Mediterr. J. Math. (2017) 14:136 DOI 10.1007/s00009-017-0936-4 1660-5446/17/030001-14 *published online* May 18, 2017 © The Author(s) 2017 This article is an open access publication

Mediterranean Journal of Mathematics

Operator-Valued Continuous Gabor Transforms over Non-unimodular Locally Compact Groups

Arash Ghaani Farashahi

Abstract. In this article, we present the abstract harmonic analysis aspects of the operator-valued continuous Gabor transform (CGT) on second countable, non-unimodular, and type I locally compact groups. We show that the operator-valued continuous Gabor transform CGT satisfies a Plancherel formula and an inversion formula. As an example, we study these results on the continuous affine group.

Mathematics Subject Classification. Primary 43A30, 43A32, 43A65, 22D10.

Keywords. Continuous Gabor transform, Fourier transform, Plancherel formula, Plancherel measure, unitary representation, irreducible representation, primary representation, type I group, non-unimodular group, measurable field of operators.

1. Introduction

The abstract aspects of non-commutative harmonic analysis play classical role in mathematical (theoretical) physics and geometric analysis [5, 6, 12, 19, 27]. Over the last decades, abstract non-commutative harmonic analysis has achieved a significant popularity in coherent state transforms such as time-scale (wavelet) transform and time-frequency (Gabor) transform and continuous frame theory, see [3, 8-11, 21-23, 26] and standard references therein.

The theoretical, computational, and applied aspects of time-frequency (Gabor) analysis have been studied at depth by many researchers and authors, see [1,2,4,7,17,18] and references therein. The mathematical theory of Gabor analysis on the real line is based on the modulations and translations of a given window signal (atom). The phase space (time-frequency plane) has a unified group structure, which implies a concrete discretization and quantization. Abstract harmonic analysis aspects of Gabor analysis on Euclidean spaces imply a unified operator-valued generalizations of the Gabor analysis to the set up of locally compact Abelian (LCA) groups, and non-Abelian,

unimodular, and type I locally compact groups, see $[13\mathcal{-16}]$ and references therein.

The following article introduces the abstract notion of continuous Gabor transforms for classical Hilbert function spaces over non-unimodular and type I groups. We aim to address abstract harmonic analysis aspects of the operator-valued continuous Gabor transform (CGT) on second countable, non-unimodular, and type I locally compact groups using tools from representation theory. Throughout this paper which contains four sections, it is assumed that G is a second countable, type I, and non-unimodular locally compact group. Section 2 is devoted to fix notations and a brief summary on non-Abelian Fourier analysis. Then, we define the continuous Gabor transform of a square integrable function f on G, with respect to the window function ψ , as a measurable field of operators defined on $G \times \hat{G}$. Finally, in Sect. 4, we study examples of continuous Gabor transform for the continuous affine group.

2. Preliminaries and Notations on Non-Abelian Fourier Analysis

Let \mathcal{H} be a separable Hilbert space. An operator $T \in \mathcal{B}(\mathcal{H})$ is called a Hilbert– Schmidt operator if for one, and hence, for any orthonormal basis $\{e_k\}$ of \mathcal{H} , we have $\sum_k ||Te_k||^2 < \infty$. The set of all Hilbert–Schmidt operators on \mathcal{H} denoted by $\mathrm{HS}(\mathcal{H})$, and for $T \in \mathrm{HS}(\mathcal{H})$, we define Hilbert–Schmidt norm of T as $||T||_{\mathrm{HS}}^2 := \sum_k ||Te_k||^2$. It can be checked that $\mathrm{HS}(\mathcal{H})$ is a self-adjoint and two sided ideal in $\mathcal{B}(\mathcal{H})$, and when \mathcal{H} is finite-dimensional, we have $\mathrm{HS}(\mathcal{H}_{\pi}) = \mathcal{B}(\mathcal{H})$, also we call an operator $T \in \mathcal{B}(\mathcal{H})$ of trace-class, whenever $||T||_{\mathrm{tr}} := \mathrm{tr}[|T|] < \infty$, where $\mathrm{tr}[T] := \sum_k \langle Te_k, e_k \rangle$, and $|T| = (TT^*)^{1/2}$. For more details about trace-class and Hilbert–Schmidt operators, we refer the readers to [25].

Let (A, \mathcal{M}) be a measurable space. A family $\{\mathcal{H}_{\alpha}\}_{\alpha \in A}$ of non-zero separable Hilbert spaces indexed by A will be called a field of Hilbert spaces over A. A map Φ on A, such that $\Phi(\alpha) \in \mathcal{H}_{\alpha}$ for each $\alpha \in A$ will be called a vector field on A. We denote the inner product and norm on \mathcal{H}_{α} by $\langle ., . \rangle_{\alpha}$ and $\|.\|_{\alpha}$, respectively. A measurable field of Hilbert spaces over A is a field of Hilbert spaces $\{\mathcal{H}_{\alpha}\}_{\alpha \in A}$ together with a countable set $\{e_j\}$ of vector fields, such that the functions $\alpha \mapsto \langle e_j(\alpha), e_k(\alpha) \rangle$ are measurable for all j, k and also the linear span of $\{e_j(\alpha)\}$ is dense in \mathcal{H}_{α} for each $\alpha \in A$. Given a measurable field of Hilbert spaces $(\{\mathcal{H}_{\alpha}\}_{\alpha \in A}, \{e_j(\alpha)\})$ on A, a vector field Φ on A will be called measurable if $\langle \Phi(\alpha), e_j(\alpha) \rangle_{\alpha}$ is measurable function on A for each j. The direct integral of the spaces $\{\mathcal{H}_{\alpha}\}_{\alpha \in A}$ with respect to a measure $d\alpha$ on A is denoted by $\int_{A}^{\oplus} \mathcal{H}_{\alpha} d\alpha$. This is the space of measurable vector fields Φ on A, such that we have $\|\Phi\|^2 = \int_A \|\Phi(\alpha)\|_{\alpha}^2 d\alpha < \infty$. Then, it is easily follows that $\int_{A}^{\oplus} \mathcal{H}_{\alpha} d\alpha$ is a Hilbert space with the inner product $\langle \Phi, \Psi \rangle = \int_A \langle \Phi(\alpha), \Psi(\alpha) \rangle_{\alpha} d\alpha$.

If G is a locally compact group, the notation Δ_G stands for the modular function of G, see [6,19]. The group G is called unimodular, if $\Delta_G = 1$. Henceforth, when G is a locally compact group and dx is a left Haar measure on G, $C_c(G)$ consists of all continuous complex-valued functions on G with compact supports, and for each $1 \leq p < \infty$, the notation $L^p(G)$ stands for $L^p(G, dx)$, that is the Banach space of equivalence classes of measurable complex-valued functions on G whose pth powers are integrable.

Let π be a continuous unitary representation of G on the Hilbert space \mathcal{H}_{π} (for more details and elementary descriptions about the topological group representations, see [6,19,20]). The representation π is called primary, if only scaler multiples of the identity belong to center of $\mathcal{C}(\pi)$. Primary representations are also known as factor representations. According to the Schur's lemma, Theorem 3.5 of [6], every irreducible representation is primary. More generally, if π is a direct sum of irreducible representations, π is primary if and only if all its irreducible subrepresentations are unitarily equivalent. The group G is said to be type I, if every primary representation of G is a direct sum of copies of some irreducible representation. The dual space \hat{G} is the set of all equivalence classes [π] of irreducible unitary representations π of G and we still use π to denote its equivalence class [π]. The dual space \hat{G} is usually equipped with the Fell topology, see [6,24] for a discussion of this topology on \hat{G} .

If G is unimodular, there is a measure $d\pi$ on \widehat{G} , called the Plancherel measure, uniquely determined once the Haar measure on G is fixed. The family $\{\mathrm{HS}(\mathcal{H}_{\pi})\}_{\pi\in\widehat{G}}$ of Hilbert spaces indexed by \widehat{G} is a field of Hilbert spaces over \widehat{G} . Recall that, $\mathrm{HS}(\mathcal{H}_{\pi})$ is a Hilbert space with the inner product $\langle T, S \rangle_{\mathrm{HS}(\mathcal{H}_{\pi})} = \mathrm{tr}(S^*T)$. The direct integral of the spaces $\{\mathrm{HS}(\mathcal{H}_{\pi})\}_{\pi\in\widehat{G}}$ with respect to $d\pi$ is denoted by $\int_{\widehat{G}}^{\bigoplus} \mathrm{HS}(\mathcal{H}_{\pi}) d\pi$, and for convenience, we use the notation $\mathcal{H}^2(\widehat{G})$ for it. If $f \in L^1(G)$, the unimodular Fourier transform of fis a measurable field of operators over \widehat{G} given by

$$\mathcal{F}f(\pi) = \widehat{f}(\pi) = \int_G f(x)\pi(x)^* \mathrm{d}x.$$
(2.1)

Let $\mathcal{J}^1(G) := L^1(G) \cap L^2(G)$ and $\mathcal{J}^2(G)$ be the finite linear combinations of convolutions of elements of $\mathcal{J}^1(G)$. In [28], Segal proved that, when G is a second countable, non-Abelian, unimodular, and type I group, there is a measure $d\pi$ on \widehat{G} , uniquely determine once the Haar measure dx on G is fixed, which is called the Plancherel measure and satisfies the following properties:

- (1) (Unimodular Plancherel theorem) The Fourier transform $f \mapsto \hat{f}$ maps $\mathcal{J}^1(G)$ into $\mathcal{H}^2(\hat{G})$ and it extends to a unitary map from $L^2(G)$ onto $\mathcal{H}^2(\hat{G})$.
- (2) (Unimodular Fourier inversion formula) Each $h \in \mathcal{J}^2(G)$ satisfies the Fourier inversion formula $h(x) = \int_{\widehat{G}} tr[\pi(x)\widehat{h}(\pi)]d\pi$.

In non-unimodular case, the Fourier transform of $f \in L^1(G)$ at $\pi \in \widehat{G}$ is redefined via

$$\widehat{f}(\pi) = \int_G f(x)\pi(x)D_\pi dx = \pi(f)D_\pi, \qquad (2.2)$$

where the measurable field of densely defined self-adjoint positive operators with densely defined inverses $\{D_{\pi}\}_{\pi \in \widehat{G}}$ is such that for all $f \in L^1(G) \cap L^2(G)$, we have $\pi(f)D_{\pi}^{-1} \in \mathrm{HS}(\mathcal{H}_{\pi})$. We also have the following Plancherel formula and Fourier inversion formula in the non-unimodular case. For more details on the Fourier analysis of non-unimodular type I groups and also proofs of the following results, we refer readers to [24, 29] and references therein.

Theorem 2.1 (Non-unimodular Plancherel theorem). Let G be a second countable locally compact group, such that $H := \ker(\Delta_G)$ is a type I group in which G acts regularly on \widehat{H} . Then, there exists a Plancherel measure $d\lambda$ (for summary $d\pi$) on \widehat{G} and also a measurable field $\{D_{\pi}\}_{\pi\in\widehat{G}}$ of densely defined self-adjoint positive operators with densely defined inverses, such that for all $f \in L^1(G) \cap L^2(G)$, we have $\pi(f)D_{\pi}^{-1} \in HS(\mathcal{H}_{\pi})$ with

$$\|f\|_{L^{2}(G)}^{2} = \int_{\widehat{G}} \|\pi(f)D_{\pi}^{-1}\|_{HS}^{2} \mathrm{d}\pi, \qquad (2.3)$$

also the linear map $f \mapsto \widehat{f}$ on $L^1(G) \cap L^2(G)$ given by

$$\widehat{f}(\pi) := \pi(f) D_{\pi}^{-1},$$

extends uniquely to the unitary operator (non-unimodular Fourier transform):

$$\widehat{}: L^2(G) \to \mathcal{H}^2(\widehat{G}) = \int_{\widehat{G}}^{\bigoplus} HS(\mathcal{H}_\pi) \mathrm{d}\pi$$

Theorem 2.2 (Non-unimodular Fourier inversion formula). Let G be a second countable locally compact group, such that $H := \ker(\Delta_G)$ is a type I group in which G acts regularly on \hat{H} . Then, the Plancherel measure $d\lambda$ (for summary $d\pi$) and the operator field $\{D_{\pi}\}_{\pi \in \hat{G}}$ can be chosen to satisfy the following inversion formula:

$$f(x) = \int_{\widehat{G}} \operatorname{tr}[\widehat{f}(\pi)D_{\pi}^{-1}\pi(x)^*] \mathrm{d}\pi = \int_{\widehat{G}} \operatorname{tr}[\pi(f)D_{\pi}^{-2}\pi(x)^*] \mathrm{d}\pi, \qquad (2.4)$$

for all f in a dense subset of $L^2(G)$. The inversion formula (2.4) converges absolutely in the sense that λ -almost every $\hat{f}(\pi)D_{\pi}^{-1} = \pi(f)D_{\pi}^{-2}$ extends to a trace-class operator, and the integral over the trace-class norms is finite.

3. Non-Unimodular Continuous Gabor Transform

Throughout this paper, we assume that G is a second countable, non-unimodular, and type I group in which G acts regularly on \widehat{H} , with $H = \ker(\Delta_G)$ where Δ_G is the modular function of G. Suppose that for each $\pi \in \widehat{G}$, there is a (probably unbounded) self-adjoint operator D_{π} on \mathcal{H}_{π} , such that for all $x \in G$, we have (see [6] and references therein):

$$D_{\pi}\pi(x) = \Delta_G(x)^{1/2}\pi(x)D_{\pi}.$$
(3.1)

Let $da\sigma$ be the product of the left Haar measure dx on G and the Plancherel measure $d\pi$ on \hat{G} . For each $(x, \pi) \in G \times \hat{G}$, let

$$\mathcal{H}_{(x,\pi)} := \pi(x) D_{\pi} \mathrm{HS}(\mathcal{H}_{\pi}), \qquad (3.2)$$

where

$$\pi(x)D_{\pi}\mathrm{HS}(\mathcal{H}_{\pi}) = \{\pi(x)D_{\pi}T : T \in \mathrm{HS}(\mathcal{H}_{\pi})\}.$$

It can be checked that $\mathcal{H}_{(x,\pi)}$ is a Hilbert space with respect to the inner product

$$\langle \pi(x)D_{\pi}T, \pi(x)D_{\pi}S \rangle_{\mathcal{H}_{(x,\pi)}} := \operatorname{tr}(S^*T), \quad \text{for } S, T \in \operatorname{HS}(\mathcal{H}_{\pi}).$$
 (3.3)

The family $\{\mathcal{H}_{(x,\pi)}\}_{(x,\pi)\in G\times\widehat{G}}$ of Hilbert spaces indexed by $G\times\widehat{G}$ is a field of Hilbert spaces over $G\times\widehat{G}$. The direct integral of the spaces $\{\mathcal{H}_{(x,\pi)}\}_{(x,\pi)\in G\times\widehat{G}}$ with respect to σ , is denoted by $\mathcal{H}^2(G\times\widehat{G})$, that is the space of all measurable vector fields F on $G\times\widehat{G}$, such that

$$\|F\|_{\mathcal{H}^2(G\times\widehat{G})}^2 = \int_{G\times\widehat{G}} \|F(x,\pi)\|_{(x,\pi)}^2 \mathrm{d}a\sigma(x,\pi) < \infty.$$

It can also be checked that $\mathcal{H}^2(G\times \widehat{G})$ becomes a Hilbert space, with the inner product

$$\langle F, K \rangle_{\mathcal{H}^2(G \times \widehat{G})} = \int_{G \times \widehat{G}} \operatorname{tr}[K(x, \pi)^* F(x, \pi))] \mathrm{d}a\sigma(x, \pi).$$

Let ψ be a window function [a fixed non-zero function in $L^2(G)$] and $f \in L^2(G)$. Define the continuous Gabor transform of f with respect to the window function ψ , as a measurable field of operators $\{\mathcal{G}_{\psi}f(x,\pi)\}_{(x,\pi)\in G\times\widehat{G}}$ on $G\times\widehat{G}$ by

$$\mathcal{G}_{\psi}f(x,\pi) := \Delta_G(x)^{1/2} \int_G f(y)\overline{\psi(x^{-1}y)}\pi(y) D_{\pi}^{-1} \mathrm{d}y.$$
(3.4)

The operator-valued integral (3.4) is considered in the weak sense. In other words, for each $(x, \pi) \in G \times \widehat{G}$ and $\zeta, \xi \in \mathcal{H}_{\pi}$, we have

$$\langle \mathcal{G}_{\psi}f(x,\pi)\zeta,\xi\rangle = \int_{G} f(y)\overline{\psi(x^{-1}y)}\langle \pi(y)D_{\pi}^{-1}\zeta,\xi\rangle \mathrm{d}y.$$

Thus, we have

$$\begin{aligned} |\langle \mathcal{G}_{\psi} f(x,\pi)\zeta,\xi\rangle| &= \left|\int_{G} f(y)\overline{\psi(x^{-1}y)}\langle \pi(y)D_{\pi}^{-1}\zeta,\xi\rangle \mathrm{d}y\right| \\ &= \int_{G} |f(y)\overline{\psi(x^{-1}y)}| |\langle \pi(y)D_{\pi}^{-1}\zeta,\xi\rangle| \mathrm{d}y \\ &\leq \int_{G} |f(y)\overline{\psi(x^{-1}y)}| \|\pi(y)D_{\pi}^{-1}\zeta\| \|\xi\| \mathrm{d}y \\ &\leq \|D_{\pi}^{-1}\zeta\| \|\xi\| \int_{G} |f(y)\overline{\psi(x^{-1}y)}| \mathrm{d}y \\ &= \|D_{\pi}^{-1}\zeta\| \|\xi\| \|f\|_{L^{2}(G)} \|\psi\|_{L^{2}(G)}. \end{aligned}$$

For $(x,\pi) \in G \times \widehat{G}$, we can write

$$\mathcal{G}_{\psi}f(x,\pi) = \Delta_G(x)^{1/2} \int_G f(y)\overline{\psi(x^{-1}y)}\pi(y)D_{\pi}^{-1}\mathrm{d}y$$

$$= \Delta_G(x)^{1/2} \left(\int_G f(y)\overline{\psi(x^{-1}y)}\pi(y) \mathrm{d}y \right) D_\pi^{-1}$$
$$= \Delta_G(x)^{1/2} \left(\int_G f(xy)\overline{\psi(y)}\pi(xy) \mathrm{d}y \right) D_\pi^{-1}$$
$$= \Delta_G(x)^{1/2}\pi(x) \left(\int_G f(xy)\overline{\psi(y)}\pi(y) \mathrm{d}y \right) D_\pi^{-1}$$

If $f \in \mathcal{C}_c(G)$ and $\psi \in L^2(G)$, we have $f \cdot L_x \psi \in L^1(G) \cap L^2(G)$ for each $x \in G$. Hence, the non-unimodular Plancherel theorem implies that $\widehat{f \cdot L_x \psi}(\pi) = \pi(f \cdot L_x \psi) D_{\pi}^{-1}$ is a Hilbert–Schmidt operator for almost everywhere $\pi \in \widehat{G}$. Thus, for σ -almost every (x, π) in $G \times \widehat{G}$, we have $\mathcal{G}_{\psi} f(x, \pi) \in \mathcal{H}_{(x,\pi)}$.

In the next proposition, we state concrete and unified representations of the continuous Gabor transform defined in (3.4).

If G is a locally compact and non-unimodular group with the modular function Δ_G and $1 \leq p < \infty$, the involution for $g \in L^p(G)$ is $\tilde{g}(x) = \Delta_G(x)^{-1/p}\overline{g(x^{-1})}$.

Proposition 3.1. Let $\psi \in L^2(G)$ be a window function and $f \in \mathcal{C}_c(G)$. Then, for each $(x, \pi) \in G \times \widehat{G}$, we have

(1)
$$\mathcal{G}_{\psi}f(x,\pi) = \widehat{\mathcal{L}}_{x}^{\psi}(f)(\pi), \text{ where } \mathcal{L}_{x}^{\psi}(f) := f(y)\overline{\psi(x^{-1}y)} \text{ for } y \in G.$$

(2) $\mathcal{G}_{\psi}f(x,\pi)^{*} = \mathcal{F}\left(\widetilde{\mathcal{L}}_{x}^{\psi}(f)\right)(\pi).$

The representation (1) sometimes called as the Fourier representation of the continuous Gabor transform (3.4).

Proof. (1) follows from the definition of redefined non-unimodular Fourier transform. (2) If $f \in \mathcal{C}_c(G)$ and $x \in G$, we have $L_x \psi \in L^2(G)$. Then, the Hölder's inequality guarantees that $\mathcal{L}_x^{\psi}(f) = f.\overline{L_x\psi} \in L^1(G)$, and also, we have

$$\mathcal{L}_x^{\psi}(f) = \widetilde{f}.\overline{\widetilde{L_x\psi}}.$$
(3.5)

Note that in Eq. (3.5), the left-side involution is as an element of $L^1(G)$ and also the right-side involutions are as elements of $L^2(G)$. Let $y \in G$. Then, we can write

$$\begin{aligned} \widehat{\mathcal{L}}_{x}^{\psi}(\widehat{f})(y) &= \Delta_{G}(y^{-1})\overline{\mathcal{L}}_{x}^{\psi}(\widehat{f})(y^{-1}) \\ &= \Delta_{G}(y^{-1})\overline{f(y^{-1})}\psi(x^{-1}y^{-1}) \\ &= \Delta_{G}(y)^{-1}\overline{f(y^{-1})}L_{x}\psi(y^{-1}) \\ &= \Delta_{G}(y)^{-1/2}\overline{f(y^{-1})}\Delta_{G}(y)^{-1/2}L_{x}\psi(y^{-1}) = \widetilde{f}(y)\overline{\widetilde{L_{x}\psi}(y)} = \widetilde{f}.\widetilde{L_{x}\psi}(y). \end{aligned}$$

(2) Let $(x,\pi) \in G \times \widehat{G}$ and $\zeta, \xi \in \mathcal{H}_{\pi}$. Using the identity $\mathcal{L}_{x}^{\psi}(f) = \widetilde{f}.\widetilde{L_{x}\psi}$, we get

$$\begin{aligned} \langle \mathcal{G}_{\psi} f(x,\pi)^* \zeta, \xi \rangle &= \langle \zeta, \mathcal{G}_{\psi} f(x,\pi) \xi \rangle \\ &= \int_G \langle \zeta, f(y) \overline{\psi(x^{-1}y)} \pi(y) D_{\pi}^{-1} \xi \rangle \mathrm{d}y \end{aligned}$$

$$\begin{split} &= \int_{G} \langle \overline{f(y)} L_{x} \psi(y) \pi(y)^{*} \zeta, D_{\pi}^{-1} \xi \rangle \mathrm{d}y \\ &= \int_{G} \langle \overline{f(y)} L_{x} \psi(y) \pi(y^{-1}) \zeta, D_{\pi}^{-1} \xi \rangle \mathrm{d}y \\ &= \int_{G} \langle \overline{f(y^{-1})} L_{x} \psi(y^{-1}) \pi(y) \zeta, D_{\pi}^{-1} \xi \rangle \Delta_{G}(y^{-1}) \mathrm{d}y \\ &= \int_{G} \langle \widetilde{f}(y) \widetilde{L_{x} \psi}(y) \pi(y) \zeta, \xi \rangle \mathrm{d}y \\ &= \int_{G} \langle \widetilde{\mathcal{L}_{x}^{\psi}}(f)(y) \pi(y) \zeta, \xi \rangle \mathrm{d}y = \left\langle \mathcal{F}\left(\widetilde{\mathcal{L}_{x}^{\psi}(f)}\right)(\pi) \zeta, \zeta \right\rangle \end{split}$$

In the next theorem, we shall show that the continuous Gabor transform satisfies a Plancherel formula. From operator theory aspects, the next theorem guarantees that the continuous Gabor transform (3.4) is a multiple of an isometry, and hence, it has closed range.

Theorem 3.2. Let $\psi \in L^2(G)$ be a given window function. Then, for each $f \in \mathcal{C}_c(G)$, we have

$$\|\mathcal{G}_{\psi}f\|_{\mathcal{H}^{2}(G\times\widehat{G})} = \|f\|_{L^{2}(G)}\|\psi\|_{L^{2}(G)}.$$
(3.6)

Proof. Using Proposition 3.1, Theorem 2.1 of [24], and Fubini's theorem, we have

$$\begin{split} \|\mathcal{G}_{\psi}f\|^{2}_{\mathcal{H}^{2}(G\times\widehat{G})} &= \int_{G\times\widehat{G}} \|\mathcal{G}_{\psi}f(x,\pi)\|^{2}_{(x,\pi)} \mathrm{d}a\sigma(x,\pi) \\ &= \int_{G\times\widehat{G}} \mathrm{tr}[\mathcal{G}_{\psi}f(x,\pi)^{*}\mathcal{G}_{\psi}f(x,\pi)] \mathrm{d}a\sigma(x,\pi) \\ &= \int_{G} \left(\int_{\widehat{G}} \mathrm{tr}[\mathcal{G}_{\psi}f(x,\pi)^{*}\mathcal{G}_{\psi}f(x,\pi)] \mathrm{d}\pi \right) \mathrm{d}x \\ &= \int_{G} \Delta_{G}(x) \left(\int_{\widehat{G}} \mathrm{tr}[\widehat{\mathcal{L}^{\psi}_{x}(f)}(\pi)\widehat{\mathcal{L}^{\psi}_{x}(f)}(\pi)] \mathrm{d}\pi \right) \mathrm{d}x \\ &= \int_{G} \Delta_{G}(x) \left(\int_{\widehat{G}} \mathrm{tr}[\widehat{\mathcal{L}^{\psi}_{x}(f)}(\pi)^{*}\widehat{\mathcal{L}^{\psi}_{x}(f)}(\pi)] \mathrm{d}\pi \right) \mathrm{d}x. \end{split}$$

Now, since $\mathcal{L}^{\psi}_{x}(f)$ belongs to $L^{1}(G) \cap L^{2}(G)$, we get

$$\begin{split} &\int_{G} \Delta_{G}(x) \left(\int_{\widehat{G}} \operatorname{tr}[\widehat{\mathcal{L}_{x}^{\psi}(f)}(\pi)^{*} \widehat{\mathcal{L}_{x}^{\psi}(f)}(\pi)] \mathrm{d}\pi \right) \mathrm{d}x \\ &= \int_{G} \Delta_{G}(x) \left(\int_{G} \overline{\mathcal{L}_{x}^{\psi}(f)(y)} \mathcal{L}_{x}^{\psi}(f)(y) \mathrm{d}y \right) \mathrm{d}x \\ &= \int_{G} \Delta_{G}(x) \left(\int_{G} f(y) \overline{f(y)} \psi(x^{-1}y) \overline{\psi(x^{-1}y)} \mathrm{d}y \right) \mathrm{d}x \\ &= \int_{G} f(y) \overline{f(y)} \left(\int_{G} \Delta_{G}(x) \ \psi(x^{-1}y) \overline{\psi(x^{-1}y)} \mathrm{d}x \right) \mathrm{d}y = \|f\|_{L^{2}(G)}^{2} \|\psi\|_{L^{2}(G)}^{2}, \end{split}$$
which implies (3.6). \Box

According to Theorem 3.2, the continuous Gabor transform $\mathcal{G}_{\psi} : \mathcal{C}_c(G)$ $\rightarrow \mathcal{H}^2(G \times \widehat{G})$ defined by $f \mapsto \mathcal{G}_{\psi} f$ is a multiple an isometry. Therefore, we can extend \mathcal{G}_{ψ} uniquely to a bounded linear operator from $L^2(G)$ into a closed subspace of $\mathcal{H}^2(G \times \widehat{G})$ which we still use the notation \mathcal{G}_{ψ} for this extension, and this extension for each $f \in L^2(G)$ satisfies

$$\|\mathcal{G}_{\psi}f\|_{\mathcal{H}^{2}(G\times\widehat{G})} = \|f\|_{L^{2}(G)}\|\psi\|_{L^{2}(G)}.$$

The vector field $\mathcal{G}_{\psi}f$ is called the continuous Gabor transform of $f \in L^2(G)$ with respect to the window function ψ , which can also be considered as the sesquilinear map $(f, \psi) \mapsto \mathcal{G}_{\psi}f$ from $L^2(G) \times L^2(G)$ into $\mathcal{H}^2(G \times \widehat{G})$.

Proposition 3.3. Let ψ and φ be two window functions. The continuous Gabor transform satisfies the following orthogonality relation:

$$\langle \mathcal{G}_{\psi}f, \mathcal{G}_{\varphi}g \rangle_{\mathcal{H}^2(G \times \widehat{G})} = \langle \varphi, \psi \rangle_{L^2(G)} \langle f, g \rangle_{L^2(G)},$$

for all $f,g \in L^2(G)$. Moreover, the normalized Gabor transform $\|\psi\|_{L^2(G)}^{-1}\mathcal{G}_{\psi}$ is an isometry from $L^2(G)$ onto a closed subspace of $\mathcal{H}^2(G \times \widehat{G})$.

Let ψ be a window function and $K \in \mathcal{H}^2(G \times \widehat{G})$. The conjugate linear functional

$$g \mapsto \ell_{\psi}^{K}(g) := \int_{G \times \widehat{G}} \operatorname{tr}[K(y, \pi) \mathcal{G}_{\psi} g(y, \pi)^{*}] \mathrm{d}a\sigma(y, \pi).$$

is a bounded functional on $L^2(G)$. Because, using the Cauchy–Schwartz inequality and also Theorem 3.2, we can write

$$\begin{aligned} |\ell_{\psi}^{K}(g)| &= \left| \int_{G \times \widehat{G}} \operatorname{tr}[K(y, \pi) \mathcal{G}_{\psi} g(y, \pi)^{*}] \operatorname{d} a \sigma(y, \pi) \right| \\ &\leq \int_{G \times \widehat{G}} |\operatorname{tr}[K(y, \pi) \mathcal{G}_{\psi} g(y, \pi)^{*}]| \operatorname{d} a \sigma(y, \pi) \\ &\leq \|K\|_{\mathcal{H}^{2}(G \times \widehat{G})} \|\mathcal{G}_{\psi} g\|_{\mathcal{H}^{2}(G \times \widehat{G})} = \|K\|_{\mathcal{H}^{2}(G \times \widehat{G})} \|\psi\|_{L^{2}(G)} \|g\|_{L^{2}(G)}. \end{aligned}$$

Thus, ℓ_ψ^K defines a unique element in $L^2(G).$ From now on, we use the notation

$$\int_{G\times\widehat{G}} \operatorname{tr}[K(y,\pi)M_{\pi}(L_{y}\psi)] \mathrm{d}a\sigma(y,\pi),$$

for this element of $L^2(G)$. According to this notation, for each $g \in L^2(G)$, we have

$$\left\langle \int_{G \times \widehat{G}} \operatorname{tr}[K(y, \pi) M_{\pi}(L_{y}\psi)] \mathrm{d}a\sigma(y, \pi), g \right\rangle_{L^{2}(G)}$$
$$= \int_{G \times \widehat{G}} \operatorname{tr}[K(y, \pi) \mathcal{G}_{\psi}g(y, \pi)^{*}] \mathrm{d}a\sigma(y, \pi).$$

In the next theorem, we prove an inversion formula.

Theorem 3.4. Let ψ, φ be two window functions, such that $\langle \varphi, \psi \rangle_{L^2(G)} \neq 0$. Then, for each $f \in L^2(G)$, we have

$$f = \langle \varphi, \psi \rangle_{L^2(G)}^{-1} \int_{G \times \widehat{G}} \operatorname{tr}[\mathcal{G}_{\psi} f(y, \pi) M_{\pi}(L_y \varphi)] \mathrm{d}a\sigma(y, \pi).$$

Proof. By Theorem 3.2, we have $\mathcal{G}_{\psi}f \in \mathcal{H}^2(G \times \widehat{G})$. As it is mentioned, the integral

$$\langle \varphi, \psi \rangle_{L^2(G)}^{-1} \int_{G \times \widehat{G}} \operatorname{tr}[\mathcal{G}_{\psi} f(y, \pi) M_{\pi}(L_y \varphi)] \mathrm{d}a\sigma(y, \pi),$$

denotes a well-defined function in $L^2(G)$. Let us use the notation f_{ψ}^{φ} for this function. Using Corollary 3.3, for each $g \in L^2(G)$, we have

$$\begin{split} \langle f_{\psi}^{\varphi}, g \rangle_{L^{2}(G)} &= \langle \varphi, \psi \rangle_{L^{2}(G)}^{-1} \int_{G \times \widehat{G}} \operatorname{tr}[\mathcal{G}_{\psi} f(y, \pi) \mathcal{G}_{\varphi} g(y, \pi)^{*}] \mathrm{d}a\sigma(y, \pi) \\ &= \langle \varphi, \psi \rangle_{L^{2}(G)}^{-1} \langle \mathcal{G}_{\psi} f, \mathcal{G}_{\varphi} g \rangle_{\mathcal{H}^{2}(G \times \widehat{G})} = \langle f, g \rangle_{L^{2}(G)}, \end{split}$$

which implies that $f = f_{\psi}^{\varphi}$ in $L^2(G)$.

Corollary 3.5. Let ψ be a window function, such that $\|\psi\|_{L^2(G)} = 1$. Then, for each $f \in L^2(G)$, we have

$$f = \int_{G \times \widehat{G}} \operatorname{tr}[\mathcal{G}_{\psi} f(y, \pi) M_{\pi}(L_{y} \psi)] \mathrm{d}a\sigma(y, \pi).$$

The following proposition presents a formula concerning the continuous Gabor transform with respect to two non-orthogonal window functions.

Proposition 3.6. For window functions ψ and φ with $\langle \varphi, \psi \rangle_{L^2(G)} \neq 0$, we have

$$\mathcal{G}^*_{\varphi}\mathcal{G}_{\psi} = \langle \varphi, \psi \rangle_{L^2(G)} I_{L^2(G)}. \tag{3.7}$$

Proof. Let $S_{\varphi}: \mathcal{H}^2(G \times \widehat{G}) \to L^2(G)$ be the bounded linear operator given by

$$S_{\varphi}(K) = \int_{G \times \widehat{G}} \operatorname{tr}[K(y, \pi) M_{\pi}(L_{y}\varphi)] \mathrm{d}a\sigma(y, \pi).$$

Then, S_{φ} is the adjoint operator of \mathcal{G}_{φ} . Using Proposition 3.1, for each $f \in L^2(G)$ and $K \in \mathcal{H}^2(G \times \widehat{G})$, we have

$$\langle S_{\varphi}(K), f \rangle_{L^{2}(G)} = \int_{G \times \widehat{G}} \operatorname{tr}[K(y, \pi)\mathcal{G}_{\varphi}f(y, \pi)^{*}] \mathrm{d}a\sigma(y, \pi)$$
$$= \langle K, \mathcal{G}_{\varphi}f \rangle_{\mathcal{H}^{2}(G \times \widehat{G})} = \langle \mathcal{G}_{\varphi}^{*}(K), f \rangle_{L^{2}(G)}.$$

Now, Theorem 3.4 implies (3.7).

4. Continuous Affine Group

Let $G_{\tau} = (0, \infty) \ltimes_{\tau} \mathbb{R}$ be the affine group $a\mathbf{x} + b$, which is the group of all affine transformations $\mathbf{x} \to a\mathbf{x} + b$ of \mathbb{R} with $a \in (0, \infty)$ and $b \in \mathbb{R}$ or with the semi-direct approach the semi-direct group of $H \ltimes_{\tau} K$, where $H = (0, \infty), K = \mathbb{R}$, and the continuous homomorphism $\tau : H \to Aut(K)$ given by $a \mapsto \tau_a$, where $\tau_a(b) := ab$ for all $b \in \mathbb{R}$. The group law for all $q = (a, b), p = (\alpha, \beta) \in G_{\tau} = (0, \infty) \ltimes_{\tau} \mathbb{R}$ is

$$q \ltimes_{\tau} p = (a, b) \ltimes_{\tau} (\alpha, \beta) := (a\alpha, b + \tau_a(\beta)) = (a\alpha, b + a\beta),$$

$$q^{-1} = (a, b)^{-1} := (a^{-1}, \tau_{a^{-1}}(-b)) = (1/a, -b/a).$$

Then, $d_l p = d\mu_l(a, b) = dadb/a^2$ is a left Haar measure and $d_r p = d\mu_r(a, b) = dadb/a$ is a right Haar measure for G, and also the modular function for $p = (a, b) \in G$ is $\Delta_{G_\tau}(a, b) = 1/a$. All one-dimensional irreducible representations of G_τ are of the form π_λ for some $\lambda \in \mathbb{R}$, where $\pi_\lambda(a, b) = a^{i\lambda}$ for all $(a, b) \in G_\tau$ and $\lambda \in \mathbb{R}$ ([6]). Let $\pi : G_\tau \to \mathcal{U}(L^2(\mathbb{R}))$ be the continuous unitary representation of G_τ given by

$$[\pi(a,b)\mathbf{g}](x) = a^{1/2} e^{2\pi i b x} \mathbf{g}(ax), \quad \text{for } x \in \mathbb{R} \quad \text{and} \quad \mathbf{g} \in L^2(\mathbb{R}).$$
(4.1)

Let the continuous unitary representations π_+ and π_- be the subrepresentations of the continuous unitary representation π on the subspaces $\mathcal{H}_+ = L^2(\Omega_+)$ and $\mathcal{H}_+ = L^2(\Omega_-)$, respectively, where $\Omega_+ = (0, +\infty)$ and $\Omega_- = (-\infty, 0)$. Then

$$\widehat{G_{\tau}} = \{\pi_{\lambda} : \lambda \in \mathbb{R}\} \cup \{\pi_{\pm}\}.$$

$$(4.2)$$

Let $D_{\pm}: \mathcal{H}_{\pm} \to \mathcal{H}_{\pm}$ be given by

$$[D_{\pm}\mathbf{g}](t) = |t|^{1/2}\mathbf{g}(t), \quad \text{for } \mathbf{g} \in \mathcal{H}_{\pm} = L^2(\Omega_{\pm}).$$
(4.3)

Then, the operators $D_{\pm}: \mathcal{H}_{\pm} \to \mathcal{H}_{\pm}$ satisfy

$$D_{\pm}\pi_{\pm}(q) = D_{\pm}\pi_{\pm}(a,b) = a^{-1/2}\pi_{\pm}(a,b)D_{\pm}, \qquad (4.4)$$

for all $q = (a, b) \in G_{\tau} = (0, \infty) \ltimes \mathbb{R}$. The modified Fourier transform will be

$$\hat{f}(\pi_{\pm}) = \pi_{\pm}(f)D_{\pm}, \quad \text{for } f \in L^1(G_{\tau}) \cap L^2(G_{\tau}).$$
 (4.5)

For $f \in L^1(G_\tau) \cap L^2(G_\tau)$ and $q = (a, b) \in G_\tau$, $\pi \in \widehat{G_\tau}$, we have

$$\begin{aligned} \mathcal{G}_{\psi}f(q,\pi) &= \Delta_{G_{\tau}}(q) \int_{G_{\tau}} f(p)\overline{\psi(p^{-1}q)}\pi(p)D_{\pi}^{-1}\mathrm{d}\mu_{l}(p) \\ &= \Delta_{G_{\tau}}(a,b)^{1/2} \int_{G_{\tau}} f(\alpha,\beta)\overline{\psi((a,b)^{-1}\ltimes_{\tau}(\alpha,\beta))}\pi(\alpha,\beta)D_{\pi}^{-1}\mathrm{d}\mu_{l}(\alpha,\beta) \\ &= a^{-1/2} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} f(\alpha,\beta)\overline{\psi((a,b)^{-1}\ltimes_{\tau}(\alpha,\beta))}\pi(\alpha,\beta)D_{\pi}^{-1}\frac{\mathrm{d}\alpha\mathrm{d}\beta}{\alpha^{2}} \end{aligned}$$

$$= a^{-1/2} \int_0^{+\infty} \int_{-\infty}^{+\infty} f(\alpha,\beta) \overline{\psi((1/a,-b/a) \ltimes_{\tau} (\alpha,\beta))} \pi(\alpha,\beta) D_{\pi}^{-1} \frac{d\alpha d\beta}{\alpha^2}$$
$$= a^{-1/2} \int_0^{+\infty} \int_{-\infty}^{+\infty} f(\alpha,\beta) \overline{\psi(\alpha/a,(-b+\beta)/a)} \pi(\alpha,\beta) D_{\pi}^{-1} \frac{d\alpha d\beta}{\alpha^2}.$$

Example 4.1. Let $f \in L^1(G_\tau) \cap L^2(G_\tau)$ and $\psi \in \mathcal{C}_c(G_\tau)$. If $q = (a, b) \in G_\tau$, we have

$$\mathcal{G}_{\psi}f(q,\pi_{\pm}) = a^{-1/2} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} f(\alpha,\beta) \overline{\psi(\alpha/a,(-b+\beta)/a)} \pi_{\pm}(\alpha,\beta) D_{\pi_{\pm}}^{-1} \frac{\mathrm{d}\alpha \mathrm{d}\beta}{\alpha^{2}}$$
$$= a^{-1/2} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} f(\alpha,\beta) \overline{\psi(\alpha/a,(-b+\beta)/a)} \pi_{\pm}(\alpha,\beta) D_{\pm}^{-1} \frac{\mathrm{d}\alpha \mathrm{d}\beta}{\alpha^{2}}.$$

Then, for all $\mathbf{f}, \mathbf{g} \in \mathcal{H}_{\pm}$, we get

$$\begin{split} \langle \mathcal{G}_{\psi} f(q, \pi_{\pm}) \mathbf{f}, \mathbf{g} \rangle_{\mathcal{H}_{\pm}} &= \langle \mathcal{G}_{\psi} f(a, b, \pi_{\pm}) \mathbf{f}, \mathbf{g} \rangle_{L^{2}(\Omega_{\pm})} \\ &= a^{-1/2} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} f(\alpha, \beta) \overline{\psi(\alpha/a, (-b+\beta)/a)} \\ &\times \langle \pi_{\pm}(\alpha, \beta) D_{\pm}^{-1} \mathbf{f}, \mathbf{g} \rangle_{L^{2}(\Omega_{\pm})} \frac{\mathrm{d}\alpha \mathrm{d}\beta}{\alpha^{2}} \\ &= a^{-1/2} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} f(\alpha, \beta) \overline{\psi(\alpha/a, (-b+\beta)/a)} \\ &\times \left(\int_{\Omega_{\pm}} [\pi_{\pm}(\alpha, \beta) D_{\pm}^{-1} \mathbf{f}](t) \overline{\mathbf{g}(t)} \mathrm{d}t \right) \frac{\mathrm{d}\alpha \mathrm{d}\beta}{\alpha^{2}} \\ &= a^{-1/2} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} f(\alpha, \beta) \overline{\psi(\alpha/a, (-b+\beta)/a)} \\ &\times \left(\int_{\Omega_{\pm}} \alpha^{1/2} e^{2\pi i\beta t} [D_{\pm}^{-1} \mathbf{f}](\alpha t) \overline{\mathbf{g}(t)} \mathrm{d}t \right) \frac{\mathrm{d}\alpha \mathrm{d}\beta}{\alpha^{2}} \\ &= a^{-1/2} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} f(\alpha, \beta) \overline{\psi(\alpha/a, (-b+\beta)/a)} \\ &\times \left(\int_{\Omega_{\pm}} \alpha^{1/2} e^{2\pi i\beta t} |\alpha t|^{-1/2} \mathbf{f}(\alpha t) \overline{\mathbf{g}(t)} \mathrm{d}t \right) \frac{\mathrm{d}\alpha \mathrm{d}\beta}{\alpha^{2}} \\ &= a^{-1/2} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} f(\alpha, \beta) \overline{\psi(\alpha/a, (-b+\beta)/a)} \\ &\times \left(\int_{\Omega_{\pm}} |t|^{-1/2} e^{2\pi i\beta t} \mathbf{f}(\alpha t) \overline{\mathbf{g}(t)} \mathrm{d}t \right) \frac{\mathrm{d}\alpha \mathrm{d}\beta}{\alpha^{2}}. \end{split}$$

Example 4.2. Let $f \in L^1(G_\tau) \cap L^2(G_\tau)$, $\psi \in \mathcal{C}_c(G_\tau)$, $\lambda \in \mathbb{R}$, and $q = (a, b) \in G_\tau$. Then

$$\mathcal{G}_{\psi}f(q,\lambda) = \mathcal{G}_{\psi}f(a,b,\pi_{\lambda})$$
$$= a^{-1/2} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} f(\alpha,\beta)\overline{\psi(\alpha/a,(-b+\beta)/a)}\pi_{\lambda}(\alpha,\beta)D_{\pi_{\lambda}}^{-1}\frac{\mathrm{d}\alpha\mathrm{d}\beta}{\alpha^{2}}$$

$$= a^{-1/2} \int_0^{+\infty} \int_{-\infty}^{+\infty} f(\alpha,\beta) \overline{\psi(\alpha/a,(-b+\beta)/a)} \pi_\lambda(\alpha,\beta) \frac{\mathrm{d}\alpha \mathrm{d}\beta}{\alpha^2}$$
$$= a^{-1/2} \int_0^{+\infty} \int_{-\infty}^{+\infty} \alpha^{i\lambda} f(\alpha,\beta) \overline{\psi(\alpha/a,(-b+\beta)/a)} \frac{\mathrm{d}\alpha \mathrm{d}\beta}{\alpha^2}.$$

Acknowledgements

Open access funding provided by University of Vienna.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Arefijamaal, A.: The continuous Zak transform and generalized Gabor frames. Mediterr. J. Math. 10(1), 353–365 (2013)
- [2] Arefijamaal, A., Ghaani Farashahi, A.: Zak transform for semidirect product of locally compact groups. Anal. Math. Phys. 3(3), 263–276 (2013)
- [3] Arefijamaal, A., Kamyabi-Gol, R.A.: On the square integrability of quasi regular representation on semidirect product groups. J. Geom. Anal. 19(3), 541–552 (2009)
- [4] Arefijamaal, A., Zekaee, E.: Signal processing by alternate dual Gabor frames. Appl. Comput. Harmon. Anal. 35(3), 535–540 (2013)
- [5] Dixmier, J.: C*-Algebras. North-Holland and Publishing company, Amsterdam (1977)
- [6] Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)
- [7] Führ, H.: Painless Gabor expansions on homogeneous manifolds. Appl. Comput. Harmon. Anal. 26(2), 200–211 (2009)
- [8] Fuehr, H.: Abstract Harmonic Analysis of Continuous Wavelet Transforms, Springer. Lecture Notes in Math, vol. 1863. Springer, Berlin (2005)
- [9] Ghaani Farashahi, A.: Square-integrability of metaplectic wave-packet representations on L²(R). J. Math. Anal. Appl. 449(1), 769–792 (2017)
- [10] Ghaani Farashahi, A.: Square-integrability of multivariate metaplectic wavepacket representations. J. Phys. A Math. Theor. 50, 115202 (2017). 22pp
- [11] Ghaani Farashahi, A.: Abstract harmonic analysis of wave-packet transforms over locally compact abelian groups. Banach J. Math. Anal. 11(1), 50–71 (2017)
- [12] Ghaani Farashahi, A.: Abstract relative Fourier transforms over canonical homogeneous spaces of semi-direct product groups with Abelian normal factor. J. Korean Math. Soc. 54(1), 117–139 (2017)
- [13] Ghaani Farashahi, A.: Continuous partial Gabor transform for semi-direct product of locally compact groups. Bull. Malays. Math. Sci. Soc. 38(2), 779–803 (2015)

- [14] Ghaani Farashahi, A.: A unified group theoretical method for the partial Fourier analysis on semi-direct product of locally compact groups. Res. Math. 67(1-2), 235-251 (2015)
- [15] Ghaani Farashahi, A.: Generalized Weyl-Heisenberg (GWH) groups. Anal. Math. Phys. 4(3), 187–197 (2014)
- [16] Ghaani Farashahi, A., Kamyabi-Gol, R.A.: Continuous Gabor transform for a class of non-abelian groups. Bull. Belg. Math. Soc. Simon Stevin 19(4), 683–701 (2012)
- [17] Gröchenig, K.: Foundation of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)
- [18] Gröchenig, K.: Aspects of Gabor analysis on locally compact abelian groups. In: Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms, Applied and Numerical Harmonic Analysis, pp. 211–231. Birkhäuser, Boston (1998)
- [19] Hewitt, E., Ross K. A.: Abstract harmonic analysis. vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Bd. 115, Academic Press Inc., Publishers, New York, 1963
- [20] Hewitt, E., Ross K. A.: Abstract harmonic analysis. vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York, 1970
- [21] Kisil, V.: Geometry of Möbius transformations. Elliptic, parabolic and hyperbolic actions of $SL_2(\mathbb{R})$. Imperial College Press, London (2012)
- [22] Kisil, V.: Calculus of operators: covariant transform and relative convolutions. Banach J. Math. Anal. 8(2), 156–184 (2014)
- [23] Kisil, V.: Operator covariant transform and local principle. J. Phys. A 45(24), 244022 (2012). 10 pp
- [24] Lipsman, R.L.: Non-Abelian Fourier analysis. Bull. Sc. Math. 2^e Ser. 98, 209– 233 (1974)
- [25] Murphy, G.J. C*-Algebras and Operator theory. Academic Press INC, Cambridge (1990)
- [26] Rahimi, A., Najati, A., Dehghan, Y.N.: Continuous frames in Hilbert spaces. Methods Funct. Anal. Topol. 12(2), 170–182 (2006)
- [27] Reiter, H., Stegeman, J.D.: Classical Harmonic Analysis, 2nd edn. Oxford University Press, New York (2000)
- [28] Segal, I.E.: An extension of Plancherel's formula to separable unimodular groups. Ann. Math 52, 272–292 (1950)
- [29] Tatsuma, N.: Plancherel formula for non-unimodular locally compact groups. J. Math. Kyoto Univ. 12, 179–261 (1972)

Arash Ghaani Farashahi

Numerical Harmonic Analysis Group (NuHAG), Faculty of Mathematics

University of Vienna

Vienna

Austria

e-mail: arash.ghaani.farashahi@univie.ac.at;

ghaanifarashahi@outlook.com

Received: March 18, 2016. Revised: April 29, 2017. Accepted: May 4, 2017.