres-
sions nor theoretical rules are available for determin-

ing the optimal values of such correlation variable. In 
practice, it is often determined through numerical 
experiments, and it seems that the parameter is 
problem-dependent. Therefore, in this paper, the 
MKI is further enhanced by getting rid of such 
correlation parameter. Instead, we introduce here a 
new multi-quadric correlation function, which is 
completely independent on the correlation parameter, 
eliminating the aforementioned strong effects on the 
solution. The developed computational framework is 
then applied to solve static bending, natural frequency, 
and buckling modes of isotropic plates as well as 
sandwich composite plates. We thus conduct the 
numerical experiments to show the accuracy and 
performance of the proposed approach.

Sandwich plates are a special structure of lami-

nates, which have been widely used in a variety of 
engineering applications, especially in civil engineer-
ing, aerospace, and auto-mobiles, due to their out-
standing characteristics. Some excellent features of 
sandwich structures are, for instance, the bending 
rigidity, the low specific strength and excellent 
vibration performance. Sandwich plates are often 
fabricated where the inner layers are designed to be 
thicker and those compose of more flexible materials 
(Bui and Nguyen 2011; Ha  1990). In this work, we 
particularly consider two types of sandwich plates. 
The first sandwich plates consist of a single core, 
which is made by FGM, bonded to two stiff facings by 
isotropic materials. On the contrary, the second type of 
sandwich plates consist of a single isotropic core 
bonded to two stiff facings made by FGM. The



isotropic FGM and sandwich FGM plates, saving

computational cost. The present formulation is insen-

sitive to shear locking for thin plate case. We

demonstrate the desirable characteristics of the pro-

posed computational approach through numerical

experiments by analyzing their mechanical behavior,

i.e., static bending, natural frequency, and buckling

modes, of sandwich FGM and isotropic FGM plates.

We structure the rest of the paper as follows. A

brief review of the isotropic and sandwich FG plates is

given in Sect. 2, followed by the formulation of the

N-RSHSDT. Meshfree formulation for bending, free

vibration and buckling analyses of plates is presented

in Sect. 3. Numerical validations and discussions are

presented in Sect. 4. Some conclusions drawn from

the study are given in Sect. 5.

2 Theoretical formulation

2.1 Functionally graded material plates

Consider a rectangular FGM plate with co-ordinates

x; y along its width a, length b and z across its thickness

h direction as shown in Fig. 1a. The Cartesian

coordinate system attached to the FGM plate, where

the xy-plane is coincident with the geometrical mid-

plane of the plate, while the z-axis passed through the

centre of the plate. The FGM plate material of young’s

modulus E ðzÞ and mass density q ðzÞ are assumed to

be varied only in the plate’s thickness direction

according to a certain distribution, while Poisson’s

ratio m is assumed to be constant for simplicity. In this

study, three types of functionally graded material

(FGM) plates typically consist of isotropic plates

(type-A), sandwich plates using with FG material core

and isotropic skins (type-B) and vice versa (type-C)

are employed for analysing the static bending, natural

frequency, and compression buckling.

2.1.1 Type A: isotropic FGM plate

In this case, the FGM plate has the bottom and top

faces assumed to be fully metallic and ceramic,

respectively. FGM effective material properties of

young’s modulus E ðzÞ and mass density q ðzÞ are

computed by a power-law distribution with Voigh’s

rule of mixtures as follows

EðzÞ ¼ Em þ ðEc � EmÞVc zð Þ

qðzÞ ¼ qm þ ðqc � qmÞVc zð Þ
ð1a; bÞ

where the subscripts m; c refer to the metallic and

ceramic constituents, respectively; Vc ðzÞ ¼

0:5þ z=hð Þn is the volume fraction of the ceramic,

and n is the volume fraction exponent, which governs

the gradient index. In this regard, the variation in the

ceramic volume Vc zð Þ with respect to the thickness

ratio z=h for different values of the gradient index n

(Vu et al. 2017) as show in Fig. 1b.

2.1.2 Type B: sandwich plate with FGM core

and isotropic face sheets

In this case, the sandwich FGM plate made by the

power-law FGM core and homogeneous face sheets is

depicted in Fig. 2a. The volume fraction is assumed to

follow as Li et al. (2008)

V
ð1Þ
c zð Þ ¼ 0; z 2 z1; z2½ �

V
ð2Þ
c zð Þ ¼

z� z2

z3 � z2

� �n

; z 2 z2; z3½ �

V
ð3Þ
c zð Þ ¼ 1; z 2 z3; z4½ �

ð2a; b; cÞ

In which V
ðiÞ
c ; ði ¼ 1; 2; 3Þ denotes the volume frac-

tion function of layer i; and ðz3 � z2Þ is the thickness of
core.

2.1.3 Type C: sandwich plates with isotropic core

and FGM face sheets

Figure 2b shows the composition of the sandwich

FGM plate-type C which has an isotropic core. Two

face sheets have metal-rich at surfaces z ¼ z1; z ¼ z4,

and ceramic-rich at surfaces z ¼ z2; z ¼ z3. In this

case, the volume fraction of the ceramic and metal in

the face sheets can be expressed as Li et al. (2008)

V
ð1Þ
c zð Þ ¼

z� z1

z2 � z1

� �n

z 2 z1; z2½ �

V
ð2Þ
c zð Þ ¼ 1 z 2 z2; z3½ �

V
ð3Þ
c zð Þ ¼

z4 � z

z4 � z3

� �

z 2 z3; z4½ �

ð3a; b; cÞ

wherein ðz2 � z1Þ and ðz4 � z3Þ is the thickness of the
bottom and top face sheets, respectively. The thick-

ness index of each layer of bottom/core/top is

indicated as different ratios of

½ðz4 � z3Þ=ðz3 � z2Þ=ðz2 � z1Þ�.



Fig. 1 a Geometry notation

and coordinates of an FG

plate, b variation of ceramic

volume fraction Vc ðzÞ with
respect to the thickness ratio

z=h for different values of

the index n

Fig. 2 The sandwich FGM

plate: a FGM core and

isotropic face sheets;

b isotropic core and FGM

face sheets



2.2 Formulation of new refined sin hyperbolic

shear deformation plate theory

Let X be the domain occupied by the mid-plane of the

FGM plate in R
2. According to the conventional

higher-order shear deformation theory (HSDT), its

displacement field can be expressed in terms of five

unknown variables as follows,

uðx; y; zÞ ¼ u0ðx; yÞ þ zhxðx; yÞ þ g zð Þ hx x; yð Þ þ
ow0 x; yð Þ

ox

� �

vðx; y; zÞ ¼ v0ðx; yÞ þ zhyðx; yÞ þ g zð Þ hy x; yð Þ þ
ow0 x; yð Þ

oy

� �

wðx; y; zÞ ¼ w0ðx; yÞ

ð4a; b; cÞ

where u; v and w are the x-, y- and z-components of the

displacement vector u of certain point ðx; y; zÞ in the

plate, respectively; u0 ðx; yÞ,v0 ðx; yÞ, and w0 ðx; yÞ

are, respectively the x-, y- and z-components of the

corresponding point ðx; y; 0Þ on the plate mid-plane;

hx ðx; yÞ and hy ðx; yÞ are the rotation angles of a

transverse normal about the y- and x-axes; g ðzÞ

represents shape function defining the distribution of

the transverse shear strains and stresses across the

plate thickness.

To derive the new refined sin hyperbolic shear

deformation plate theory (N-RSHSDT), we use the

assumptions of the four-variable refined plate theory

(RPT) as follows: (1) the transverse displacement

u0 ðx; yÞ is divided into bending wb ðx; yÞ and shear

ws ðx; yÞ components, i.e., w0 ðx; yÞ ¼ wb ðx; yÞþ

ws ðx; yÞ; (2) the rotations in the higher-order plate

theory is expressed in terms of the bending component

only hx ¼ �owb ðx; yÞ=ox, hy ¼ �owb ðx; yÞ=oy. In

this regard, Eq. (4) can be rewritten as follows,

uðx; y; zÞ ¼ u0ðx; yÞ � z
owbðx; yÞ

ox
þ g zð Þ

owsðx; yÞ

ox

vðx; y; zÞ ¼ v0ðx; yÞ � z
owbðx; yÞ

oy
þ g zð Þ

owsðx; yÞ

oy

wðx; y; zÞ ¼ wbðx; yÞ þ wsðx; yÞ

ð5a; b; cÞ

Here we introduce a new sin hyperpolic function.

From Eq. (5), it is clear that the displacement fields

contain only four unknowns, u0 ðx; yÞ; v0 ðx; yÞ;

wb ðx; yÞ; ws ðx; yÞ, this leads to reduce the element

stiffness, mass and geometric matrices, hence the

computational time of the RPT is less than that of

HSDT. In addition, the transverse shear strains shape

function is chosen as g ðzÞ ¼ f ðzÞ � z such that the

tangential value of the effective function f ðzÞ ¼

h sinh ðz=hÞ � 4 cosh ð1=2Þz3=3h2 at z ¼ �h=1 are

equal to zeros, satisfying the boundary conditions

cxz ¼ cyz ¼ 0 on the top and bottom surfaces. Assum-

ing that Lagrangian strains are infinitesimally small,

the kinematic relations of strain–displacement can be

expressed as follow,

ex
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or in matrix form

e ¼
e0
0

� �

þ
zjb þ g zð Þjs

f 0 zð Þc

� �

ð7Þ

with

e0 ¼

ou0 x; yð Þ

ox

ov0 x; yð Þ

oy

ou0 x; yð Þ

oy
þ
ov0 x; yð Þ

ox

8
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�
o
2wb x; yð Þ

ox2

�
o
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oy2

�2
o
2wb x; yð Þ

oxoy
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=
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ð8a; b; c; dÞ

It is worth noting that the present plate model is

consistent as it does not require any shear correction

factor, accounting for the sin hyperbolic distribution

through the thickness of transverse shear strain, and

satisfying the shear stress free surface conditions.



3 Meshless formulation for bending, free vibration

and buckling of FGM plates

3.1 Moving Kriging shape function

In this subsection, the Moving Kriging shape function

with their derivatives are briefly reviewed. A more

detailed discussion for MKI method can be found in

Bui et al. (2009). According to this method, an

interpolation function uh xð Þ can be constructed by

employing a known vector function u xið Þ in a sub-

domain Xx so that Xx � X. The sub-domain Xx which

is also known as the influence or support domain. In

this regard, the approximate function uh xð Þ can be

expressed as follows,

uhðxÞ ¼ pTðxÞAþ rTðxÞB
� 	

uðxÞ or uhðxÞ

¼
X

n

I¼1

/IðxÞuI ð9Þ

where /IðxÞ are shape functions, which are known to

possesses the delta function property defined as,

/IðxÞ ¼
X

m

j¼1

pjðxÞAjIþ
X

n

k¼1

rkðxÞBkI ð10Þ

wherein matrices A and B are calculated by

A ¼ PTR�1P

 ��1

PTR�1; B ¼ R�1ðI� PAÞ ð11Þ

with I is the unit matrix, and p xð Þ in Eq. (9) denotes a

vector of m basis functions, i.e.

pTðxÞ ¼ p1ðxÞ; p2ðxÞ; p3ðxÞ. . .:; pmðxÞ½ � ð12Þ

One should be noticed that n and m defined in this

section are different from the gradient indices used in

Sect. 2. Matrix P(n� m) consists of the values of the

monomial basis functions at the nodal points

P ¼

p1ðx1Þ p2ðx1Þ � � � pmðx1Þ
p1ðx2Þ p2ðx2Þ � � � pmðx2Þ

.

.

.
.
.
.

.
.

.
.
.
.

p1ðxmÞ p2ðxmÞ � � � pmðxmÞ

2

6

6

6

4

3

7

7

7

5

ð13Þ

and the vector r xð Þ in Eq. (9) has a formulation as

follow,

rTðxÞ ¼ Rðx1; xÞ;R x2; xð Þ; . . .:R xn; xð Þ½ � ð14Þ

wherein Rðxi; xjÞ denotes the correlation function

between pairs of the nodes xi and xj, and is the

covariance of the value u xð Þ: Rðxi; xjÞ ¼

cov uðxiÞ; uðxjÞ
� 	

and Rðxi; xÞ ¼ cov uðxiÞ; uðxÞ½ �.

In the traditional MKI method (Chen et al. 2017;

Bui et al. 2016), the Gaussian function with correlation

parameter h[ 0 is widely used as the correlation

function having following formulation,

Rðxi; xjÞ ¼ e
�hr2

ij ð15Þ

where rij ¼ xi � xj
�

�

�

�. However, it is known that the

quality of MK shape functions depend heavily on the

correlation parameter h (Bui et al. 2011; Bui and

Nguyen 2011) which often causes the instability in the

numerical model and its optimal value is still

questionable. To overcome this drawback, we present

new multi-quadric correlation functions, which

depends only on the distance between the source

point and the target point. It leads to the MKI shape

function is stable and insensitive to the mesh node as

follows,

Rðxi; xjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2l2c

� �2

þr2ij

s

ð16Þ

where lc is the internal length factor of the model,

which can be taken as the average distance between

nodes in the model. The correlation matrix

R Rðxi; xjÞ
� 	

n�n
is given by

R Rðxi; xjÞ
� 	

¼

1 Rðx1; x2Þ � � � Rðx1; xnÞ
Rðx2; x1Þ 1 � � � Rðx2; xnÞ

.

.

.
.
.
.

.
.

.
.
.
.

Rðxn; x1Þ Rðxn; x2Þ � � � 1

2

6

6

6

4

3

7

7

7

5

ð17Þ

For the weak-form governing equation of the

present plate model, not only the first-order deriva-

tives, but also the second-order derivatives of the

shape functions are required. Based on the MKI

method, these derivatives are obtained by direct

differentiation of Eq. (10), thus have the following

formulations:

/I:iðxÞ ¼
X

m

j

pj;iðxÞAjI þ
X

n

k

rk;iðxÞBkI

/I;iiðxÞ ¼
X

m

j

pj;iiðxÞAjI þ
X

n

k

rk;iiðxÞBkI

ð18a; bÞ



In conventional mesh-free approaches, scattered

nodes which are used for interpolation and usually

gathered by a circle or sphere defined by a radius and

centred at the point of interest. In the present work,

circle influence domains are employed for determin-

ing the nodes for the interpolation process. The radius

size of the influence domain is defined by

dm ¼ adc ð19Þ

wherein dc denotes as the characteristic length relative

to the nodal spacing in the vicinity of the point of

interest, and a scaling factor a[ 1 is used to control

the size of influence domain.

3.2 Discrete governing equations

According to traditional meshfree method, the dis-

placement filed in the middle FGM plate surface of

present refine theory are approximated by Eq. (9) and

expressed in term of vector form as follows,

uh ¼ uh vh wh
b wh

s

� 	T
and uI

¼ uI vI wbI wsI½ �T ð20Þ

By substituting Eq. (9) into Eq. (8), one can

obtain the following expressions after some mathe-

matical manipulations:

e0 ¼
X

n

I¼1

Bm
I uI ; j

b ¼
X

n

I¼1

Bb1
I uI ; j

s ¼
X

n

I¼1

Bb2
I uI ; c

¼
X

n

I¼1

Bs
IuI

ð21Þ

wherein

Bm
I ¼

/I;x 0 0 0

0 /I;y 0 0

/I;y /I;x 0 0

2

6

4

3

7

5
; Bb1

I ¼

0 0 �/I;xx 0

0 0 �/I;yy 0

0 0 �2/I;xy 0

2

6

4

3

7

5

Bb2
I ¼

0 0 0 /I;xx

0 0 0 /I;yy

0 0 0 2/I;xy

2

6

4

3

7

5
; Bs

I ¼
0 0 0 /I;x

0 0 0 /I;y

" #

ð22a; b; c; dÞ

For the static bending problem of the FGM plate,

the weak form can be stated as follows:

Z

X

deTDe
edXþ

Z

X

dcTDs
cdX ¼

Z

X

d wb þ wsð Þq0dX

ð23Þ

where q0 is the transverse loading per unit area and

e ¼
e0

j
b

j
s

8

<

:

9

=

;

; De ¼
A B E

B C Ke

E Ke H

2

4

3

5;

Ds ¼

Z

h=2

�h=2

DsðzÞdz

ð24Þ

where the sub matrices are defined as

Aij;Bij;Cij;Eij;K
e
ij;Hij

¼

Z

h=2

�h=2

1; z; z2; g zð Þ; zg zð Þ; g2 zð Þ
� 	

Qijdz D
s
ij

¼

Z

h=2

�h=2

f 0 zð Þ½ �
2
Gijdz

ð25a; bÞ

with the material matrices can be calculated by

Q ¼
E zð Þ

1� t2

1 t 0

t 1 0

0 0 1� tð Þ=2

2

4

3

5

G ¼
E zð Þ

2 1þ tð Þ

1 0

0 1

� �

ð26a; bÞ

For the free vibration problem of the FGM plate, the

Hamilton’s principle can be expressed as:
Z

X

deTDe
edXþ

Z

X

dcTDs
cdX ¼

Z

X

duTm€udX ð27Þ

where

m ¼
I0 I1 I3
I1 I2 I4
I3 I4 I5

2

4

3

5; I0; I1; I2; I3; I4; I5ð Þ

¼

Z

h=2

�h=2

q zð Þ 1; z; z2; g zð Þ; zg zð Þ; g2 zð Þ
� 	

dz ð28a; bÞ

With



u ¼

u0

ub

us

8

>

<

>

:

9

>

=

>

;

; u0 ¼

uh

vh

wh
b þ wh

s

8

>

<

>

:

9

>

=

>

;

¼
X

n

I¼1

N1
IuI

ub ¼

�owh
b=ox

�owh
b=oy

0

8

>

<

>

:

9

>

=

>

;

¼
X

n

I¼1

N2
IuI ;

us ¼

owh
s=ox

owh
s=oy

0

8

>

<

>

:

9

>

=

>

;

¼
X

n

I¼1

N3
IuI

ð29a; b; c; dÞ

and

N1
I ¼

/I 0 0 0

0 /I 0 0

0 0 /I /I

2

4

3

5

N2
I ¼

0 0 �/I;x 0

0 0 �/I;y 0

0 0 0 0

2

4

3

5

N3
I ¼

0 0 0 /I;x

0 0 0 /I;y

0 0 0 0

2

4

3

5

ð30a; b; cÞ

Finally, the weak form for the buckling analysis can

be expressed as follows:
Z

X

deTDe
edXþ

Z

X

dcTDs
cdX

þ

Z

X

rTd wb þ wsð Þr̂0r wb þ wsð ÞdX ¼ 0

ð31Þ

where rT ¼ o=ox o=oy½ �T is the gradient operator

and r̂0 ¼
r0x s0xy
s0xy r0y

� �

is the pre-stresses in-plane. By

substituting Eq. (21) into Eqs. (23), (27) and (31) the

discretized formulations of the static bending, free

vibration and buckling analysis of the FGM plate can

be rewritten as following:

Ku ¼ F; K� x2M

 �

u ¼ 0; K� x2Kg


 �

u ¼ 0

ð32a; b; cÞ

where the stiffness matrix K is calculated by

Table 1 Material

properties of the FG plates

used for the analysis

Property Aluminium (Al) Ceramic

Alumina (Al2O3) Zirconia-1 (ZrO2-1) Zirconia-2 (ZrO2-2)

E ðGPaÞ 70 380 200 151

t 0.3 0.3 0.3 0.3

q ðkg=m3Þ 2707 3800 5700 3000

Table 2 Normalized displacement �w of a simply supported square plate using different meshes and scaling factors

Mesh Scaling factor a

2.0 2.1 2.2 2.3 2.4 2.5 3.0 3.5

17917 0.4431 0.6576 0.6603 0.6643 0.6656 0.6705 0.6731 0.7131

21921 0.4767 0.6506 0.6509 0.6546 0.6553 0.6557 0.6755 0.7220

25925 0.2757 0.6455 0.6460 0.6485 0.6486 0.6511 0.6607 0.7125

29929 0.6100 0.6425 0.6427 0.6445 0.6446 0.6465 0.6551 0.6949

33933 0.6142 0.6404 0.6406 0.6420 0.6421 0.6432 0.6499 0.6887

CLT (Carrera and Brischetto 2008) 0.6070

FSDT (Carrera and Brischetto 2008) 0.6337

CUF (Carrera et al. 2011) 0.6337

HSDT (Neves et al. 2013) 0.6350



K ¼

Z

X

Bm
I

Bb1
I

Bb2
I

8

<

:

9

=

;

T
A B E

B C Ke

E Ke H

2

4

3

5

Bm
I

Bb1
I

Bb2
I

8

<

:

9

=

;

dX

þ

Z

X

Bsð ÞTDsBsdX ð33Þ

The load vector F is computed as follows:

F ¼

Z

X

q0NdX where NI ¼ 0 0 /I /I½ �T ð34Þ

The mass matrix M is expressed as:

M ¼

Z

X

N1

N2

N3

8

<

:

9

=

;

T
I0 I1 I3
I1 I2 I4
I3 I4 I5

2

4

3

5

N1

N2

N3

8

<

:

9

=

;

dX ð35Þ

The geometric stiffness matrix Kg is obtained by

Kg ¼

Z

X

Bgð ÞT r̂0B
gdX where B

g
I

¼
0 0 /I;x /I;x

0 0 /I;y /I;y

� �

ð36a; bÞ

From Eq. (22), it is observed that two matrices Bb1
I

and Bb2
I consist of the second-order derivatives of the

MKI shape function, hence the approximate displace-

ments must have to the C1-connuity. As a result, a

second-order polynomial basis given in Eq. (12) is

used to establish the shape functions as follow,

pT xð Þ ¼ 1 x y x2 xy y2
� �

ð37Þ

In this regard, a quadratic polynomial form of basic

functions ðm ¼ 6Þ is employed to construct MKI

shape function, and a background mesh with 4� 4

Gauss points are also used.

Table 3 Normalized deflection of an Al/ZrO2-1 square plate with different length-thickness ratio a=h and gradient indices n

Boundary condition a=h Method n ¼ 0 n ¼ 0:5 n ¼ 1 n ¼ 2

SSSS 5 S-FSDT-MK (Vu et al. 2017) 0.1723 0.2331 0.2723 0.3116

R-STSDT-MK (Vu et al. 2018) 0.1721 0.2325 0.2725 0.3142

FSDT-kp-Ritz (Lee et al. 2009) 0.1722 0.2403 0.2811 0.3221

Present 0.1773 0.2395 0.2806 0.3238

100 S-FSDT-IGA (Carrera and Brischetto 2008) 0.1423 0.1949 0.2284 0.2597

R-STSDT-MK (Vu et al. 2018) 0.1427 0.1954 0.2290 0.2603

R-SSDT-MK (Vu et al. 2017) 0.1483 0.2031 0.2379 0.2705

Present 0.1457 0.1996 0.2339 0.2659

SFSS 5 S-FSDT-IGA (Carrera and Brischetto 2008) 0.3164 0.4299 0.5032 0.5752

R-STSDT-MK (Vu et al. 2018) 0.3153 0.4278 0.5013 0.5757

Present 0.3233 0.4384 0.5138 0.5902

100 S-FSDT-MK (Vu et al. 2017) 0.2777 0.3805 0.4458 0.5069

R-STSDT-MK (Vu et al. 2018) 0.2766 0.3790 0.4440 0.5047

Present 0.2816 0.3858 0.4519 0.5138

SFSF 5 S-FSDT-IGA (Carrera and Brischetto 2008) 0.5083 0.6918 0.8099 0.9247

R-STSDT-MK (Vu et al. 2018) 0.5061 0.6879 0.8061 0.9239

FSDT-kp-Ritz (Lee et al. 2009) 0.5061 0.7029 0.8214 0.9423

Present 0.5162 0.7014 0.8219 0.9423

100 S-FSDT-IGA (Carrera and Brischetto 2008) 0.4584 0.6281 0.7360 0.8367

R-STSDT-MK (Vu et al. 2018) 0.4564 0.6252 0.7325 0.8327

R-SSDT-MK (Vu et al. 2017) 0.4627 0.6339 0.7427 0.8443

Present 0.4623 0.6333 0.7419 0.8434



4 Numerical results and discussions

In this section, several numerical examples are

presented and discussed to verify the accuracy of the

proposed approach in predicting the static bending,

free vibration and buckling responses of isotropic and

sandwich FG plates with square shape. For conve-

nience, the boundaries of these plates are denoted as

follows: completely free (F), simply supported (S) or

fully clamped (C) edges. Both thin and thick plates are

considered through the specified thickness-span aspect

ratios.

4.1 Effect of the scaling factor on the solution

accuracy

Consider a fully-simply supported sandwich square

plate-type B with the length to thickness ratio a=h ¼

10 consisting of three layers. The bottom skin is

aluminium with the thickness and young’s modulus

are hb ¼ 0:1 h and Em ¼ 70 GPa, respectively. The

top skin is alumina with the thickness and young’s

modulus are ht ¼ 0:1 h and Ec ¼ 380 GPa, respec-

tively. Further data of plate is given in Table 1. The

core skin is FGM with effective material properties

defined by Eq. (1) and graded from aluminium to

alumina with the gradient index n ¼ 1:0. The plate is

subjected to the bi-sinusoidal transverse mechanical

load q0 ¼ �q0 sin ðpx=aÞ sin ðpy=bÞ.

To investigate the influence of scaling factor a on

the accuracy of numerical solution, the normalized

displacement �w ¼ 10Ech
3

�q0a
4 w a

2
; b
2
; 0


 �

at the centre of

plate is calculated using different sets of 17� 17,

21� 21, 25� 25, 29� 29 and 33� 33 combined

with different scaling factors. Results are presented

Fig. 3 Deformation shapes of the FGM plates (type A) with n ¼ 1 and a=h ¼ 5 different boundary conditions: a SSSS, b SFSS, c SFSF



and compared with those from the classical plate

theory (CPT) (Carrera and Brischetto 2008), first-

order shear deformation theory (FSDT) (Carrera and

Brischetto 2008), higher-order shear deformation

theory (HSDT) (Neves et al. 2013) and Carrera’s

Unified Formulation (CUF) (Carrera et al. 2011) in

Table 2. As seen in the table, the multi-quadric

function can yield the excellent convergence and

ensure for the stable numerical computation when

2:0\a\3:0. We consider that a value of a ¼ 2:1 with
the fine set of 21� 21 can be employed in the

following computation.

4.2 Static bending analysis

4.2.1 Isotropic FGM plates (type A)

In this example, an isotropic FGM square plate of type

A subjected to a uniform load q0 with various

boundary conditions such as SSSS, SFSS, SFSF is

considered. The plate is graded from aluminium at the

bottom to zirconia-1 at the top of the plate. The

material property of this plate is listed in Table 1. The

central deflection also has the normalized form of

�w ¼ 100wcEmh
3

12 1�t2mð Þq0a4
. Table 3, we present the results

obtained with the referenced theories using different

values of the gradient indices and length to thickness

ratios a=h ¼ 5; 100. The deformation shapes of the

plate with different boundary conditions are shown in

Fig. 3. It can be concluded that numerical results

obtained by the present method are agreed well with

those obtained by reference methods such as RPT

combined with the MKI methods (S-FSDT Vu et al.

2017; R-STSDT Vu et al. 2018; R-SSDT Vu et al.

2017) and FSDT-kp-Ritz (Lee et al. 2009) method.

It is worth nothing that the deflection magnitude

increases when the boundary condition changes from

Table 4 Normalized deflection of a sandwich square plate-type C ða=h ¼ 10Þ

Kind of sandwich plate-type C Method n ¼ 0:0 n ¼ 0:5 n ¼ 1:0 n ¼ 2:0 n ¼ 5:0 n ¼ 10:0

2–1–2 CLT (Neves et al. 2012) 0.1856 – 0.2942 0.3394 0.3779 0.3894

FSDT (Neves et al. 2012) 0.1961 – 0.3075 0.3541 0.3942 0.4066

HSDT (Bessaim et al. 2013) 0.1949 0.2614 0.3043 0.3500 0.3893 0.4015

ZZF (Neves et al. 2012) 0.1961 0.2667 0.3090 0.3542 0.3930 0.4051

Present 0.1970 0.2644 0.3078 0.3539 0.3935 0.4058

2–1–1 CLT (Neves et al. 2012) – – – – – –

FSDT (Neves et al. 2012) – – – – – –

HSDT (Bessaim et al. 2013) 0.1949 0.2560 0.2945 0.3350 0.3698 0.3811

ZZF (Neves et al. 2012) 0.1961 0.2614 0.2995 0.3399 0.3746 0.3861

Present 0.1970 0.2590 0.2982 0.3394 0.3748 0.3862

1–1–1 CLT (Neves et al. 2012) 0.1856 – 0.2803 0.3207 0.3587 0.3724

FSDT (Neves et al. 2012) 0.1961 – 0.2930 0.3344 0.3736 0.3879

HSDT(Bessaim et al. 2013) 0.1949 0.2530 0.2901 0.3307 0.3690 0.3830

ZZF(Neves et al. 2012) 0.1961 0.2583 0.2949 0.3351 0.3729 0.3868

Present 0.1970 0.2559 0.2934 0.3345 0.3731 0.3872

2–2–1 CLT (Neves et al. 2012) 0.1856 – 0.2692 0.3041 0.3369 0.3492

FSDT (Neves et al. 2012) 0.1961 – 0.2817 0.3174 0.3512 0.3640

HSDT (Bessaim et al. 2013) 0.1949 0.2466 0.2787 0.3136 0.3465 0.3589

ZZF (Neves et al. 2012) 0.1961 0.2519 0.2838 0.3186 0.3514 0.3637

Present 0.1970 0.2495 0.2822 0.3177 0.3512 0.3638

CLT (Neves et al. 2012) 0.1856 – 0.2596 0.2910 0.3228 0.3361

FSDT (Neves et al. 2012) 0.1961 – 0.2717 0.3037 0.3363 0.3500

HSDT (Bessaim et al. 2013) 0.1949 0.2407 0.2692 0.3006 0.3326 0.3459

1–2–1 ZZF (Neves et al. 2012) 0.1961 0.2460 0.2740 0.3053 0.3370 0.3503

Present 0.1970 0.2435 0.2723 0.3041 0.3364 0.3499



SSSS, SFSS to SFSF or the length to thickness ratio

decreases from 100 to 5, since the structural stiffness is

decreased. Conversely, the deflection magnitude

decreases as the gradient index n reduces, because

the property of plates approached closer to that of the

ceramic constituent when the gradient index

decreases, and consequently the stiffness of the

resulting plates gradually increases.

Fig. 4 First five mode shapes of the Al/Al2O3 freely—simply supported square plate



4.2.2 Sandwich plates with isotropic core and FGM

face sheets (type C)

In this example, static bending of a simply supported

sandwich FGM square plate-type C with material

made from the aluminium and zirconia-2 is analyzed.

The material parameters of this plate are provided in

Table 1. The core layer is independent with respect to

values of the gradient index n, which is a fully ceramic

layer. However, a value of n equal to zero represents a

fully ceramic plate. The transverse displacement is

presented in normalized as �w ¼ 10Eoh
�q0a

2 w a
2
; b
2
; 0


 �

and

q0 ¼ 1; E0 ¼ 1 GPa. Table 4 shows the results

obtained by the reference methods with considering

Table 5 The first five mode normalized natural frequencies of an Al/Al2O3 thin plate with various boundary conditions and gradient

indices

n Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

(a) SFSF

1 CPT-neu based IGA (Yin et al. 2013) 43.1596 72.2984 164.5401 174.5012 209.4085

S-FSDT-MK (Vu et al. 2018) 43.2374 71.2856 161.2857 175.8363 206.5470

Exact (Baferani et al. 2011) 43.0872 72.2001 164.3911 – –

Present 42.9806 71.7756 162.0638 171.5960 204.8737

2 CPT-neu based IGA (Yin et al. 2013) 39.2395 65.7314 149.5922 158.6496 190.3849

S-FSDT-MK (Vu et al. 2018) 39.3354 64.9015 146.9400 160.1133 188.3231

Exact (Baferani et al. 2011) 39.1666 65.6400 149.0583 – –

Present 39.0828 65.2660 147.3546 156.0896 186.3556

(b) SSSS

1 CPT-neu based IGA (Yin et al. 2013) 88.4501 221.1011 221.1011 353.7127 442.1697

S-FSDT-MK (Vu et al. 2018) 88.4983 223.1878 223.1878 359.3324 448.5040

Exact (Baferani et al. 2011) 88.3093 221.0643 – 353.6252 –

Present 87.4004 215.2458 215.2458 337.5635 421.0957

2 CPT-neu based IGA (Yin et al. 2013) 80.4160 201.0155 201.0155 321.5761 401.9929

S-FSDT-MK (Vu et al. 2018) 80.6550 204.0120 204.0120 330.2422 411.6235

Exact (Baferani et al. 2011) 80.3517 200.8793 – 321.4069 –

Present 79.4630 195.7338 195.7338 306.9145 383.1018

(c) SCSC

1 CPT-neu based IGA (Yin et al. 2013) 129.7269 245.2758 310.6242 423.7400 457.9482

S-FSDT-MK (Vu et al. 2018) 129.9227 246.0544 311.5795 429.6741 456.0445

Exact (Baferani et al. 2011) 129.6496 245.1310 – 423.6904 –

Present 129.2264 239.9096 305.1543 408.8027 438.4519

2 CPT-neu based IGA (Yin et al. 2013) 117.9435 222.9939 282.4052 385.2402 416.3375

S-FSDT-MK (Vu et al. 2018) 117.9340 223.2098 279.5867 389.7883 412.6522

Exact (Baferani et al. 2011) 117.8104 222.8111 – 385.0672 –

Present 117.5411 218.2121 277.5496 371.8758 398.9104

(d) CCCC

1 CPT-neu based IGA (Yin et al. 2013) 161.2484 328.8502 328.8502 484.8293 589.5860

S-FSDT-MK (Vu et al. 2018) 161.0227 328.6780 328.6780 488.7393 591.5320

Present 160.8461 322.9511 322.9511 467.6309 564.5060

2 CPT-neu based IGA (Yin et al. 2013) 146.6016 298.9753 298.9753 440.7781 536.0119

S-FSDT-MK (Vu et al. 2018) 146.9611 297.6900 297.6900 441.7803 531.8659

Present 146.3175 293.7530 293.7530 425.4270 513.5280



different values of gradient index and kind of the

sandwich FGM and compared to our results. It is clear

that present method correlates excellently with previ-

ous theories in the literature (Neves et al. 2012;

Bessaim et al. 2013).

4.3 Free vibration analysis

4.3.1 Isotropic FGM plates (type A)

In this example we study the free vibration of an Al/

Al2O3 isotropic square thin plate with a length to

Fig. 5 First five mode shapes of the fully clamped square plate



thickness ratio of a=h ¼ 100 under different boundary

conditions. Natural frequency has been non-dimen-

sioned as follows: x� ¼ xp2 ða2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qm=Em

p

. Fig-

ure 4 plots first five mode shapes of the square thin

plate with SFSF boundary conditions. In Table 5, we

present the results obtained with proposed and avail-

able methods (Vu et al. 2018; Yin et al. 2013; Baferani

et al. 2011) considering various values of gradient

indices. It is concluded that the present refined plate

theory predicts the natural frequencies with the same

accuracy degree as that of exact method (Baferani

et al. 2011). It is seen that the results decrease as the

amount of gradient indices increase.

The effect of the boundary conditions on the natural

frequency is observed from Table 5. It has been

established that the natural frequencies of the plate

with all edges clamped are higher than those of the

plate with edges free and simply support. The

normalized frequency magnitude increases when the

boundary condition changes from SFSF, SSSS, SCSC

to CCCC, due to the increase of the structural stiffness.

4.3.2 Sandwich plate with FGM core and isotropic

face sheets (type B)

In this example we consider the normalized frequency

of a sandwich square plate-type B with boundary type

Table 6 The first five

mode normalized natural

frequencies of square

½1=8=1� of sandwich FGM

plates of Type B with n ¼ 1

and ðh=b ¼ 0:01; 0:1Þ

a=h Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

(a) SSSS

100 3D (Li et al. 2008) 1.5760 3.9379 3.9379 6.2972 7.8686

Present 1.5649 3.9048 3.9048 6.2115 7.7989

10 3D (Li et al. 2008) 1.5221 3.6295 3.6295 5.5679 6.7829

Present 1.5123 3.6037 3.6037 5.5046 6.7337

(b) CCCC

100 3D (Li et al. 2008) 2.8830 5.8720 5.8720 8.6495 10.5180

Present 2.7942 5.6682 5.6682 8.2370 10.1953

10 3D (Li et al. 2008) 2.6050 4.9630 4.9630 6.9516 8.1872

Present 2.5673 4.9431 4.9431 6.9022 8.1657

Table 7 The first mode

normalized natural

frequencies of square with

difference layer thickness

ratios and gradient indices

of sandwich FGM plates of

Type C ða=h ¼ 10Þ

n Method Type of sandwich plate

1–0–1 2–1–2 2–1–1 1–1–1 2–2–1 1–2–1

0.5 3D (Li et al. 2008) 1.4461 1.4861 1.5084 1.5213 1.5493 1.5766

SSDT (Zenkour 2005) 1.4443 1.4842 1.5126 1.5193 1.5520 1.5745

TSDT (Zenkour 2005) 1.4442 1.4842 1.5125 1.5192 1.5520 1.5745

Present 1.4406 1.5027 1.5026 1.5153 1.5432 1.5704

1.0 3D (Li et al. 2008) 1.2447 1.3018 1.3351 1.3552 1.3976 1.4413

SSDT (Zenkour 2005) 1.2433 1.3002 1.3489 1.3534 1.4079 1.4393

TSDT (Zenkour 2005) 1.2432 1.3001 1.3489 1.3533 1.4079 1.4393

Present 1.2402 1.2969 1.3301 1.3499 1.3921 1.4355

5.0 3D (Li et al. 2008) 0.9448 0.9810 1.0294 1.0453 1.1098 1.1757

SSDT (Zenkour 2005) 0.9463 0.9820 1.0744 1.0448 1.1474 1.1740

TSDT (Zenkour 2005) 0.9460 0.9818 1.0743 1.0447 1.1473 1.1740

Present 0.9439 0.9796 1.0283 1.0421 1.1064 1.1709

10.0 3D (Li et al. 2008) 0.9273 0.9418 0.9893 0.9952 1.0610 1.1247

SSDT (Zenkour 2005) 0.9288 0.9433 1.0455 0.9952 1.0415 1.1346

TSDT (Zenkour 2005) 0.9284 0.9430 1.0386 0.9955 1.1053 1.1231

Present 0.9265 0.9409 0.9900 0.9932 1.0587 1.1203



of SSSS and CCCC. The top and bottom face of FGM

are alumina and aluminium, respectively. Its material

properties are given in Table 1. The material distri-

bution is chosen as 1=8=1½ � with n ¼ 1, while the

normalized frequency is defined as x� ¼

x ða2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

q0=E0

p

and q0 ¼ 1 kg=m3 and

4.3.3 Sandwich plates with isotropic core and FGM

face sheets (type C)

In this example we investigate the normalized fre-

quency of a SSSS sandwich square plate-type C. The

plate consists of a pure ceramic core, FGM skins with

metal-rich at top and bottom surfaces. The effective

properties are calculated by the rule of mixture.

Material properties of alumina and aluminium are

given in Table 1. The normalized frequency is defined

as x� ¼ x ða2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

q0=E0

p

with q0 ¼ 1 kg=m3 and

E0 ¼ 1 GPa. The results of the normalized frequency

obtained with different methods accounted for various

thickness ratios and gradient indices are gathered in

Table 7. Very good agreement between reference

methods (Li et al. 2008; Zenkour 2005) and the present

method are obtained.

(a)

(b)

(c)

Fig. 6 A rectangular FG plate subjected to in-plane loads: a uni-axial compression along x-axis ðf1 ¼ � 1; f2 ¼ 0Þ; b uni-axial

compression along y-axis ðf1 ¼ 0; f2 ¼ � 1Þ; c biaxial compression ðf1 ¼ � 1; f2 ¼ � 1Þ

E0 ¼ 1 GPa. Figure 5 depicts the first five mode 
shapes of the square plate with edges fully clamped. 
Table 6 shows the results of the normalized frequency 
obtained by the present method comparing with those 
obtained by using Ritz method based on the 3D linear 
elasticity theory of Li et al. (2008). It is worth noting 
that a good agreement between the present and 
reference solution and as expected, the normalized 
frequency magnitude increase when the boundary 
condition changes from SSSS to CCCC.



4.4 Buckling analysis

In this section, the buckling analysis of a rectangular

FGM plate subjected to biaxial or uni-axial in-plane

loading is considered. The problem geometry and

loading are shown in Fig. 6. The pre-buckling forces

are obtained by imposing the equilibrium require-

ments, as follows:

Fig. 7 First five buckling modes of the Al/Al2O3 free—simply supported square plate with a=b ¼ 1:5, ðf1 ¼ 0; f2 ¼ � 1Þ



r0x ¼ f1p r0y ¼ f2p s0xy ¼ 0 ð38Þ b=h ¼ 100 and a=b ¼ 1:5. Figure 7 plots the first five

buckling modes of the Al/Al2O3 free—simply sup-

ported square plate with a=b ¼ 1:5 and

ðf1 ¼ 0; f2 ¼ � 1Þ.The normalized buckling load

�Ncr ¼
12Ncra

2 1�t2ð Þ
Eh3

of the plate is calculated and

compared with the results available in the literature

and presented in Table 8. As can be seen in the table,

the results derived from the proposed method are in

good agreement with the analytical solutions pub-

lished in literature (Mohammadi et al. 2010). We also

compare to a numerical solution based on the IGA

(Yin et al. 2014) using S-FSDT, and the MK (Vu et al.

2018) using R-STSDT method.

Table 8 Buckling loads ðMN=mÞ for Al=Al2O3 rectangular plate with different boundary conditions and aspect ratios

n Method a=b ¼ 1:5 a=b ¼ 1:0

ðf1; f2Þ ðf1; f2Þ

- 1, 0 0, - 1 - 1, - 1 - 1, 0 0, - 1 - 1, - 1

(a) SFSF

1 S-FSDT based IGA (Yin et al. 2014) 0.0714 0.1305 0.0702 0.1630 0.3497 0.1596

Levy (Mohammadi et al. 2010) 0.0714 0.1305 0.0702 0.1630 0.3497 0.1712

R-STSDT-MK (Vu et al. 2018) 0.0716 0.1329 0.0705 0.1632 0.3535 0.1602

Present 0.0708 0.1268 0.0695 0.1619 0.3397 0.1582

2 S-FSDT based IGA (Yin et al. 2014) 0.0557 0.1018 0.0548 0.1272 0.2729 0.1245

Levy (Mohammadi et al. 2010) 0.0557 0.1019 0.0548 0.1272 0.2729 0.1245

Present 0.0552 0.0989 0.0542 0.1264 0.2651 0.1235

(b) SSSS

1 S-FSDT based IGA (Yin et al. 2014) 0.7429 0.3571 0.2472 0.6846 0.6846 0.3423

Levy (Mohammadi et al. 2010) 0.7430 0.3572 0.2473 0.6848 0.6848 0.3424

R-STSDT-MK (Vu et al. 2018) 0.7478 0.3577 0.2477 0.6850 0.6850 0.3425

Present 0.7398 0.3412 0.2361 0.6695 0.6695 0.3347

2 S-FSDT based IGA (Yin et al. 2014) 0.5797 0.2787 0.1929 0.5342 0.5342 0.2671

Levy (Mohammadi et al. 2010) 0.5798 0.2787 0.1930 0.5343 0.5343 0.2672

R-STSDT-MK (Vu et al. 2018) 0.5838 0.2791 0.1933 0.5346 0.5346 0.2673

Present 0.5325 0.2663 0.1843 0.5225 0.5225 0.2613

(c) SCSC

1 S-FSDT based IGA (Yin et al. 2014) 1.2177 0.8622 0.6448 1.3161 1.1542 0.6554

Levy (Mohammadi et al. 2010) 1.2181 0.8622 0.6450 1.3167 1.1544 0.6556

R-STSDT-MK (Vu et al. 2018) 1.2167 0.8649 0.6455 1.3224 1.1694 0.6579

Present 1.2200 0.8684 0.6467 1.3048 1.1538 0.6489

2 S-FSDT based IGA (Yin et al. 2014) 0.9502 0.6728 0.5031 1.0270 0.9006 0.5114

Levy (Mohammadi et al. 2010) 0.9506 0.6728 0.5033 1.0274 0.9008 0.5116

R-STSDT-MK (Vu et al. 2018) 0.9511 0.6758 0.5045 1.0342 0.9145 0.5142

Present 0.9541 0.6783 0.5050 1.0200 0.9010 0.5070

where p is the applied load per unit length, while f1; f2 
are the load parameters signified the loading condition. 
Negative values of the load parameter indicate com-

pression, and vice versa.

4.4.1 Isotropic FGM plates (type A)

In this example, the buckling analysis of an isotropic 
FGM plate with various boundary conditions made 
from Al/Al2O3 is investigated. The ratios of plate’s 
width to thickness and length to width are respectively



It should be noted that the N-RSHSDT gives

slightly lower results than those obtained by both

S-FSDT based IGA (Yin et al. 2014) and R-STSDT

based MK (Vu et al. 2018). Increasing the gradient

index decreases the buckling load. Buckling load

value is increased from SFSF to SSSS and SCSC since

the additional fixity that is posed by the supports. The

biaxial in-plane compress loading state has the buck-

ling loads which are lower values than those given by

the uni-axial in-plane compress loading state.

Fig. 8 Plots the first six uni-axial buckling modes of SSSS sandwich FGM plates of Type C with n ¼ 1:0 and 1–1–1



4.4.2 Sandwich plates with isotropic core and FGM

face sheets (type C)

made from the metal-rich at top and bottom surfaces.

FGM properties are assumed as Ec ¼ 380E0, Em ¼

70E0 with E0 ¼ 1 GPa. Figure 8 plots the first five

uni-axial buckling modes of the plate with graded

index n ¼ 1:0 and layer thickness ratios 1–1–1, while

Fig. 9 plots the first five bi-axial buckling modes one

Fig. 9 First six bi-axial buckling modes of SSSS sandwich FGM plates of Type C with n ¼ 1:0 and 1–1–1

In the problem we examine the normalized critical 
buckling loads of SSSS sandwich FGM square plate-
type C with the thickness ratio a=h ¼ 10. The core of 
the plate is the pure ceramic, while FGM skins are



for case of graded index n ¼ 1:0 and layer thickness

ratios 1–1–1.

The normalized critical load has a form as follow

�Ncr ¼
Ncra

2

100E0h3
. The critical buckling loads predicted by

the present approach are tabulated in Tables 9 and 10

for various power-law exponents n and layer thickness

ratios. Both tables include results obtained from

Zenkour’s sinusoidal shear deformation plate theory

SSDT(Zenkour 2005), Reddy’s higher-order shear

deformation plate theory TSDT (Reddy 2000) and

quasi-3D higher-order shear deformation theory

HSDT(Baferani et al. 2011).

Table 9 The uni-axial critical buckling load of SSSS sandwich FGM plates of Type C with a=h ¼ 10ð Þ

n Method 1–0–1 2–1–2 2–1–1 1–1–1 2–2–1 1–2–1

0.0 SSDT (Zenkour 2005) 13.0061 13.0061 13.0061 13.0061 13.0061 13.0061

TSDT (Reddy 2000) 13.0050 13.0050 13.0050 13.0050 13.0050 13.0050

HSDT (Baferani et al. 2011) 12.9529 12.9529 12.9529 12.9529 12.9529 12.9529

Present 13.0031 13.0031 13.0031 13.0031 13.0031 13.0031

1.0 SSDT (Zenkour 2005) 5.1685 5.8412 6.1946 6.4654 6.9498 7.5063

TSDT (Reddy 2000) 5.1671 5.8401 6.1939 6.4647 6.9494 7.5066

HSDT (Baferani et al. 2011) 5.0614 5.7114 6.0547 6.3150 6.7841 7.3200

Present 5.1676 5.8401 6.1941 6.4640 6.9489 7.5043

5.0 SSDT (Zenkour 2005) 2.6601 3.0441 3.4045 3.5806 4.1129 4.7349

TSDT (Reddy 2000) 2.6582 3.0426 3.4035 3.5796 4.1121 4.7347

HSDT (Baferani et al. 2011) 2.6365 3.0079 3.3626 3.5301 4.0507 4.6470

Present 2.6600 3.0438 3.4055 3.5800 4.1136 4.7336

10.0 SSDT (Zenkour 2005) 2.4893 2.7484 3.1344 3.1946 3.1457 4.3818

TSDT (Reddy 2000) 2.4873 2.7463 3.0919 3.1947 3.7075 4.2799

HSDT (Baferani et al. 2011) 2.4722 2.7205 3.0607 3.1576 3.6617 4.2055

Present 2.4894 2.7479 3.0940 3.1955 3.7095 4.2793

Table 10 The bi-axial

critical buckling load of

SSSS sandwich FGM plates

of Type C with a=b ¼ 10ð Þ

n Method 1–0–1 2–1–2 2–1–1 1–1–1 2–2–1 1–2–1

0.0 SSDT (Zenkour 2005) 6.5030 6.5030 6.5030 6.5030 6.5030 6.5030

TSDT (Reddy 2000) 6.5025 6.5025 6.5025 6.5025 6.5025 6.5025

HSDT (Baferani et al. 2011) 6.4764 6.4764 6.4764 6.4764 6.4764 6.4764

Present 6.5022 6.5022 6.5022 6.5022 6.5022 6.5022

1.0 SSDT (Zenkour 2005) 2.5842 2.9206 3.0973 3.2327 3.4749 3.7531

TSDT (Reddy 2000) 2.5836 2.9200 3.0970 3.2324 3.4747 3.7533

HSDT (Baferani et al. 2011) 2.5307 2.8557 3.0273 3.1575 3.3920 3.6600

Present 2.5840 2.9203 3.0973 3.2322 3.4747 3.7524

5.0 SSDT (Zenkour 2005) 1.3300 1.5220 1.7022 1.7903 2.0564 2.3674

TSDT (Reddy 2000) 1.3291 1.5213 1.7018 1.7898 2.0561 2.3673

HSDT (Baferani et al. 2011) 1.3183 1.5040 1.6813 1.7650 2.0254 2.3235

Present 1.3301 1.5220 1.7028 1.7901 2.0569 2.3670

10.0 SSDT (Zenkour 2005) 1.2448 1.3742 1.5672 1.5973 1.5729 2.1909

TSDT (Reddy 2000) 1.2436 1.3732 1.5460 1.5974 1.8538 2.1400

HSDT (Baferani et al. 2011) 1.2361 1.3602 1.5303 1.5788 1.8308 2.1028

Present 1.2448 1.3740 1.5471 1.5979 1.8549 2.1398
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