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Abstract. In this article, we present the abstract harmonic analysis as-
pects of the operator-valued continuous Gabor transform (CGT) on sec-
ond countable, non-unimodular, and type I locally compact groups. We
show that the operator-valued continuous Gabor transform CGT satis-
fies a Plancherel formula and an inversion formula. As an example, we
study these results on the continuous affine group.
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1. Introduction

The abstract aspects of non-commutative harmonic analysis play classical
role in mathematical (theoretical) physics and geometric analysis [5,6,12,19,
27]. Over the last decades, abstract non-commutative harmonic analysis has
achieved a significant popularity in coherent state transforms such as time-
scale (wavelet) transform and time-frequency (Gabor) transform and contin-
uous frame theory, see [3,8–11,21–23,26] and standard references therein.

The theoretical, computational, and applied aspects of time-frequency
(Gabor) analysis have been studied at depth by many researchers and au-
thors, see [1,2,4,7,17,18] and references therein. The mathematical theory of
Gabor analysis on the real line is based on the modulations and translations
of a given window signal (atom). The phase space (time-frequency plane) has
a unified group structure, which implies a concrete discretization and quan-
tization. Abstract harmonic analysis aspects of Gabor analysis on Euclidean
spaces imply a unified operator-valued generalizations of the Gabor analysis
to the set up of locally compact Abelian (LCA) groups, and non-Abelian,
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unimodular, and type I locally compact groups, see [13–16] and references
therein.

The following article introduces the abstract notion of continuous Ga-
bor transforms for classical Hilbert function spaces over non-unimodular and
type I groups. We aim to address abstract harmonic analysis aspects of the
operator-valued continuous Gabor transform (CGT) on second countable,
non-unimodular, and type I locally compact groups using tools from repre-
sentation theory. Throughout this paper which contains four sections, it is as-
sumed that G is a second countable, type I, and non-unimodular locally com-
pact group. Section 2 is devoted to fix notations and a brief summary on non-
Abelian Fourier analysis. Then, we define the continuous Gabor transform of
a square integrable function f on G, with respect to the window function ψ, as
a measurable field of operators defined on G× ̂G. Finally, in Sect. 4, we study
examples of continuous Gabor transform for the continuous affine group.

2. Preliminaries and Notations on Non-Abelian Fourier
Analysis

Let H be a separable Hilbert space. An operator T ∈ B(H) is called a Hilbert–
Schmidt operator if for one, and hence, for any orthonormal basis {ek} of H,
we have

∑

k ‖Tek‖2 < ∞. The set of all Hilbert–Schmidt operators on H
denoted by HS(H), and for T ∈ HS(H), we define Hilbert–Schmidt norm of
T as ‖T‖2

HS :=
∑

k ‖Tek‖2. It can be checked that HS(H) is a self-adjoint
and two sided ideal in B(H), and when H is finite-dimensional, we have
HS(Hπ) = B(H), also we call an operator T ∈ B(H) of trace-class, whenever
‖T‖tr := tr[|T |] < ∞, where tr[T ] :=

∑

k〈Tek, ek〉, and |T | = (TT ∗)1/2. For
more details about trace-class and Hilbert–Schmidt operators, we refer the
readers to [25].

Let (A,M) be a measurable space. A family {Hα}α∈A of non-zero sep-
arable Hilbert spaces indexed by A will be called a field of Hilbert spaces
over A. A map Φ on A, such that Φ(α) ∈ Hα for each α ∈ A will be called
a vector field on A. We denote the inner product and norm on Hα by 〈., .〉α

and ‖.‖α, respectively. A measurable field of Hilbert spaces over A is a field of
Hilbert spaces {Hα}α∈A together with a countable set {ej} of vector fields,
such that the functions α �→ 〈ej(α), ek(α)〉 are measurable for all j, k and
also the linear span of {ej(α)} is dense in Hα for each α ∈ A. Given a
measurable field of Hilbert spaces ({Hα}α∈A, {ej(α)}) on A, a vector field Φ
on A will be called measurable if 〈Φ(α), ej(α)〉α is measurable function on
A for each j. The direct integral of the spaces {Hα}α∈A with respect to a
measure dα on A is denoted by

∫

⊕

A
Hαdα. This is the space of measurable

vector fields Φ on A, such that we have ‖Φ‖2 =
∫

A
‖Φ(α)‖2

αdα < ∞. Then,

it is easily follows that
∫

⊕

A
Hαdα is a Hilbert space with the inner product

〈Φ,Ψ〉 =
∫

A
〈Φ(α),Ψ(α)〉αdα.

If G is a locally compact group, the notation ΔG stands for the modular
function of G, see [6,19]. The group G is called unimodular, if ΔG = 1.
Henceforth, when G is a locally compact group and dx is a left Haar measure
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on G, Cc(G) consists of all continuous complex-valued functions on G with
compact supports, and for each 1 ≤ p < ∞, the notation Lp(G) stands
for Lp(G, dx), that is the Banach space of equivalence classes of measurable
complex-valued functions on G whose pth powers are integrable.

Let π be a continuous unitary representation of G on the Hilbert space
Hπ (for more details and elementary descriptions about the topological group
representations, see [6,19,20]). The representation π is called primary, if only
scaler multiples of the identity belong to center of C(π). Primary represen-
tations are also known as factor representations. According to the Schur’s
lemma, Theorem 3.5 of [6], every irreducible representation is primary. More
generally, if π is a direct sum of irreducible representations, π is primary if
and only if all its irreducible subrepresentations are unitarily equivalent. The
group G is said to be type I, if every primary representation of G is a direct
sum of copies of some irreducible representation. The dual space ̂G is the set
of all equivalence classes [π] of irreducible unitary representations π of G and
we still use π to denote its equivalence class [π]. The dual space ̂G is usually
equipped with the Fell topology, see [6,24] for a discussion of this topology
on ̂G.

If G is unimodular, there is a measure dπ on ̂G, called the Plancherel
measure, uniquely determined once the Haar measure on G is fixed. The
family {HS(Hπ)}π∈ ̂G of Hilbert spaces indexed by ̂G is a field of Hilbert
spaces over ̂G. Recall that, HS(Hπ) is a Hilbert space with the inner product
〈T, S〉HS(Hπ) = tr(S∗T ). The direct integral of the spaces {HS(Hπ)}π∈ ̂G with

respect to dπ is denoted by
∫

⊕

̂G
HS(Hπ)dπ, and for convenience, we use the

notation H2( ̂G) for it. If f ∈ L1(G), the unimodular Fourier transform of f

is a measurable field of operators over ̂G given by

Ff(π) = ̂f(π) =
∫

G

f(x)π(x)∗dx. (2.1)

Let J 1(G) := L1(G) ∩ L2(G) and J 2(G) be the finite linear combinations
of convolutions of elements of J 1(G). In [28], Segal proved that, when G is
a second countable, non-Abelian, unimodular, and type I group, there is a
measure dπ on ̂G, uniquely determine once the Haar measure dx on G is fixed,
which is called the Plancherel measure and satisfies the following properties:

(1) (Unimodular Plancherel theorem) The Fourier transform f �→ ̂f maps
J 1(G) into H2( ̂G) and it extends to a unitary map from L2(G) onto
H2( ̂G).

(2) (Unimodular Fourier inversion formula) Each h ∈ J 2(G) satisfies the
Fourier inversion formula h(x) =

∫

̂G
tr[π(x)̂h(π)]dπ.

In non-unimodular case, the Fourier transform of f ∈ L1(G) at π ∈ ̂G
is redefined via

̂f(π) =
∫

G

f(x)π(x)Dπdx = π(f)Dπ, (2.2)

where the measurable field of densely defined self-adjoint positive operators
with densely defined inverses {Dπ}π∈ ̂G is such that for all f ∈ L1(G)∩L2(G),
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we have π(f)D−1
π ∈ HS(Hπ). We also have the following Plancherel formula

and Fourier inversion formula in the non-unimodular case. For more details
on the Fourier analysis of non-unimodular type I groups and also proofs of
the following results, we refer readers to [24,29] and references therein.

Theorem 2.1 (Non-unimodular Plancherel theorem). Let G be a second count-
able locally compact group, such that H := ker(ΔG) is a type I group in
which G acts regularly on ̂H. Then, there exists a Plancherel measure dλ

(for summary dπ) on ̂G and also a measurable field {Dπ}π∈ ̂G of densely de-
fined self-adjoint positive operators with densely defined inverses, such that
for all f ∈ L1(G) ∩ L2(G), we have π(f)D−1

π ∈ HS(Hπ) with

‖f‖2
L2(G) =

∫

̂G

∥

∥π(f)D−1
π

∥

∥

2

HS
dπ, (2.3)

also the linear map f �→ ̂f on L1(G) ∩ L2(G) given by

̂f(π) := π(f)D−1
π ,

extends uniquely to the unitary operator (non-unimodular Fourier transform):

̂ : L2(G) → H2( ̂G) =
∫

⊕

̂G

HS(Hπ)dπ.

Theorem 2.2 (Non-unimodular Fourier inversion formula). Let G be a second
countable locally compact group, such that H := ker(ΔG) is a type I group in
which G acts regularly on ̂H. Then, the Plancherel measure dλ (for summary
dπ) and the operator field {Dπ}π∈ ̂G can be chosen to satisfy the following
inversion formula:

f(x) =
∫

̂G

tr[ ̂f(π)D−1
π π(x)∗]dπ =

∫

̂G

tr[π(f)D−2
π π(x)∗]dπ, (2.4)

for all f in a dense subset of L2(G). The inversion formula (2.4) converges
absolutely in the sense that λ-almost every ̂f(π)D−1

π = π(f)D−2
π extends to

a trace-class operator, and the integral over the trace-class norms is finite.

3. Non-Unimodular Continuous Gabor Transform

Throughout this paper, we assume that G is a second countable,
non-unimodular, and type I group in which G acts regularly on ̂H, with
H = ker(ΔG) where ΔG is the modular function of G. Suppose that for each
π ∈ ̂G, there is a (probably unbounded) self-adjoint operator Dπ on Hπ, such
that for all x ∈ G, we have (see [6] and references therein):

Dππ(x) = ΔG(x)1/2π(x)Dπ. (3.1)

Let daσ be the product of the left Haar measure dx on G and the Plancherel
measure dπ on ̂G. For each (x, π) ∈ G × ̂G, let

H(x,π) := π(x)DπHS(Hπ), (3.2)
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where

π(x)DπHS(Hπ) = {π(x)DπT : T ∈ HS(Hπ)}.

It can be checked that H(x,π) is a Hilbert space with respect to the inner
product

〈π(x)DπT, π(x)DπS〉H(x,π) := tr(S∗T ), for S, T ∈ HS(Hπ). (3.3)

The family {H(x,π)}(x,π)∈G× ̂G of Hilbert spaces indexed by G× ̂G is a field of

Hilbert spaces over G× ̂G. The direct integral of the spaces {H(x,π)}(x,π)∈G× ̂G

with respect to σ, is denoted by H2(G× ̂G), that is the space of all measurable
vector fields F on G × ̂G, such that

‖F‖2
H2(G× ̂G)

=
∫

G× ̂G

‖F (x, π)‖2
(x,π)daσ(x, π) < ∞.

It can also be checked that H2(G × ̂G) becomes a Hilbert space, with the
inner product

〈F,K〉H2(G× ̂G) =
∫

G× ̂G

tr[K(x, π)∗F (x, π))]daσ(x, π).

Let ψ be a window function [a fixed non-zero function in L2(G)] and
f ∈ L2(G). Define the continuous Gabor transform of f with respect to the
window function ψ, as a measurable field of operators {Gψf(x, π)}(x,π)∈G× ̂G

on G × ̂G by

Gψf(x, π) := ΔG(x)1/2

∫

G

f(y)ψ(x−1y)π(y)D−1
π dy. (3.4)

The operator-valued integral (3.4) is considered in the weak sense. In other
words, for each (x, π) ∈ G × ̂G and ζ, ξ ∈ Hπ, we have

〈Gψf(x, π)ζ, ξ〉 =
∫

G

f(y)ψ(x−1y)〈π(y)D−1
π ζ, ξ〉dy.

Thus, we have

|〈Gψf(x, π)ζ, ξ〉| =
∣

∣

∣

∣

∫

G

f(y)ψ(x−1y)〈π(y)D−1
π ζ, ξ〉dy

∣

∣

∣

∣

=
∫

G

|f(y)ψ(x−1y)||〈π(y)D−1
π ζ, ξ〉|dy

≤
∫

G

|f(y)ψ(x−1y)|‖π(y)D−1
π ζ‖‖ξ‖dy

≤ ‖D−1
π ζ‖‖ξ‖

∫

G

|f(y)ψ(x−1y)|dy

= ‖D−1
π ζ‖‖ξ‖‖f‖L2(G)‖ψ‖L2(G).

For (x, π) ∈ G × ̂G, we can write

Gψf(x, π) = ΔG(x)1/2

∫

G

f(y)ψ(x−1y)π(y)D−1
π dy
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= ΔG(x)1/2

(∫

G

f(y)ψ(x−1y)π(y)dy

)

D−1
π

= ΔG(x)1/2

(∫

G

f(xy)ψ(y)π(xy)dy

)

D−1
π

= ΔG(x)1/2π(x)
(∫

G

f(xy)ψ(y)π(y)dy

)

D−1
π .

If f ∈ Cc(G) and ψ ∈ L2(G), we have f.Lxψ ∈ L1(G) ∩ L2(G) for each x ∈
G. Hence, the non-unimodular Plancherel theorem implies that ̂f.Lxψ(π) =
π(f.Lxψ)D−1

π is a Hilbert–Schmidt operator for almost everywhere π ∈ ̂G.
Thus, for σ-almost every (x, π) in G × ̂G, we have Gψf(x, π) ∈ H(x,π).

In the next proposition, we state concrete and unified representations
of the continuous Gabor transform defined in (3.4).

If G is a locally compact and non-unimodular group with the modu-
lar function ΔG and 1 ≤ p < ∞, the involution for g ∈ Lp(G) is g̃(x) =
ΔG(x)−1/pg(x−1).

Proposition 3.1. Let ψ ∈ L2(G) be a window function and f ∈ Cc(G). Then,
for each (x, π) ∈ G × ̂G, we have

(1) Gψf(x, π) = ̂Lψ
x (f)(π), where Lψ

x (f) := f(y)ψ(x−1y) for y ∈ G.

(2) Gψf(x, π)∗ = F
(

˜Lψ
x (f)

)

(π).

The representation (1) sometimes called as the Fourier representation of the
continuous Gabor transform (3.4).

Proof. (1) follows from the definition of redefined non-unimodular Fourier
transform. (2) If f ∈ Cc(G) and x ∈ G, we have Lxψ ∈ L2(G). Then, the
Hölder’s inequality guarantees that Lψ

x (f) = f.Lxψ ∈ L1(G), and also, we
have

˜Lψ
x (f) = ˜f. ˜Lxψ. (3.5)

Note that in Eq. (3.5), the left-side involution is as an element of L1(G) and
also the right-side involutions are as elements of L2(G). Let y ∈ G. Then, we
can write
˜Lψ

x (f)(y) = ΔG(y−1)Lψ
x (f)(y−1)

= ΔG(y−1)f(y−1)ψ(x−1y−1)

= ΔG(y)−1f(y−1)Lxψ(y−1)

= ΔG(y)−1/2f(y−1)ΔG(y)−1/2Lxψ(y−1)= ˜f(y) ˜Lxψ(y)= ˜f. ˜Lxψ(y).

(2) Let (x, π) ∈ G × ̂G and ζ, ξ ∈ Hπ. Using the identity ˜Lψ
x (f) = ˜f. ˜Lxψ, we

get

〈Gψf(x, π)∗ζ, ξ〉 = 〈ζ,Gψf(x, π)ξ〉

=
∫

G

〈ζ, f(y)ψ(x−1y)π(y)D−1
π ξ〉dy
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=
∫

G

〈f(y)Lxψ(y)π(y)∗ζ,D−1
π ξ〉dy

=
∫

G

〈f(y)Lxψ(y)π(y−1)ζ,D−1
π ξ〉dy

=
∫

G

〈f(y−1)Lxψ(y−1)π(y)ζ,D−1
π ξ〉ΔG(y−1)dy

=
∫

G

〈 ˜f(y) ˜Lxψ(y)π(y)ζ, ξ〉dy

=
∫

G

〈 ˜Lψ
x (f)(y)π(y)ζ, ξ〉dy =

〈

F
(

˜Lψ
x (f)

)

(π)ζ, ζ

〉

.

In the next theorem, we shall show that the continuous Gabor trans-
form satisfies a Plancherel formula. From operator theory aspects, the next
theorem guarantees that the continuous Gabor transform (3.4) is a multiple
of an isometry, and hence, it has closed range.

Theorem 3.2. Let ψ ∈ L2(G) be a given window function. Then, for each
f ∈ Cc(G), we have

‖Gψf‖H2(G× ̂G) = ‖f‖L2(G)‖ψ‖L2(G). (3.6)

Proof. Using Proposition 3.1, Theorem 2.1 of [24], and Fubini’s theorem, we
have

‖Gψf‖2
H2(G× ̂G)

=
∫

G× ̂G

‖Gψf(x, π)‖2
(x,π)daσ(x, π)

=
∫

G× ̂G

tr[Gψf(x, π)∗Gψf(x, π)]daσ(x, π)

=
∫

G

(∫

̂G

tr[Gψf(x, π)∗Gψf(x, π)]dπ

)

dx

=
∫

G

ΔG(x)

(

∫

̂G

tr[
̂

˜Lψ
x (f)(π) ̂Lψ

x (f)(π)]dπ

)

dx

=
∫

G

ΔG(x)
(∫

̂G

tr[ ̂Lψ
x (f)(π)

∗
̂Lψ

x (f)(π)]dπ

)

dx.

Now, since Lψ
x (f) belongs to L1(G) ∩ L2(G), we get

∫

G

ΔG(x)
(∫

̂G

tr[ ̂Lψ
x (f)(π)

∗
̂Lψ

x (f)(π)]dπ

)

dx

=
∫

G

ΔG(x)
(∫

G

Lψ
x (f)(y)Lψ

x (f)(y)dy

)

dx

=
∫

G

ΔG(x)
(∫

G

f(y)f(y)ψ(x−1y)ψ(x−1y)dy

)

dx

=
∫

G

f(y)f(y)
(∫

G

ΔG(x) ψ(x−1y)ψ(x−1y)dx

)

dy = ‖f‖2
L2(G)‖ψ‖2

L2(G),

which implies (3.6). �
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According to Theorem 3.2, the continuous Gabor transform Gψ : Cc(G)
→ H2(G × ̂G) defined by f �→ Gψf is a multiple an isometry. Therefore,
we can extend Gψ uniquely to a bounded linear operator from L2(G) into
a closed subspace of H2(G × ̂G) which we still use the notation Gψ for this
extension, and this extension for each f ∈ L2(G) satisfies

‖Gψf‖H2(G× ̂G) = ‖f‖L2(G)‖ψ‖L2(G).

The vector field Gψf is called the continuous Gabor transform of f ∈ L2(G)
with respect to the window function ψ, which can also be considered as the
sesquilinear map (f, ψ) �→ Gψf from L2(G) × L2(G) into H2(G × ̂G).

Proposition 3.3. Let ψ and ϕ be two window functions. The continuous Gabor
transform satisfies the following orthogonality relation:

〈Gψf,Gϕg〉H2(G× ̂G) = 〈ϕ,ψ〉L2(G)〈f, g〉L2(G),

for all f, g ∈ L2(G). Moreover, the normalized Gabor transform ‖ψ‖−1
L2(G)Gψ

is an isometry from L2(G) onto a closed subspace of H2(G × ̂G).

Let ψ be a window function and K ∈ H2(G × ̂G). The conjugate linear
functional

g �→ 
K
ψ (g) :=

∫

G× ̂G

tr[K(y, π)Gψg(y, π)∗]daσ(y, π),

is a bounded functional on L2(G). Because, using the Cauchy–Schwartz in-
equality and also Theorem 3.2, we can write

|
K
ψ (g)| =

∣

∣

∣

∣

∫

G× ̂G

tr[K(y, π)Gψg(y, π)∗]daσ(y, π)
∣

∣

∣

∣

≤
∫

G× ̂G

|tr[K(y, π)Gψg(y, π)∗]| daσ(y, π)

≤ ‖K‖H2(G× ̂G)‖Gψg‖H2(G× ̂G) = ‖K‖H2(G× ̂G)‖ψ‖L2(G)‖g‖L2(G).

Thus, 
K
ψ defines a unique element in L2(G). From now on, we use the nota-

tion
∫

G× ̂G

tr[K(y, π)Mπ(Lyψ)]daσ(y, π),

for this element of L2(G). According to this notation, for each g ∈ L2(G), we
have

〈∫

G× ̂G

tr[K(y, π)Mπ(Lyψ)]daσ(y, π), g
〉

L2(G)

=
∫

G× ̂G

tr[K(y, π)Gψg(y, π)∗]daσ(y, π).

In the next theorem, we prove an inversion formula.



MJOM Operator-Valued Gabor Page 9 of 14 136

Theorem 3.4. Let ψ,ϕ be two window functions, such that 〈ϕ,ψ〉L2(G) �= 0.
Then, for each f ∈ L2(G), we have

f = 〈ϕ,ψ〉−1
L2(G)

∫

G× ̂G

tr[Gψf(y, π)Mπ(Lyϕ)]daσ(y, π).

Proof. By Theorem 3.2, we have Gψf ∈ H2(G × ̂G). As it is mentioned, the
integral

〈ϕ,ψ〉−1
L2(G)

∫

G× ̂G

tr[Gψf(y, π)Mπ(Lyϕ)]daσ(y, π),

denotes a well-defined function in L2(G). Let us use the notation fϕ
ψ for this

function. Using Corollary 3.3, for each g ∈ L2(G), we have

〈fϕ
ψ , g〉L2(G) = 〈ϕ,ψ〉−1

L2(G)

∫

G× ̂G

tr[Gψf(y, π)Gϕg(y, π)∗]daσ(y, π)

= 〈ϕ,ψ〉−1
L2(G)〈Gψf,Gϕg〉H2(G× ̂G) = 〈f, g〉L2(G),

which implies that f = fϕ
ψ in L2(G). �

Corollary 3.5. Let ψ be a window function, such that ‖ψ‖L2(G) = 1. Then,
for each f ∈ L2(G), we have

f =
∫

G× ̂G

tr[Gψf(y, π)Mπ(Lyψ)]daσ(y, π).

The following proposition presents a formula concerning the continuous
Gabor transform with respect to two non-orthogonal window functions.

Proposition 3.6. For window functions ψ and ϕ with 〈ϕ,ψ〉L2(G) �= 0, we
have

G∗
ϕGψ = 〈ϕ,ψ〉L2(G)IL2(G). (3.7)

Proof. Let Sϕ : H2(G × ̂G) → L2(G) be the bounded linear operator given
by

Sϕ(K) =
∫

G× ̂G

tr[K(y, π)Mπ(Lyϕ)]daσ(y, π).

Then, Sϕ is the adjoint operator of Gϕ. Using Proposition 3.1, for each f ∈
L2(G) and K ∈ H2(G × ̂G), we have



136 Page 10 of 14 A.Ghaani Farashahi MJOM

〈Sϕ(K), f〉L2(G) =
∫

G× ̂G

tr[K(y, π)Gϕf(y, π)∗]daσ(y, π)

= 〈K,Gϕf〉H2(G× ̂G) = 〈G∗
ϕ(K), f〉L2(G).

Now, Theorem 3.4 implies (3.7). �

4. Continuous Affine Group

Let Gτ = (0,∞) �τ R be the affine group ax + b, which is the group of
all affine transformations x → ax + b of R with a ∈ (0,∞) and b ∈ R

or with the semi-direct approach the semi-direct group of H �τ K, where
H = (0,∞), K = R, and the continuous homomorphism τ : H → Aut(K)
given by a �→ τa, where τa(b) := ab for all b ∈ R. The group law for all
q = (a, b), p = (α, β) ∈ Gτ = (0,∞) �τ R is

q �τ p = (a, b) �τ (α, β) := (aα, b + τa(β)) = (aα, b + aβ),

q−1 = (a, b)−1 := (a−1, τa−1(−b)) = (1/a,−b/a).

Then, dlp = dμl(a, b) = dadb/a2 is a left Haar measure and drp = dμr(a, b) =
dadb/a is a right Haar measure for G, and also the modular function for p =
(a, b) ∈ G is ΔGτ

(a, b) = 1/a. All one-dimensional irreducible representations
of Gτ are of the form πλ for some λ ∈ R, where πλ(a, b) = aiλ for all
(a, b) ∈ Gτ and λ ∈ R ([6]). Let π : Gτ → U(L2(R)) be the continuous
unitary representation of Gτ given by

[π(a, b)g](x) = a1/2e2πibxg(ax), for x ∈ R and g ∈ L2(R). (4.1)

Let the continuous unitary representations π+ and π− be the subrepresen-
tations of the continuous unitary representation π on the subspaces H+ =
L2(Ω+) and H+ = L2(Ω−), respectively, where Ω+ = (0,+∞) and Ω− =
(−∞, 0). Then

̂Gτ = {πλ : λ ∈ R} ∪ {π±}. (4.2)
Let D± : H± → H± be given by

[D±g](t) = |t|1/2g(t), for g ∈ H± = L2(Ω±). (4.3)

Then, the operators D± : H± → H± satisfy

D±π±(q) = D±π±(a, b) = a−1/2π±(a, b)D±, (4.4)

for all q = (a, b) ∈ Gτ = (0,∞) � R. The modified Fourier transform will be

̂f(π±) = π±(f)D±, for f ∈ L1(Gτ ) ∩ L2(Gτ ). (4.5)

For f ∈ L1(Gτ ) ∩ L2(Gτ ) and q = (a, b) ∈ Gτ , π ∈ ̂Gτ , we have

Gψf(q, π) = ΔGτ (q)

∫

Gτ

f(p)ψ(p−1q)π(p)D−1
π dμl(p)

= ΔGτ (a, b)1/2

∫

Gτ

f(α, β)ψ((a, b)−1
�τ (α, β))π(α, β)D−1

π dμl(α, β)

= a−1/2

∫ +∞

0

∫ +∞

−∞
f(α, β)ψ((a, b)−1

�τ (α, β))π(α, β)D−1
π

dαdβ

α2
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= a−1/2

∫ +∞

0

∫ +∞

−∞
f(α, β)ψ((1/a,−b/a) �τ (α, β))π(α, β)D−1

π
dαdβ

α2

= a−1/2

∫ +∞

0

∫ +∞

−∞
f(α, β)ψ(α/a, (−b + β)/a)π(α, β)D−1

π
dαdβ

α2
.

Example 4.1. Let f ∈ L1(Gτ ) ∩ L2(Gτ ) and ψ ∈ Cc(Gτ ). If q = (a, b) ∈ Gτ ,
we have

Gψf(q, π±) = a−1/2

∫ +∞

0

∫ +∞

−∞
f(α, β)ψ(α/a, (−b + β)/a)π±(α, β)D−1

π±
dαdβ

α2

= a−1/2

∫ +∞

0

∫ +∞

−∞
f(α, β)ψ(α/a, (−b + β)/a)π±(α, β)D−1

±
dαdβ

α2
.

Then, for all f ,g ∈ H±, we get

〈Gψf(q, π±)f ,g〉H± = 〈Gψf(a, b, π±)f ,g〉L2(Ω±)

= a−1/2

∫ +∞

0

∫ +∞

−∞
f(α, β)ψ(α/a, (−b + β)/a)

× 〈π±(α, β)D−1
± f ,g〉L2(Ω±)

dαdβ

α2

= a−1/2

∫ +∞

0

∫ +∞

−∞
f(α, β)ψ(α/a, (−b + β)/a)

×
(

∫

Ω±
[π±(α, β)D−1

± f ](t)g(t)dt

)

dαdβ

α2

= a−1/2

∫ +∞

0

∫ +∞

−∞
f(α, β)ψ(α/a, (−b + β)/a)

×
(

∫

Ω±
α1/2e2πiβt[D−1

± f ](αt)g(t)dt

)

dαdβ

α2

= a−1/2

∫ +∞

0

∫ +∞

−∞
f(α, β)ψ(α/a, (−b + β)/a)

×
(

∫

Ω±
α1/2e2πiβt|αt|−1/2f(αt)g(t)dt

)

dαdβ

α2

= a−1/2

∫ +∞

0

∫ +∞

−∞
f(α, β)ψ(α/a, (−b + β)/a)

×
(

∫

Ω±
|t|−1/2e2πiβtf(αt)g(t)dt

)

dαdβ

α2
.

Example 4.2. Let f ∈ L1(Gτ )∩L2(Gτ ), ψ ∈ Cc(Gτ ), λ ∈ R, and q = (a, b) ∈
Gτ . Then

Gψf(q, λ) = Gψf(a, b, πλ)

= a−1/2

∫ +∞

0

∫ +∞

−∞
f(α, β)ψ(α/a, (−b + β)/a)πλ(α, β)D−1

πλ

dαdβ

α2
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= a−1/2

∫ +∞

0

∫ +∞

−∞
f(α, β)ψ(α/a, (−b + β)/a)πλ(α, β)

dαdβ

α2

= a−1/2

∫ +∞

0

∫ +∞

−∞
αiλf(α, β)ψ(α/a, (−b + β)/a)

dαdβ

α2
.
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